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Ill

Durchbiegung von Stahlbetonbalken unter kurz- und langfristiger Belastung
nach Rechnung und Versuch

Calculated and Measured Deflections of Reinforced Concrete Beams under
Short-and Long-Term Loads

Calcul et mesures de flèches des poutres en béton armé sous des charges
instantanées et de longue durée

1. Einleitung

Die Anwendung der plastischen bzw. Bruchlastverfahren zur
Bemessung von Stahlbetonbalken setzt voraus, dass die Formänderungen

für alle Beanspruchungsarten berechnet werden können. Auf
Grund ausgeführter Versuche unterscheiden wir deutlich drei Be-
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Beratender Ingenieur
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reiche (Bild l): a) ungerissener (0 - R)

b) gerissener (R - P)

c) Pliessbereich (P - B).
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Die wirkliche Last-Durchbiegungs-Linie kann näherungsweise durch
drei gerade Teilstücke ersetzt werden. Diese Eigenschaft der Tri-
linearität erleichtert die wirklichkeitsnahe Berechnung der
Durchbiegungen von Stahlbetonbalken erheblich.

2. Ungerissener Zustand

2.1 Kurzfristige Lasteinwirkung

Die Durchbiegungen von Stahlbetonbalken im ungerissenen
Zustand und unter kurzfristiger Lasteinwirkung können mit der
Elastizitätstheorie einigermassen zutreffend erfasst werden.

Bild 2

b 20,2 cm

a C a
J-

90 120 90 t

*
J

30

!_ _û_

L 300 cm 30
r i

d 3!),7 h 36,5

- 3,2
7 0 14

Fg 10,8 cm

(<«,= 1,47 fo)

Für den Versuchsbalken Nr. A2a von FRANZ und BRENKER /l/ (Bild 2)
mit den gemessenen Werten für die

Stahl-Fliessgrenze °F °0,2 4'55 Mp/crf

Beton-Würfeldruckfestigkeit ßw29 28^ kp/cm2

ß029 234 "
A ffAZ29 ~ 25'9

3m2

-Zylinderdruckfestigkeit
-SpaltZugfestigkeit
-Elastizitätsmodul E-^ 265 Mp/cn

und den aus ihnen nach CEB /2/ abgeleiteten Werten für die

Beton-Biegezugfestigkeit |$BZ 4-7,1 kp/cm2

E '
Verhältniszahl nQ jp- 2^^ 7,9

sowie dem Trägheitsmoment I 127100 cm4 (105800 cm4 ohne F und
dem Widerstandsmoment

W s~ 118^"23 6970 cn? (5330 cnf ohne Fg)

erhalten wir das Rissmoment
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MR P'BZ77 47,1 X 6970 3'28 Mpm

und daraus 'die Risslast

PR ^ 3,65 Mp (gemessen 3,70 Mp)

& (kp/cm)

-

—)s*J

£ (*. Bild 3

(1)

(2)

Die Durchbiegung in Balkenmitte beträgt (E^ 0,89 ^ 257 Mp/c

gemäss Bild 3)

Mrf - - 3D - 4a _ 328(3 x 300 - 4 x 90*) _ n nR " E^T 24 ~ 237 x 127100 x 24 ~ ' cm

(gemessen 0,16 cm).

2.2 Schwinden des Betons

(3)

Nach CEB /2/ kann das Schwindmass mit der Formel

£s - -Y0tppr(1 - 0,1 £l'/o)$
berechnet werden. Aus der Definition des Biegemoments mit Hilfe
der Stabkrümmung (Bild 4b)

1 _
M

_
£S

R " IT ~ h

folgt die Durchbiegung in Balkenmitte
2 2

- hl~ 8R

h ?£h
"Sl

£§îl
ah

22
X,

*

(4)

(5)

(6)

Bild 4

(a) Kriechen (b) Schwinden
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2.3 Kriechen des Betons

Bach CEB /2/ kann das Kriechmass mit der Formel

f - fo^fîS
berechnet werden. Damit erhalten wir die Durchbiegung in Balkenmitte

f¥ 1 f fR ^

3. Gerissener Zustand

3.1 Kurzfristige Lasteinwirkung

Der Fliesspunkt F kennzeichnet im Last-Durchbiegungs-Diagramm
(Bild 1) das Ende des gerissenen und den Beginn des Fliesszustan-
des. Für den Versuchsbalken Nr. A2a von FRANZ und BRENKER /l/
erhalten wir aus der Höhe der Biegedruckzone (n-p 2nQ 15,8)

tf n^(-l + /T7|
15,8 x 0,0147(-1 +\]l + | 0>0147) 0.488 (9)

das Fliessmoment
MF "^e6^*1 " 10,8 X 4'55 X °'837 x °»365 15,0 Mpm (10)

und die Fliesslast

P —= 73'^ 16 7 MB (ll)F a 0,90 »' p* ^

Die Biegesteifigkeit im gerissenen Zustand berechnen wir aus der
Stabkrümmung

1 _
^e M ClPlR~x~h-x~EI K '

mit Hilfe der Gl.(10)

EI EeFe(h - |)(h - x)
2100 x 10,8(0,837 x 0,365)(0,512 x 0,365) 1294 MpnF (13)

und die Durchbiegung in Balkenmitte beträgt analog zu Gl.(3)

f 1500(3 x 3002 - 4 x 902)
_ n 15 cmJF 12940000 x 24 " ' 5

Durchbiegungen eines Stahlbetonbalkens im gerissenen Zustand
können wir für beliebige Lasten zwischen der Risslast (R) und der
Fliesslast (F) mit der Interpolationsformel
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% + (% fn)p^ - P
R (14)

ermitteln.

3.2 Schwinden des Betons

Bach BRANSON /3/ liefern die Formeln

i- -
LS2 - o c -fr

gültig für (fr-fr) 3,0 $ und

1 £s
d

.1

S2

(15)

(16)

gültig für (fr-fr) > 3,0 ia

die beste Ubereinstimmung mit den Versuchsergebnissen. Pür fr 0

vereinfacht sich die Gl.(15) zu
1

1 a ^-,3 (15a)R^ - °'7?^3
Für die Versuchsbalken Nr. E3 und E6 von WASHA und F1UGK /4/
(Bild 5)

b 30,5 cm

g 52,7 kp/m

533 cm

<3-7, 60

"+
h

!>c 233 kp/cm (E3)

ic 188 " (E6)

4 0 9,5
F 2 ,84 cnf

(fr 1,59

5,87
1,73

3,95 Mp/c

Bild 5

relative Luftfeuchtigkeit 20 bis 80 $ (im Mittel 40 fo)

Vergleichsdicke d * y1\ cm

w 176Wasserzementfaktor ^ 0,63

Schwinddauer Tg 30 Monate plus 9 Tage

Kriechdauer T^ 30 Monate

jetrüge das Schwindmass nach Gl.(4)
£s 40 x 10~5x 0,95 x 1,10 x 0,84 x 0,70 24,6 x 10~5.
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_5Für den gemessenen Wert £g 75 x 10 beträgt die Stabkrümmung
nach Gl.(15a)

-5 —

0,7 x 73
y,6>0— x 1>59'3 &'28 x 10~5 cm-1

und die Durchbiegung in Balkenmitte nach Gl.(6)
2

fg2 8,28 x 10-3x 3g3 2,9 cm (gemessen 5,1 cm).

0,0527 x 0,188 Mpm

5.5 Kriechen des Betons

Mit der Verhältnis zahl (E^ 0,87 E^ 205 Mp/cm2)

„ _
Ee 2100 „~ 205 ~ '

erhalten wir für die Versuchsbalken Nr. E3 und E6 von WASHA und
PLUCK /4/ (Bild 5) gemäss Gl.(9) die Höhe der Biegedruckzone

g 10,3 X 0,0159(-1 + /l + l0t? ^OTÔB?) - 0,431

und gemäss Gl.(15) die Biegesteifigkeit des gerissenen Querschnittes

EI 2100 x 2,84(0,856 x -0,0587)(0,569 x 0,0587) 10,01 Mpm.

Aus dem äusseren Biegemoment (Bild 5)
2
l

8

folgt analog zu Gl.(5) die Durchbiegung in Balkenmitte bei der
Erstbelastung im Alter von 14 Tagen

2

"^o2 lo'oi x cm (gemessen cm).

Das Kriechmass ergibt sich nach Gl.(7) zu
<f 5,25 x 0,95 x 1,20 x 1,20 x 0,90 4,00.

Die Stahldehnung

c — — o
e "

E P (h - -)
~ 2100 x 2,84(0,856 x 5,87) " U,b '

e e 5

wird durch das Kriechen des Betons nicht wesentlich beeinflusst
(Bild 4a). Da die Betonstauchung

£e ÎTÏ-Ï - °,628 x 10"5 x 1 " °-476 *•

aber auf den Wert

hif + f)^ (1 + 4,00)0,476 x 10"3 2,580 fa

anwächst, folgt aus Bild 4a die Durchbiegung in Balkenmitte nach
50 Monaten
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f _ f £e + gb(1 + y}
_ 5 6 0,628 + 2,380 2

if2 ~ o2 ge + £b
~ ' 0,628 + 0,476 X5' cm

(gemessen 15,4 cm).

4. Bruchzustand

Bach CEB /5/ kann die Bruchspannung kaltgereckter Bewehrungen
C" g-

®B ^O^1'28 ' 50000 " <'17^

gesetzt werden. Für den Versuchsbalken Nr. A2a von FRANZ und BRENKER

/l/ (Bild 2) erhalten wir
Ö*B 4,55(1,28 - - 0,45 x x 0,0147) 4,82 Mp/orf.

Damit beträgt die Höhe des rechteckigen Druckspannungsblocks /6/

g p-jÇ 0,0147 x 4||0 0,303 (18)

das Bruchmoment des Querschnitts

MB Fe^^h ~ f) 10>8 x 4'82 x °»848 x 0,365 16,1 Mpm (19)

und die Bruchlast

pb èfgïï 17'9 Mp (semessen 18»° mP)*

Nach CEB /2/ beträgt die Bruchdehnung der Bewehrung für 6^ 4,82
Mp/ciff

8* 2,00 + 3,00 x 5,37

Aus der Höhe der Biegedruckzone

x £ x 0,303 x 36,5 14,74 cm

folgt die Bruchstauchung des Betons

el «é E-VÏ - 5.57 X 10-5 x » 3,64 %

und die Stabkrümmung beim Bruch
* *

1 £b £e 0.00364 „ ...-1
R^ ~ x~ o|l474 °'0247 m •

Setzen wir den Auflagerdrehwinkel beim Bruch in erster Näherung

04g g- 1,20 x 0,0247 0,0296 (20)
B

so beträgt die Durchbiegung in Balkenmitte beim Bruch (Bild 6)

fB =<*B(a + J) 0,0296(90 + i|£) 3,55 cm (21)
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a

P.
B

c

P.
B

a

Wenn auch die Durchbi%ung
beim Bruch nicht gemessen
werden kann, so ist der
errechnete 'Wert doch
plausibel.

L Bild 6
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ZUSAMMENFASSUNG

Es wird gezeigt, wie die Durchbiegungen von Stahlbetonbalken unter kurz-
und langfristiger Belastung mit einfachen Formeln für den ganzen Formänderungs-
bereich vom ungerissenen bis zum Bruch-Zustand berechnet werden können. Die
Uebereinstimmung von Rechnung und Messung ist für praktische Zwecke völlig
ausreichend.
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SUMMARY

It is shown that the deflections of reinforced concrete beams under short- and
long-term loads can be predicted with simple formulae for any state of deformation
from the uncracked stage up to rupture. The agreement of calculated and measured
values is completely satisfactory for design purposes.

RESUME

On présente le calcul des flèches pour les poutres en béton armé sous des
charges instantanées et de longue durée avec des formules simples pour tous les
états de déformation du stade non-fissuré jusqu'à la rupture. La comparaison des
calculs avec les mesures est complètement satisfaisante pour les besoins de la
pratique.

Bg 25 Schlussbericht
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Ill

Ein Näherungsverfahren zur Berechnung der Verbund- und vorgespannten
Konstruktionen

An Approximate Method for Calculation of Composite and Prestressed Structures

Une méthode approchée pour le calcul des constructions mixtes acier-béton
et en béton précontraint

MILAN DJURIC
Prof., Dr. se. techn.
Universität Beograd

Jugoslawien

1. Beziehung; zwischen Spannungen und. Dehnungen des Betons
Bei der Berechnung der vorgespannten und der Verbundkonstruktionen

wird noch immer die von Dischinger vorgeschlagene Beziehung
zwischen Spannungen und Dehnungen des Betons angenommen. Diese
Beziehung wird zumeist in Form einer Differentialgleichung geschrieben,

kann aber auch in Form einer Integralgleichung angeschrieben
werden, und zwar:

wo durch (p ip(t) das Kriechmass und durch S&= £s(i) das Schwind-
mass des Betons bezeichnet wird. Dabei wird gewöhnlich vorausgesetzt,

dass

/2/ es=~ iprl)
ist, wo durch cp^ das Endkriechmass und durch cStc das -Enclschwind-
mass des Betons bezeichnet ist.

Es hat sich leider gezeigt, dass zahlreiche Probleme der
vorgespannten und der Verbundkonstruktionen mit einer solchen Beziehung

zwischen Spannungen und Dehnungen nicht gelöst werden können.
Deshalb ist man gezwungen, sich mit angenäherten Lösungen zu begnügen.

In dem hier vorgeschlagenen Näherungsverfahren wird die
Integralgleichung /!/ durch eine gewöhnliche algebraische Gleichung
ersetzt, die sich ergibt, wenn der Wert des Integrals in der Gleichung

/!/ bestimmt wird unter Voraussetzung, dass die Spannung im
Beton von Werte im Zeitpunkt -t Q bis zum Wert 6"^ im Zeitpunkt

» eine lineare Funktion der Veränderlichen u> ist, d.h. wenn in
die Gleichung /!/ eingetragen wird:

73/ J'P6{)c/<f>= <p.
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Mit den Bezeiehungen

/Vi /5/ £bf— 2-f-ip 2+f }

kann die Gleichung /!/ in folgender Form geschrieben werden:

/6/ <% + ?<% £6v(&-£s).
Die Lösungen, die sich ergeben, indem man von der obigen

Gleichung ausgeht, sind einfach und stets ausreichend genau, in
bezug auf die Genauigkeit, mit der die Haterialkonstanten
bestimmt werden können und die Genauigkeit, mit der die Gleichung/!/ das reelle Verhalten des Betons darstellt.
2. Grundlegende Bezeiehungen

Eâ - -Elastizitätsmodul des Stahls,
- Elastizitätsmodul des Betons,

Eb(p - fiktiver Elastizitätsmodul des Betons, Gleichung /Vi
£"c - Vergleichs-Elastizitätsmodul. Für Verbundkonstruktionen

ist Ec für vorgespannte Konstruktionen ist_^ £^
Vâ Et3/Ec } Vß =-Ety/£c ~ Verhältnisse der Elastizitätsmoduli,
fg - Querschnittsfläche des Stahls mit dem Schwerpunkt
C - Abstand der Schwerpunkte TS und Tb i positiv wenn

der Schwerpunkt Es unter dem Schwerpunkt 7^ liegt,
-Eh~ VäE ] ^6^7, ~ reduzierte Querschnittsfläche des

Stahls bzw. des Betons,
Ei — Egr~h - ideelle Querschnittsfläche,
U - Abstand der Querschnittspunkte von der zur Biegungsebe-J ne senkrechten Achse durch den Schwerpunkt des ideellen

Querschnittes 72 Die Abstände des Schwerpunktes 72
von den Schwerpunkten Tâ 71 sl-n(1: U =F, C/Fe 1131(1

y^fürc-iFi • a
- Trägheitsmomente des Stahl- bzw. Betonteiles des Quer-

J ® Schnittes in bezug auf die Schwerpunkrachsen durch
und Tb

Vjlsj IjhE ^b^br - reduziertes Trägheitsmoment des Stahls
bzw. des Betons,

J'sr'*'Trägheitsmoment des ideellen Querschnit¬
tes.

Die eingeführten Bezeichnungen unterscheiden sich von den in
der Theorie der vorgespannten und der Verbundkonstruktionen üblichen

Bezeichnungen nur dadurch, dass die Betonfläche nicht nach
dem reellen Elastizitätsmodul des Betons Eb sondern nach dem
fiktiven Modul reduziert wird. Da der Modul Ebtp eine Funktion

von y> bzw. von -b ist, so sind auch die Grössen 14
Ei i Ii i sowie die Grössen yâ Funktionen von ip bzw. von iE,

3. Spannungen und Verformungsgrössen
Der Bernoullischen Voraussetzung über ebenbleibende

Querschnitte gemäss können, im Falle ebener Biegung,die Dehnungen inder Sichtung der Stabachse in folgender Form dargestellt werden:
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/7/ £=
wo £7- die Dehnung im Schwerpunkt des ideellen Querschnittes 12
ist, und die Krümmungsänderung der Stabachse. Die Spannungen
im Stahl werden, laut Hooke-schem Gesetz, durch den Ausdruck:

/8/ <oa~ EaCZ-r+^y)
gegeben, während die Spannungen im Beton, gemäss der Gleichung
/6/, durch den Ausdruck:

/9/ ~ £hf ~ f ^~bo Efjp&s >

gegeben wedren, Die Verformungsgrössen <£7- und in dem
Querschnitt mit den Querschnittskräften M und M ergeben sich aus
den Gleichgewichtsbedingungen:

^ ç-âJF + V<obc/F Nj
no/

§ y&a^F-h y<obc/F - M>

wo der Index â bzw. b unterhalb des Integralzeichens bezeichnet,
dass das Integrationsgebiet der Stahl- bzw. der Betonteil des
Querschnittes ist. Wenn die Gleichungen /8/ und /9/ in die Gleichungen
/10/ eingetragen werden, ergibt sich:

&T (&£ JF) + 96

N+ sSyF>

£r(^4ydFy ?*!bydF) +x
M-/- f 2h y6ïo rjF +£bp fis y C*F-

Nach den Bezeichungen im vorangehenden Abschnitt ist:
£aldF~h£b<P§bdF^ £âFà + FhipFb- Ecfc 3

/12/ Ef£ ydF+Efy^ydF « F3Fâyâ+£bi,Fhyb - O,

Die Integrale :

j^e-boc/F und lhy&bodf>

an der rechten Seite der Gleichung /II/ haben einfache Bedeutungen.
Das erste stellt die Resultierende der inneren Kräfte die von Beton

im Zeitpunkt -fc=0 aufgenommen werden dar, während das zweite
das Moment in bezug auf den Schwerpunkt des ideellen Querschnittes
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Ti derselben Kräfte darstellt. Die Resultierende wird mit
und das Moment wird mitMba-f-h/boybo bezeichnet, wo das Moment
der vom Beton im Zeitpunkt t=o aufgenommenen inneren Kräfte in
bezug auf den Schwerpunkt des Betons 7£ ist. Damit wird:

/15/ f6 +^60
Wenn man nebst den bisher eingeführten Bezeichnungen noch die
Bezeichnung:

/IV Fblf>Fh£s >

einführt, so können die Gleichungen /II/ auch in folgender Form
angeschrieben werden:

E*Fie.r H+?*6o+NaKJ
/^p/

Edc^e^ M + 9Ns/tUbo •

Wird die Summe der Kräfte an der rechten Seite der ersten von diesen
Gleichungen als eine fiktive Normalkraft A/ip und die Summe der

Momente an der rechten Seite der zweiten von diesen Gleichungen
als ein fiktives Biegungsmoment M<p aufgefasst:

/16/ N+ 9A4*
M<p M+ 9(^60^ N^y^ + Nsdba,

so sind die Verformungsgrössen 9C und £7- durch folgende Ausdrücke
angegeben:

/in/ c _ jp—
M<?

/ 7/ T EcFl ' EJL
Wenn man diese Werte für £T und &. in die Gleichungen /8/ und /9/
einführt, so ergibt sich:

/18/
"l- +j'y)

Aus den Gleichungen /l?/ und /18/ wir folgern, dass in einem
Verbund- oder vorgespannten Träger im Zeitpunkt ± die Verformungsgrössen

£r und 3. gleich sind und die Spannungen und
~t"Eb(pßs proportioneil sind den entsprechenden Einflüssen in einem
Träger von gleichartigem Material, mit einheitlichem Elastizitätsmodul

Fc mit den Querschnittsbeiwerten Fe und Je und mit den
fiktiven Querschnittskräften Ny und Mu>, die durch die- Gleichungen

/16/ angegeben sind.
Um aus den Gleichungen /16/, /17/ und /18/ die Verformungsgrössen

und die Spannungen im Zeitpunkt ~t zu berechnen, ist es
erforderlich, die Grössen 6~bo und Mbo zu kennen. Die erwähnten

Grössen ergeben sich aus den vorangehenden Gleichungen, wenn
man für i=o : tp=0 Ç=0 rfs/c~ & stellt, sowie dass
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N= Nq und A/ A/0 ist :

/19/ 1»*)'

720/ +Mo
> io -Lia -LÙ3

In den obigen Gleichungen sind F^ra un<l Xbra Querschnittswerte des
Betons, reduziert nach dem reellen Elastizitätsmodul des Betons j56
und F[o die Querschnittswerte des entsprechenden ideellen
Querschnittes.
4. Statisch unbestimmte Träger

Infolge des Schwindens und des Kriechens des Betons, unter
Einwirkung einer ständigen Belastung, ändern sich im Laufe der
Zeit die Verformungen der Verbund- oder vorgespannten Konstruktionen.

Leshalb ändern sich in den statisch unbestimmten Verbundoder
vorgespannten Trägern auch die statisch unbestimmten Grössen

XK )K- 1,2,... n. und damit euch die Querschnittskräfte:

/2i/ N= + Z X*Nh 3 M=M*+Z. XkM« jAr=-7

wo Querschnittskräfte des Gleichgewichtszustandes X/ç=
und /y* Mk Querschnittskräfte des Selbstspannungszustandes
Xk" 1, sind.

Die statisch unbestimmten Grössen Xk A'—1,2,... rx. werden
aus ft. Gleichungen des Prinzips der virtuellen Kräfte:

/22/ J* (N/er+Mf ae)ab= Z Qji cj ï -1,2J rLj
yj

berechnet, in denen Qjc Reaktionen, und Mi Mi Querschnittskräfte
des Selbstspannungszustandes Xi= bezeichnen, während £7-

und die wirklichen Verformungsgrössen und Cj die wirklichen
Stützenverschiebungen des Trägers sind.

In den Gleichungen /17/ und /18/ wurde nichts von den
Querschnittskräften vorausgesetzt so dass dieselben auch dann gültig
sind, wenn die Kräfte N und M mit der Zeit sich ändern, d.h.
sowohl für statisch bestimmte als such für statisch unbestimmte Träger.

Laut Gleichungen /21/, Gleichungen /16/ und Gleichungen /17/
sind die Verformungsgrössen £r und in einem statisch unbestimmten

Träger durch folgende Ausdrücke angegeben:

/23/ (/vj +Z +ZXkM*)
-^c'i ' K=7 H=I

worin
Ni Ntf + pMho + a's* ;/2V
M0 - M# -t- PfM6o+-M6o y^) -h /Vs«yhû J

ist.
Wenn die Gleichungen /2J>/ in die Gleichungen /22/ eingetragen

werden ergibt sich:
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K=1 l " V £<£0 / /__ 1 o r,
7257 "

+ J *|g o/5 +j ijtg Js -ZQw-o,
Mit den Bezeichnungen:

/26/

können die Gleichungen /25/ in folgender Form geschrieben werden:

/27/ ^ +<f/çt =0, L~1,2,...n*.
Daraus wir folgern, dass die statisch unbestimmten Grössen

in einem Verbund- oder vorgespannten Träger im Zeitpunkte i:
gleich sind den statisch unbestimmten Grössen eines statisch
unbestimmten Trägers aus gleichartigem Material, mit einheitlichem
Elastizitätsmodul £c. mit den Querschnittswerten F^ und Ic
sowie mit den Einflüssen im Hauptsystem A£/und die durch die
Gleichungen /24/ angegeben sind.
5' Träger mit zusammengesetztem Stahlquerschnitt

Der otahlquerschnitt des Verbundträgers wird oft aus mehreren
Teilen zusammengesetzt: Blech oder Walzträger, schlaffe Bewehrung
und Drähte bzw. Vorspannstähle, mit den Querschnittsflächen F^
Frj Fp mit den Trägheitsmomenten 1^ Ip in bezug auf
die Achse durch den Schwerpunkt Tn, * bzw. 7^ und ~Tp und mit
den Elastizitätsmoduli £n und £p

Es ist leicht zu beweisen, dass auch für diesen Fall sämtliche
bisher abgeleiteten Gleichungen gelten, wobei darin Far* die

ideelle Stahlfläche bezeichnet, und zwar:

/28/ Fnn + Fmh -hFpr }
/29/ ~ j f~air Fm Fpr* "^o fp }

/jo/ W,- ^ fa Vp-&
t=C A:

und Tsf das Trägheitsmoment der ideellen Stahlfläche in bezug auf
den Schwerpunkt 7Jj :

/31/ Iar~ ^nr^^mt-^Ipr* ^ 2~*~
^Tnr (em ~ ^ p^fj

j ïtnr= ^ } Ipr~ ^plp,
Der abstand des Schwerpunktes la von der Achse, die in den
Abständen e.n » £/» > &p von den Schwerpunkten J}j Tm 77
verläuft, wird aus der Gleichung:

/33/ ^~mt* (&tn ~Fa) + Fpr() — O
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bestimmt.
Mit der ideellen Stahlfläche f^r dem Trägheitsmoment

derselben Fläche Jät* i-n bezug auf die durch den Schwerpunkt
verlaufende Achse,wird die ochwerpunktslage des ideellen
Verbundquerschnittes Tc berechnet, die Beiwerte und Jt- ferner die
fiktiven Kräfte A'ip und Mu> die Verformungsgrössen £T und ae
sowie die Spannungen im Beton 6~b eus den vorhin abgeleiteten
Gleichungen, während die Spannungen in den Stahlteilen des Trägers
durch die Gleichungen:

gegeben sind.
6. Zinfluss der Vorspannungskräfte

Die Vorspannung von Trägern wird gewöhnlich mittels Spanndrähte

durchgeführt die sich in Röhren befinden, welche eine von
den übrigen Teilen des Trägers unabhängige Drahtverformung sichern.
Bei einer derartigen Vorspannungsweise im Moment der Vorspannung,
d.h. im Zeitpunkt ~t= 0 ist die Spannkraft p eine äussere auf
den spannstahllosen Querschnitt einwirkende Kraft. Der Spannstahl
ist in diesem Augenblik bloss ein dem Träger die Kraft p vermittelndes

Element. Dementsprechend ergeben sich die Spannungen im
Zeitpunkt ib 0 infolge der Vorspannung, wenn in die Gleichung
/19/ N0 ~P und -Pypo eingetragen wird:

wo F/a und lo. Querschnittswerte des ideellen spannstahllosen
Querschnittes sind.

Nachdem die Drähte gespannt und verankert sind, werden die
Röhre mit Zementmörtel injiziert. Der Spannstahl wird zu einem
Teil des Trägers, der ihren weiteren Verformungen Folge leistet,
und damit die ursprüngliche Spannung P /Pp im Laufe der Zeit
stetig ändettk Die Aenderung dieser Spannung ist dem
Dehnungsunterschied S So in den Zeitpunkten ~t und ~t—O proportioneil,
so dass die Spsnnung im Spannstahl im Zeitpunkt ~t gleich wird:

/36/ +
P

Wenn man diese Gleichung sowie die Gleichungen:

/37/ G"n—£nZ j 6rn~ £m£ 6£ j
in Bedingungen:

ifndF+§mS-mJF+Je-pclP §6-bc/F Ot

IfrydF+^ydF-h^GpydF+JfiydF ~0,
einführt, schliesst man daraus, dass auch für die durch die
Vorspannungskraft hervorgerufenen Verformungsgrössen Sy und ^e. die
Gleichungen /17/ gelten damit
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/38/
~ ~ p +Spf>J6G6oc/F,

Mtp-- Pypo +J£peo ydF+ f Je-bo yJF3
rist. Die Grösse FpS.o ist die Spannung, die von dem Spannstahl

aufgenommen werden würde, wenn derselbe im Zeitpunkt ~t- O der
Verformung des Trägers folgen würde. Das Integral dieser Spannungen

im Ausdruck für /Vy> ist die Rezultierende A*po und das Integral
der statischen Momente dieser Spannungen in bezug auf den

Schwerpunkt des ideellen Querschnittes im Ausdrucke für A/y? ist
das Moment Mpa+Mpoypo •

$£Pe.dF= Npo~-Pvp{ï^+-5yâ\,
/39/

J'EpyMpoHp0yPo ~ — PyPo Np°yPo

«enn die Gleichungen /39/ und die Gleichungen /1J/ in die
Gleichungen /38/ eingetragen werden, erhält man:

/40/ -P-hNpo-t-f^ 3

Mp~~pyp + Mpo+Mpoypo+ f (Mbo+M^y^y
Die statisch unbestimmten Grössen infolge Vorspannung des

Trägers bekommt man aus den Gleichungen /27/, wenn margin die
Gleichung /26/ für die fiktiven Querschnittskräfte F& und M#
die Grössen Ntp und My? die durch die Gleichungen /4G/ gegeben
sind, einführt.

ZUSAMMENFASSUNG

In diesem Beitrag wird eine Methode zur Berechnung der Verbund- und
vorgespannten Konstruktionen, unter Berücksichtigung der Einflüsse des Schwindens und

Kriechens des Betons, vorgeschlagen. Dabei wird die Spannungs-Dehnungs-Beziehung
des Betons in Form einer algebraischen Gleichung angenommen.

SUMMARY

The paper deals with a method for the calculation of composite and prestressed
structures, taking into consideration the influences of shrinkage and creep. The
stress-strain relationship used for the concrete is in the form of an algebraic
equation.

RESUME

Dans cet article, on présente une méthode pour le calcul des constructions
mixtes acier-béton et en béton précontraint, en prenant en considération les effets
du fluage et du retrait du béton. La relation entre les contraintes et les déformations
est admise sous la forme d'une équation algébrique.
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INTRODUCTION

A great deal of attention has been devoted to the effects of
creep and shrinkage on columns having determinate end conditions.
However, because of the very nature of the problem, very littledirect information has been obtained on the behaviour and interaction

of columns as part of indeterminant frames. This research
paper describes a method for predicting the behaviour of reinforced
concrete frames.

The method of analysis includes the non linear response of
reinforced concrete sections under short term loading as well as
the time dependent effects of creep, shrinkage and changes in
concrete strength. Utilizing the digital computer this analysis could
be used directly as a check for special structural cases. However,
the main purpose of this study was to provide a means of assessing
and perhaps altering the various Building Code design provisionsfor column design and moment distributions in frames. With this
objective an analysis was derived to predict the behaviour and
failure for short term loading to the behaviour for predetermined
load versus time history including either prediction of the time of
sustained load failure or the remaining capacity after a period of
sustained loading.

In order to provide data to verify the numerical method a
limited experimental program was implemented.

EXPERIMENTAL PROGRAM

Test Specimen; The test specimen chosen was a single bay fixed
base frame. While being a relatively simple specimen to fabricate
this choice, with three degrees of indeterminacy, provided ample
opportunity for redistribution of bending moments due to inelastic
behaviour. Therefore, the test data would provide a good check for
the accuracy of the analytical predictions. Also additional information

on the formation of collapse mechanisms in reinforced concrete
frames would be obtained. To reduce the effects of scale and to
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minimize the relative magnitude of fabrication and experimental
tolerances a fairly large model was used.

As shown in Figure 1, the outside dimensions were 274.32 cm

high by 294.64 cm wide. The cross-section was 20.32 cm square with
a 1.91 cm diameter deformed reinforcing bars in each corner under
2.54 cm of concrete cover. The reinforcement had a sharply defined
yield stress of 4150 ±35 kg/cm2. The bo.ttom of each column was
composed of a 20.32 cm by 20.32 cm by 20.32 cm H section. The
reinforcing bars were welded to the web of the H section prior to pouring

the concrete, and the bottom of the H section was welded to a
base plate when the frame was placed in the test position. The base
plate was stiffened and prestressed to the laboratory floor to
provide the fixed end condition. Square ties made from 0.64 cm diameter
plain bars were spaced at 15.24 cm and 7.62 cm respectively in the
columns and beam. To avoid discontinuities the reinforcement was
continuous throughout the frame. Because of difficulties encountered
in a preliminary test, Frame Rl, the corners of the frame were made

quite stiff by the addition of diagonal ties. The length within
the top portion of the H section was similarly stiffened.

A concrete mix design having predetermined creep, shrinkage
and stress-strain properties was used. The following proportions
by weight were used to obtain a 28 day cylinder strength of 316
kg/cm2: Portland Cement Type 1 -- 14.0%; Water — 9.1%; Fine
Aggregate(washed sand) — 46.6%; Coarse Aggregate (0.95 cm maximum

size crushed limestone) — 30.3%. The frame was cast in a
steel form and moist cured for 7 days before being placed in the
test position. Companion cylinders and prisms with and without
reinforcement were also poured.

Test Apparatus: Separate sets of apparatus were set up for short
term loading and for sustained loading. In both cases loads were
controlled using load cells employing electric resistance foil
strain gauges. Dial gauges were mounted to provide deflection and
base rotation data. Strains on the concrete were obtained using a
demountable mechanical dial indicator with a 20.32 cm gauge length.
Equipment to provide a horizontal load, H, on the left column at
mid-height of the beam and a vertical load, V, at the centre of the
span was required for both set ups. In each case the load was
transferred to the test frame through a spherical seat.

Short Term Tests: Steel Wide Flange columns, prestressed to the
floor, were fitted with cross beams to jack against. The jacks
were mounted on gear driven mechanical slides to maintain the
positions of the loads as the frame deflected.

Sustained Load Tests: The apparatus for the sustained load tests
was located in a polyethylene covered frame inside which the
temperature and relative humidity were maintained at 24°C ± 1°C and
50% ± 2% respectively. Instead of using jacks, loads were maintained
by the use of springs and rods as shown in Figure 1. The coil
springs reduced the decrease in load due to the long term deflection
of the frame. As the loads did decrease they were adjusted to keep
within 2% of the specified values. The vertical load followed the
deflection of the frame by adjustment of the horizontal mechanical
slide incorporated into the spring and rod assembly.
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ANALYTICAL METHOD

The basis for the analytical method was intended to be generally
applicable to the prediction of behaviour of beam and column combinations.

However, it was necessary to evaluate the acceptibility of
these fundamental processes in terms of the accuracy with which they
would be utilized to predict the actual behaviour of an indetermi-
nant framework. Therefore, the mathematical model was specifically
tailored to provide theoretical predictions for comparison with data
from the experimental program. Comparison with these tests provided
a meaningful evaluation because the following influencing factors
were included: indeterminacy - permitting redistribution of bending
moments; secondary bending moments - due to deflection and axial
deformations; large variations in bending moment - thereby emphasising

the non linear moment-curvature characteristic; different axial
loads in each member - thereby including the effect of axial loads
on member stiffness; the time dependent effects of creep, shrinkage
and change in concrete strength.

The mathematical model relied on the speed and storage capacity
of a digital computer to permit the frame to be divided into elements.
The clear span portion of the concrete frame was divided into equal
segment lengths with the cross section at the end of each length
further subdivided into element strips. (Use of 25.4 segment lengths
and 16 element strips per cross section yielded sufficiently accurate
results). The numerical procedure employed was as follows:
1. Based on an elastic analysis an estimate of the reactions and

moments at the left base was made for the specified loads.
2. From the test results the rotation and displacements of the

left base was recorded.
3. For the assumed load and moment the compatible strain distribu¬

ât the bottom of the steel base was computed. Using this
curvature and the slope of the base the deformed position of the
top of the H section was calculated. From equilibrium
considerations the moment at the top of the H section was calculated.
The strain distribution and curvature were then calculated.
Using the average curvature over the length of the H section the
deformed position of the top was recalculated. The iterative
process was repeated until the change in curvature at the
top was less than 1% or less than 1 x 10~6 radians.

4. Through an iterative process (described later) the strains in
the reinforced concrete section were calculated for the load
and bending moment at the top of the H section. The displaced
position of the second cross section was calculated assuming
the curvature to be constant over the first segment length.
Using an equilibrium calculation incorporating the displacement
of the second cross section the bending moment and resulting
curvature were calculated for the second cross section. Then
using the average curvature between section 1 and 2 the process
was repeated until the change in curvature was less than 1% or
1 x 10~6 radians.

5. Starting with the moment at the upper end of the preceding ele¬
ment, step 4 was performed successively through all segments of
the frame. At the corners and load points the appropriate
changes in shears and axial forces were made.

6. Upon completion of the last segment the deformations in the H

section at the right base were included in the calculation of
the slope and linear displacements of the right base.
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In most cases the slope and displacements of the right base
were not compatible with the corresponding measured values. Therefore

it was necessary to adjust the estimate of the reactions and
bending moment on the left base in such a manner as to produce
compatibility at the right base.

7. Based on the errors in the displacements at the right base,
slope-deflection equations were used to systematically alterthe estimates of the reactions and bending moment at the leftbase.

8. Steps 3 to 6 were repeated until the geometric errors at the
right base were within acceptable limits.

The above process was repeated to obtain new values after each load
increment and after selected intervals of time under sustained load.
Using the method of numerical integration described above it was
possible to predict the behaviour of the frame up to formation of
the first plastic hinge. The time dependent effects were includedin the calculation of strains at each cross section.
Distribution Of Strain On A Reinforced Concrete Section: For a
specified combination of axial load and bending momenton a cross
section, an iterative technique was used to vary the planar straindistribtution until the calculated resisting axial force and bending
moment agreed with those specified. The following steps were used:

1. Prior to applying the initial loads the tensile stress in the
concrete and the compressive stress in the reinforcement were
calculated using shrinkage strains from companion reinforced
prisms.

2. The cross section was divided into 16 element slices perpendicu¬lar to the plane of loading.
3. For the specified load and bending moment a trial strain distri¬

bution across the section was chosen. From this strain distribution
the strains at the centroids of the reinforcement and of

each element strip were calculated.
4. Using the strains at the centroids of each element the totalforce and bending moment were calculated by summing the contribution

of each element slice and the reinforcement. The effectsof the shrinkage stress were included. A fourth order polynomial
equation based on a least squares fit of experimental data was
used to represent the concrete compression stress-strain
relationship. The concrete was assumed to crack at a tensile strainof 150 x 10-6.

5. The calculated internal force and bending moment were compared
to the corresponding external values. If either differed by
more than 1% the strain distribution was altered in a manner
designed to reduce the discrepancy.

Steps 3 to 5 were repeated until the internal and external forces
and bending moments differed by less than 1%.
6. The calculations for creep were formulated as non linear func¬

tions of the portion of the total strain which contributed to
stress. (Herein called "elastic" strain). The total strain
and the "elastic" strain were stored for each element strip.7. For sustained loading the loads and stress conditions were con¬
sidered to remain constant for short increments of time. For
a specified time interval the creep strain which would occur
on each element was calculated and stored. (The creep calculation

is described later). Additional snrinkage was computed
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from equations derived from experimental shrinkage data.
8. A new total planar strain distribution was estimated in order

to attempt to account for the effects of creep and shrinkage.
The calculations described in steps 3 to 5 were performed with
the only difference being that the strain contributing to stress
on each strip element was calculated by subtracting the creep
and shrinkage strains for that element from the total strain
at the centroid of the element. The concrete stress-strain
relationship was also adjusted to account for the increased age
of the concrete.

For the next time interval the stresses on the strip elements could
be different from the previous values. These changes could result
from a change in load on the structure or from the redistribution
of load caused by the sustained load deformations. The non-linearity
of creep versus stress also could cause a redistribution of stresses
on a cross-section.
9. For the new set of "elastic?1 strains and taking into account the

stress history, steps 6 to 8 were repeated for each time interval.

10. At any time the loading could be increased in increments up to
the ultimate capacity of the cross-sections.

Creep Calculations : A modified superposition method for calculating
creep has been derived. From creep tests it was found that creep
strain for a constant stress could be accurately represented by an
equation of the form: Creep A + B log (time) the constants A and
B were expressed as functions of "elastic" strain by third order
equations. Use pf "elastic" strain as the basis for creep calculation

was convenient for programming. In addition, because the
concrete stress-strain curve was altered with increase in time, the
effect of maturing of the concrete was reflected in the creep
calculations. The creep calculation is described below.

If an element is loaded so that the elastic strain is EL.l and
maintained at that load for a period of time t to t, the amount of
creep which would occur would be CR. 1. This Sorresponds to experimental

data for creep under constant stress as shown in Figure 2 (a).If at time tj the load is increased so that the elastic strain is
increased to EL.2 the calculation of creep for the time interval tjto t2 should take into account the previous stress history. The
uppermost curve in Figure 2 (a) represents creep under a constant
"elastic" strain EL.2. If EL.2 had existed during the time t to tithe additional creep during time ti to t2 would be CR.2'. However a
lower "elastic" strain had been sustained during time t to tx.Therefore it was expected that the effect of increasing the "elastic"
strain would cause a creep strain larger than CR.2' during ti to t2.
The effect of this change in elastic strain was accounted for by
adding the amount of creep wh4ch would occur for an "elastic" strain
(EL.2 - EL.l) for a period of time from t to (t2 - ti). This added
creep, CR.2' was shown in Figure 2(a). The total strain excluding
shrinkage was shown in Figure 2(b).
COMPARISON OF PREDICTED AND TEST BEHAVIOUR

Three concrete frames have been tested. The preliminary frame,
Frame Rl, was subjected to short term loading to failure. Difficulties

with the corners of the frames and the bases led to stiffeningof the corners and redesign of the base for subsequent tests. The
results of this test were difficult to interprète and were not
included.
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FIGURE 2(b) Total Strain Using Modified
Superposition Method.

Short Term Test: Frame R2 was loaded proportionally to failure.
Deflection and strain readings were taken at regular increments of
load. Although it was not possible to determine accurately when the
first plastic hinge had formed, an estimate was made on the basis of
strain readings and observations of the opening up of cracks. It
was decided that the first plastic hinge formed at the upper right
hand corner at a proportional loading slightly higher than the
predicted values of H 4082 kg. V 8164 kg. Formation of plastic
hinges at the centre of the beam, the right base and then the left
base resulted in an ultimate loading of H 5220 kg. and V 10440
kg. The concrete strength was 316 kg/cm2.

Figure 3 contains the predicted and test deflections for Frame
R2. Two sets of horizontal deflections were compared on each column
and the vertical deflections were recorded at the mid span of the
beam. The length of the lines representing the members of the frame
were maintained to scale but the deformed shape of the frame was

Bg. 26 Schlussbericht
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FIGURE 3 Predicted and Test Deflection for Frame R2.

0 TO 20 30cm
1 ' 1 ' « t I

10 20 30
_i I I I

r 0

-I 0 cm

FIGURE. 4 Predicted and Test Deflection for Frame LI.

distorted in order to more easily compare the results. The predicteddeflected shape of the frame is quite close to the experimental
values up to formation of the first plastic hinge.
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FIGURE 5 Data from Strain Measurements and Predicted
Values.

(a) Frame R2 (b) Frame LI

Figure 5(a) was plotted to illustrate the correlation between
test and predicted bending moment calculations. The bending moments
corresponding to test values were calculated from two sets of strains
measured in the compression zone of the indicated regions of high
bending moment. The calculated moments from experimental strains
measurements were subject to fairly large errors and fluctuations
because the effect of measurement errors was magnified by the fact
that the compression zone was quite shallow. However the general
trend of predicted and calculated bending moment were consistent and
the discrepancies were acceptable when interpreted with regard to
possible measurement error.
Sustained Load Test: Frame LI was initially loaded to values of
H 2723 kg. and V 5446 kg. At the time of loading and concrete
strength was 354 kg/cm2. The initial load was sustained for 53
days. In the early stages the deflections increased quite rapidly
but were increasing very slowly at 53 days under load. At this
stage the loads were increased 25% to H 3402 kg and V 6804 kg
and sustained at this level for an additional 28 days at which time
the frame was loaded proportionally to failure. At formation of the
collapse mechanism the loads were H 5710 kg and V 11420 kg.
Because of creep deformations it was extremely difficult to pin point
the formation of the first plastic hinge. However a noticeable
change in frame behaviour was evident at loads H 4540 kg and V
9080 kg. The first plastic hinge was predicted to occur at H 4082
kg and V 8164 kg. At the termination of testing the concrete
strength was 386 kg/cm During the final 28 days under load the
deflections increased by only 6% to 13%.

Figure 4 contains the predicted and test deflections for Frame
LI. These results were illustrated in the same way as was done in
Figure 3. Very good correlations between predicted and tests results
was found.
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Figure 5(b) was plotted to provide a comparison of predicted
and measured strains for Frame Ll. Because of creep the measured
strains could not be used to compute bending moment. The extreme
compression fibre strains were compared for regions of high bending
moment. The accuracy of the experimentally derived extreme fibre
strains was influenced by the same factors as mentioned in the
discussion of Figure 5(a) Although this comparison was not as reliable
as the comparison of deflections the same trends were obvious.

For Frame Ll there was not any marked redistribution of bending
moment due to creep. This result should be expected because the
axial loads were not high enough to contribute significant secondary
bending moment. Also the "elastic" strains were generally within
the range of strain where creep is nearly directly proportional to
"elastic" strain. The bending moment at the left base was predicted
to decrease 9% during the first 53 days of sustained load and 4%

during the following 28 days under the second level of sustained
loading. The other high bending moments changed by only about 1%.

CONCLUSION

The method of analysis has been evaluated by comparisons of the
computed predicted behaviour with the test results. This comparison
confirmed the validity of the frame analysis for short term loading
and variable sustained loading followed by quick loading to failure.
The procedures to prédit failure under sustained load have been
established. However lack of information about the creep of concrete at
stresses near ultimate precluded the accurate predictions of behaviour
as sustained stresses approach the ultimate strength of concrete. It
was reasoned that in terms of assuring safety it is most important
to be able to predict the remaining capacity after a period of
sustained loading.

SUMMARY

The analysis includes the effects of : the non linear time dependent stress versus
strain for concrete, the degree of cracking as influenced by the level of load and
bending moment, and creep, shrinkage and elastic deformations to predict the
behaviour of an indeterminant frame. Comparisons with test data have verified the
accuracy of the analysis.

RESUME

Pour déterminer le comportement des cadres hyperstatiques, l'analyse comprend
plusieurs influences:

- la relation non-linéaire (fonction du temps) entre les contraintes et les
allongements»

- le degré de fissuration, influencé par la valeur de la charge et du moment,
fléchissant,

- le fluage, le retrait et les déformations élastiques.
Des comparaisons avec les résultats d'essais ont confirmé l'exactitude des

calculs.

ZUSAMMENFASSUNG

Diese Untersuchung umfaest die Wirkung der nichtlinearen zeitabhängigen
Spannung gegenüber der Dehnung des Betons, des Rissegrades infolge Lasthöhe und
Biegemoment sowie des Kriechens, Schwindens und der elastischen Verformung, um
das Verhalten eines unbestimmten Rahmens vorauszusagen. Vergleiche mit
Prüfdaten haben die Genauigkeit der Berechnung bestätigt.
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1. Problemstellung und Übersicht
In Verbundquerschnitten aus Beton und Stahl ergeben sich durch

die unterschiedlichen Verformungseigenschaften dieser Werkstoffe
Spannungsänderungen gegenüber den anfänglichen Spannungen aus
andauernden Lasten und Vorspannung. Diese sogenannten Spannungsänderungen

infolge des Kriechens und Schvindens des Betons sind nach
folgendem mechanischen Prinzip zu bestimmen: Beim Lösen des
Verbundes vürden sich die Kriech- und Schwindverformungen des Betons
unbehindert einstellen, vobei die Betonspannungen bei konstanter
Dauerbelastung unverändert bleiben. Die im Verbund liegenden Beweh-
rungsstäbe - und zwar sowohl die vorgespannten als auch die schlaffen

Stahleinlagen - behindern jedoch die zeitabhängigen Verformungen
des Betons, wodurch gleichzeitig Spannungsänderungen im Stahl

und Beton hervorgerufen werden.
Aus den Verträglichkeitsbedingungen des Verbundquerschnittes

ergeben sich im statisch bestimmten Grundzustand nur Umlagerungen
der inneren Kräfte bei gleichbleibenden äußeren Schnittgrößen. Bei
statisch unbestimmt gelagerten Trägern kann dieser Eigenspannungs-
zustand die Kontinuitätsbedingungen des Tragwerks verletzen,
wodurch dann zusätzliche Zwängschnittgrößen und damit Änderungen der
Auflagerreaktionen hervorgerufen werden.

Die meisten der vorliegenden Arbeiten zu diesem Fragenkomplex
benutzen als Ausgangspunkt die différentielle Form der linearen
zeitabhängigen a- e-Beziehung des Betons von Disehinger, die aber
die physikalisch unzutreffende Gültigkeit der Idealkriechkurven von
Withney voraussetzt (vgl. hierzuZ*9J). Während damit der sogenannte
Spannkraftverlust beim einlagig bewehrten Träger einfach berechnet
werden kann, werden die Lösungen der Differentialgleichungssysteme
bei zwei- und mehrlagig bewehrten Querschnitten recht umfangreich
(vgl. u.a.£"lJbis £"6.7)

Unter Vermeidung dieser Mängel ermöglicht es das im folgenden
erläuterte Verfahren, die tatsächlichen Bewehrungsverhältnisse in
den vorhandenen Querschnitten zu berücksichtigen und die Auswirkungen

verschiedener Grenzannahmen für die maßgebenden Baustoffkennwerte
(Kriech- und Schwindmaße, Elastizitätsmoduli) übersichtlich

zu beurteilen.
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2. Berechnungsgrundlagen
Die bei Aufbringen der Dauerlasten und Vorspannung in stabarti

gen Tragwerken vorhandenen Spannungen seien in üblicher Weise ermit
telt, wobei entweder Vorspannung mit sofortigem Verbund oder
Vorspannung mit nachträglichem Verbund vorliegen kann.

Im Bereich der Gebrauchsbeanspruchung wird zur beliebigen Zeit
nach Belastung ein linearer Zusammenhang zwischen dem Spannungsund

Verzerrungszustand bei Stahl und Beton angenommen. Während für
den Stahl '(index a für acier) das Hookesche Gesetz in der Form

: - _£k
/Ct C ^

(1)
mit Ea als Elastizitätsmodul des Stahls gültig ist, wird der zeitab
hängige lineare Zusammenhang zwischen der Betonspannung «b^) und
der Betondehnung Sb(t) in der in PO erläuterten zweckmäßigen Form

(2) Sb(Û)= (4 + <f>)+ ^(t)£~^ (J+ff) + £s (t)
t> b

angenommen. In der Spannungs- Dehnung^- Beziehung (2) bedeuten:
Cbo Ausgangsspannung bei Eintritt der untersuchten Beanspruchung,
Eb der als konstant angenommene Elastizitätsmodul des Betons,

die Kriechzahl oder genauer die Kriechfunktion ^(t,to) zur Be
Schreibung von Verlauf und Größe der durch Obo hervorgerufenen

Kriechdehnung, die in der Form «p t ,t0 k 0«Pjjf(t) mit k0
den Einfluß des Betonalters t0 bei der Belastung,mit dem Norm
kriechmaß*pN die Auswirkung der Bauwerksbedingungen und

Ko
mit der Zeitfunktion o<f(t)<1 den Verlauf der Kriechdehnung
erfassen läßt CtH,

Ob^J-dbo d*e durek eine Dehnungsbedingung erzwungene zeitliche Än¬
derung der Ausgangsspannung,

Q der Relaxationskennwert für die infolge der Betonalterung ab¬
geminderte Kriechfähigkeit, auf die die erzwungene Spannungsänderung

trifft,
es(t) die Schwinddehnung, die das Endschwindmaß eso> erreicht und üb

licherweise affin zum Kriechverlauf angenommen werden kann.
Da bei Spannbetonträgern die Spannungsänderung praktisch

zeitgleich mit dem Kriechen erfolgt, kann der Relaxationskennwert hier
mit y= -g- + unabhängig von angenommen werden. CsQ

Weiterhin wird für die Ermittlung der Spannungsänderungen
vorausgesetzt, daß ein voller Verbund zwischen Stahl und Beton besteht
und das Ebenbleiben der Verbundquerschnitte gewährleistet ist.

F.-ZF.i-IF.,

f Fn -yil *f ?•/ Ä
a) OuTsehnittswrl* *£»

r W.

»M*.
M— \

rè rè Jè rë Im

e)£b(0- £,bo «öS». »)6,àf f)e,r
Fig.1 Verformungen und Spannungen im Querschnitt
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3. Spannungsumlagerungen im beliebig bewehrten Querschnitt.
Alle Bewehrungslagen, d.h. die Spannbewehrung und die schlaffe

Bewehrung,werden in der gemeinsamen Stahlachse a-a zusammengefaßt,
so daß man die gesamte Stahlfläche Fa und das gemeinsame Stahlträg-
heitsmoment 1^ erhält (Fig. 1a). Die Vorspannung kann in verschiedenen

Lagen mit unterschiedlichen Spannkräften Zj aufgebracht sein.
Zur Bestimmung der Spannungsänderungen wird zunächst der Verbund

zwischen den Stahleinlagen und dem Beton nach Eintritt der
elastischen Verformungen (Fig. 1b) gelöst. Dadurch könnten sich im
Beton die Kriechverformungen und und die Schwindverfor-
mung £, unbehindert einstellen (Fig. 1c). Die infolge der Verbundwirkung

entstehenden Umlagerungsgrößen werden für den Beton
bezeichnet mit und und für den Stahl mit Ma^ und Na^.

Die nachtraglichen Formänderungen im Stahl ergeben sich dann

(3) £>-r=j%+
1 tu Fet J*.

Entsprechend läßt sich die zeitabhängige Betondehnung in der Faser
y-fc nach der a-e- Beziehung (2) angeben

(h) £fcf +
Die Stahleinlagen befinden sich mit dem Beton in Verbund, so daß
für den gesamten Querschnitt die Verträglichkeitsbedingungen gelten

(5) Soi'f- £ 6f und

(6) b y> •
So läßt sich z.B. für die Faser a-a in Höhe der Schwerlinie der
Stahleinlagen die Dehnungsbedingung angeben mit

^ )(^rp)f£s(7) II
£<*. Fa.

wenn

(8) II0
^2 -f CL
b 1b J

die Betonspannung in Höhe der Stahlschwerlinie infolge äußerer
Dauerlast und infolge Vorspannung bedeutet (Fig. 1d).

Es sei vermerkt, daß in Cfca 0 sowohl die Vorspannung mit
sofortigem Verbund (Spannbettvorspannung) als auch Vorspannung mit
nachträglichem Verbund berücksichtigt werden kann. Der Unterschied
besteht nur in der Art der Berechnung von <*ba,o> hier nicht
eingegangen verden soll.

Als weitere Bedingung soll die Verträglichkeit der Verdrehungen
nach (6) dargestellt werden mit

£» 3et, ^4 b ^4
Da die Umlagerungsgrößen einen Eigenspannungszustand bilden,gelten
die Gleichgewichtsbedingungen

do) Nb? ~ N<X(t

Mbf — A^ty) «
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Mit den Gleichungen (7), (9) und (1o) läßt sich jetzt das
Gleichungssystem zur Bestimmung der zeitabhängigen SchnittgrSßen angehen

zu

(11)
^ + M"-fak"+>*>

Wird mit n E^E^ zur Abkürzung der dimensionslose Umlagerungsvert

2 JL-— yj + ßjiz (/f+ 5><p) + -5^£
eingeführt, der durch die Querschnittsverhältnisse und die Stahlanordnung

festgelegt ist, so bildet dieser charakteristische Wert X

eine Maßzahl für die Verformung des Verbundquerschnittes im
Vergleich zur unbehinderten Betonverformung. Wenn die kriecherzeugende
Spannung Ofca,o durch die Teilschnittgrößen entsprechend (8)
ausgedrückt vird, so erhält man durch Auflösung des Gleichungssystems
(11) die Umlagerungsgrößen des Eigenspannungszustandes unter Beachtung

der Gleichgewichtsbedingungen (1o)

(13) =-Nbf=XfF*.T(£*.£$+nV^Xi++"?«J
(110 [-(EcSs+n?%?)Fe,*(WP) t frtbo(1+

(15) A-Ä*[-(£*£*+ nr%?) -
Aus diesen geschlossenen Lösungen läßt sich der Einfluß von
Momentenbeanspruchung, Normalkraftbeanspruchung und Schvinden auf die
Größe der Kräfteumlagerungen unmittelbar ablesen. Die Spannungsänderungen

im Beton und im Stahl ergeben sich entsprechend Fi«. 1e
und If.

Für den Sonderfall der einlagigen Bewehrung, die im Abstand
a ybz Ton der Betonschwerlinie liegt, ergibt sich aus Gleichung
(13) unmittelbar die Lösung mit Ia o zu (siehe £9]

Für diesen einlagig bewehrten Träger ist in Fig. 2 die
Stahlspannungsänderung, die durch den Umlagerungskennwert X gekennzeichnet
ist, als Verhältnis der Stahldehnung zur unbehinderten Betondehnung

in der Stahlschwerlinie aufgetragen.

Fig. 2 Umlagerungskennwert X

in Abhängigkeit von der
Bewehrungsanordnung (Ia=0)

j.x1+nßi(1+f^l)(u9.f)
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Für den Fall der zweilagigen Bewehrung läßt sich die Größe der
Spannungsumlagerung für die beiden Stränge unmittelbar aus (13) und
(1b) errechnen. Man könnte auch statt der beiden Verträglichkeitsbedingungen

(7) und (9) von der Gleichheit der Dehnungen in Höhe
der beiden Stahlstränge ausgehen. Dies führt zu dem Gleichungssystem

für die beiden Umlagerungskräfte
«-HxH + SV) ri?

(n) » »
<*-*4 1 + ?V) + ft*\4+(4+ n r Vbi'° +£*£s

mit den Steifigkeitswerten des Betonquerschnittes
Z'z a^(^FiVrkYk')

Werden aus (17) die Stahlspannungsänderungen und oZ2« errechnet,
erhält man das in ßq) dargestellte Ergebnis! *

b. Spannungsänderungen am statisch unbestimmten Träger
Zweckmäßig bestimmt man bei statisch unbestimmten Trägern

zunächst die Umlagerungen des statisch bestimmten Grundzustandes (im
folgenden Kopfzeiger °) mit den kriecherzeugenden Spannungen oder
Schnittgrößen des unbestimmten Systems nach den Gleichungen (11
bis (15). Wenn man sich mit der Bestimmung dieses inneren Eigenspan-
nungszustandes begnügt, vernachlässigt man eine eventuelle Änderung
der Auflagerkräfte, die durch die Verletzung der Kontinuitätsbedingungen

entstehen kann.
Im folgenden soll jedoch ein Verfahren zur Ermittlung der

Zwängschnittgrößen infolge Kriechen und Schwinden angegeben werden.
Dazu bestimmt man die eintretenden Umlagerungsgrößen als Summe

des am statisch bestimmten Grundsystem ermittelten Anteiles und des
Anteiles aus der Zwängung. Die aus den Gleichungen (11) bis (15)
mit den Schnittgrößen des unbestimmten Systems ermittelten
Umlagerungsgrößen am statisch bestimmten Grundsystem M^ä, und Ma^,

bilden nach Gleichung (lo) einen inneren Eigenspannungszustand
(Fig. 3b). Wenn dieser Zustand jetzt mit den Verformungsbedingungen
des Gesamtsystems unverträglich ist, stellen die zusätzlichen Zwänggrößen

(Kopfzeiger ') Nf und als äußere Schnittgrößen die
Verträglichkeit her. Die anteiligen Schnittkräfte dieser Zwänggrößen
werden bezeichnet mit und Na^, Ma£. Damit ergeben sich die
anteiligen Umlagerungsgrößen für den Beton und den Stahl zu

A/b? A/bf + Nb<f

Notf ^a? m

(18)
Mb? — M*,? * Mb?

© /
Mol?— Met? MCL?

F i Tö

»y.
jrw.o * —)m.', \in.o

n9? f n9f '

-it) Ml,

b) UmlagsrungsgräOsn
im Grundzustand

e) Zusätzlich•
Zwänggrötisn

a) Qusrschnittswsrts

Fig. 3 Umlagerungsgrößen beim Durchlaufträger
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Für die Zvängschnittgrößen erhält man aus den Verträglichkeitsbedin-
gungen (7) und (9) nach Abzug des Grundzustandes

(fit+{&*>«*'*>
(19) ^7

eÏÏZ. ~ •
Um den Zusammenhang zvischen den anteiligen Zvängschnittgrößen und
der Gesamtzvängung herzustellenbenötigt man veiterhin die Gleich-
gevichtsbedingungen (vgl. Fig. 3c)

A/tp — A/bp + No-f
(2°) f t /

Mf Mbp + Ma.*? + AfoLf'Ob j
vobei für ein in Normalkraftrichtung zvängungsfrei gelagertes
Tragsystem Ni o ist, vas für die veiteren Ableitungen angenommen Verden

80ll
Mit (2o) erhält man aus (19) das Gleichungssystem

(21

das in den Koeffizienten genau dem System (11) für die Umlagerungs-
größen am statisch bestimmten Grundsystem entspricht. Nach einem
Vergleich der rechten Seiten von (21) und (11) ergibt sich der
Zusammenhang zvischen den anteiligen Zvängschnittgrößen des Stahles
und der Gesamtzvängung M^ entsprechend (13) und (1U) zu

Na.p — — Nbf — Mf 'A-nFct. (4+?f)

Mb^ erhält man jetzt nicht entsprechend Gleichung (15),sondern mit
der maßgebenden Gleichgevichtsbedingung (2o) zu

(23) Mbf— Mf-A' (l + ^Ci+f?)) •

Man ermittelt die noch unbekannte Zvänggröße M^ aus den Konti-
nuitätsbedingungen des zusammenhängenden Tragverks. Die folgenden
Überlegungen Verden an einem einfach unbestimmten System erläutert,
sie gelten jedoch allgemein.

Da aus dem auf das statisch bestimmte Hauptsystem einvirken-
den Eigenspannungszustand keine äußere Schnittgröße resultiert,
kann die Gesamtverdrehung des Querschnittes nur über die Betonverdrehung

bestimmt Verden, die gleich der Verdrehung des Gesamtquerschnittes

sein muß. An der Wirkungsstelle der statisch Uberzähligen
erhält man dann die Verdrehung im Grundzustand infolge des

Eigenspannungszustandes der Spannungsumlagerungen mit

(2U) cCff <£(*>,¥ ~J
Die zeitabhängige Verdrehung infolge der Überzähligen » „1"
ergibt sich aus entsprechenden Überlegungen mit (23) zu
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Die zeitabhängige Überzählige X^p folgt aus der bekannten Verträg-
lichkeitsbedingung

y' CflV
26 X if — r»' Ott,if

Da der Zahlenwert dieser Zwänggröße für Beanspruchungen aus
Biegung und in Normalkraftrichtung sehr verschieden sein kann,
sollen beide Einflüsse getrennt verfolgt werden.

Für die Momenteneinwirkung am statisch unbestimmten System
läßt sich die Verdrehung 5 up nach (2U) mit dem Wert für M^ aus
(15) angeben mit

(27) n<p[yf+??))]s F"^ Ob f~b Eb"b •
Bei gleichbleibenden Bewehrungsverhältnissen und geraden Spanngliedern

kann man (27) zusammenfassen zu

(28) c£l<f>= -Kf ctx J

worin K eine Konstante darstellt. Nach dem Reduktionssatz ist 61u>
in diesem Fall Null, da der Momentenzustand M-^ç bereits mit dem
Gesamtsystem verträglich ist. Auch für veränderliche Stahlschwerlinie,

d.h. a a(x), ist der Einfluß auf die Integration in (27) für
Spannbetonquerschnitte so gering, daß mit guter Näherung S- o
gesetzt werden kann. Das bedeutet, daß für Momentenbeanspruchung
aus Dauerlast und Vorspannung praktisch keine Zwängung und damit
keine Auflagerreaktionen infolge Kriechen entstehen.

Für die Beanspruchung aus mittiger Normalkraft auf den
Betonquerschnitt und Schwinden ergibt sich mit (15) für 6 up

(29) c£fif -J.Für gleichbleibenden Bewehrungsgehalt und konstante Normalkraft
kann für d-ie Zwänggröße Xii der Ausdruck -
(30) X ' % [£*£< + n *&*]•
angegeben werden. ^b^b

Um den Quotienten der Integrale in (3o) weiter zu verfolgen,
werden zwei Vereinfachungen getroffen. Als erstes wird für die
Ausführung der Innegrationen angenommen, daß der Ausdruck X konstant
für x ist, so daß er vor die Integrale gezogen und gekürzt werden
kann. Dies gilt streng für konstantes a, bei veränderlichem a zeigen

Vergleichsrechnungen, daß diese Vereinfachung für übliche
Spannbetonquerschnitte berechtigt ist. Als weitere Vereinfachung wird
angenommen, daß a in (3o) dem Abstand der resultierenden Spannstahlschwerlinie

von der Betonschwerlinie entsprechen soll. Wird jetzt
berücksichtigt, daß sich das Zwängmoment infolge Vorspannung aus

(31)

ergibt, läßt sich (3o) umformen in

(32) Xf= ~ Xy J
wenn N>, v als konstant über die Länge angenommen wird.

Fuf den beliebig statisch unbestimmt gelagerten Träger läßt
sich die Zwängung infolge Kriechen und Schwinden angeben
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(33 y Mf— My aL(Mf)
Der Verlauf von über die Trägerlänge ist entsprechend dem

Verlauf von My geradlinig. J)ie anteiligen Zvängschnittgrößen können

dann aus den Gleichungen (22) und (23) bestimmt werden. So
ergibt sich z.B. für die anteilige Betonzwängung

<»> '
Es ist unmittelbar zu erkennen, daß der Verlauf von bei
veränderlicher Spanngliedlage mit der Änderung von X nicht mehr geradlinig

ist. Das Ergebnis (3*0 ermöglicht bei einem Vergleich mit M§^
aus Gleichung (15) für Normalbeanspruchung und Schwinden die
folgende Aussage: ^ t
(35) Mbf ~ -f- Mbf »it e
Dabei stellt e' bekanntlich bei unbestimmten Systemen den Abstand
zwischen der Wirkungslinie der Vorspannkraft auf den Betonquerschnitt

und der Stahlschwerlinie oder kurz den Abstand der
Betondrucklinie von der Stahlzuglinie dar.

Das Ergebnis (33) für die Zwängung aus Normalkraftbeanspruchung
und Schwinden und die Aussage, da£ Mfür Biegebeanspruchung
zu Null wird, läßt sich anschaulich an Fig. k erläutern. Für

das Beispiel eines einfach unbestimmten Trägers mit einem geraden
Spannglied ist in Fig. Ua das System und der Verlauf von Mi
aufgetragen worden. Aufgrund der Gleichgewichtsaussage (2o) läßt sich
der dargestellte Zusammenhang zwischen der Gesamtzwängung ML und
den anteiligen Zwängungen M-^ und Na^ unmittelbar ablesen. In Fig.
Ub ist als Beispiel einer Momentenbeanspruchung die Momentenlinie
Mg für das Eigengewicht gezeigt worden. Gleichung (15) ergibt mit
Ia o und konstantem Umlagerungskennwert X den Verlauf von M-^,
der affin zu Mg ist. Da Mg als Momentenzustand am Gesamtsystem mit
diesem auch verträglich ist, ist sofort zu erkennen, daß auch M^°
keine zusätzlichen Zwänggrößen und damit keine Auflagerkräfte
erzeugt. Das entsprechende Ergebnis erhält man für das Moment aus
Vorspannung, so daß also M^ für Momentenbeanspruchung an dem
betrachteten Träger Null wird.

In Fig. Lc ist als Beispiel einer Beanspruchung in Längsrichtung
das Schwinden des Betons betrachtet worden. Wieder aus Gleichung

(15) ergibt sich, daß M-^â infolge Schwinden den dargestellten
Wert und Verlauf annimmt. Es ist unmittelbar zu erkennen, daß

diese Momentenfläche am Grundsystem unverträglich mit dem Gesamtsystem

ist. Für die Beanspruchung infolge der mittigen Normalkraft
auf den Beton aus Vorspannung ergibt sich eine entsprechende
Aussage. Die Größe der Zwängung wird nach Gleichung (33) bestimmt.

Durchgeführte Vergleichsrechnungen für die zusätzlichen
Zwänggrößen zeigen, daß auch bei üblichen Spannbetonträgern mit
geschwungener Spanngliedführung obige Aussagen qualitativ gültig
bleiben. Da die Momente aus ständiger Last und Vorspannung praktisch

immer entgegengesetzt wirken, können die nur bei veränderlicher
Spanngliedführung entstehenden geringen Zwänggrößen aus

Momentenbeanspruchung in jedem Fall vernachlässigt werden.
Die Ergebnisse des Abschnittes 4 seien wie folgt zusammengefaßt:

Die Berechnung der Zwängung wird getrennt durchgeführt für
Beanspruchung durch Biegung und durch mittige Normalkraft auf den
Beton; die Wirkung der Vorspannung ist aufzuteilen in Mt,jV und N^y.
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*ir*0
aus M : M'f*0

a) Systam una Vtrlauf yon b) Mgf infolg» Mg

I K,
a E„ Fa £,

s,r*°
aus N und £t : M'g £ 0

c) Mlr infolg» f,

Fig. 4 Zwängung M' am Durchlaufträger

Aus Biegebeanspruchung treten Bei den üblichen Durchlaufträgern
keine zusätzlichen Zvänggrößen aus Kriechen auf; deshalb ist es also

unzutreffend, die Änderung der Auflagerkräfte mit dem sogenannten
Spannkraftverlust zu berechnen.

Aus Normalkraftbeanspruchung und Schwinden erhält man dagegen
bei ausmittiger Anordnung der Bewehrung zusätzliche Zvänggrößen,
auch wenn die Durchlaufträger in Längsrichtung zwängungsfrei gelagert

sind. Man kann diese zusätzliche Zvängung infolge der behinderten

Verdrehung innerhalb des Querschnitts, die bei ausmittiger
Bewehrung und mittiger Normalbeanspruchung entsteht, als Bruchteil
der Gesamtzvängung aus Vorspannung angeben. Dieser Bruchteil wird
beeinflußt von dem Bewehrungsgehalt des Querschnitts der Größe der
einwirkenden Normalkraft und dem Schwindmaß. Da die Ausmittigkeit
der Bewehrung denselben Einfluß auf die zusätzliche Zwängung wie
auf die Zvängung aus Vorspannung hat, treten bei konkordanter
Spanngliedführung keine Änderung der Auflagerkräfte auf.

Diese Ergebnisse lassen sich auch mechanisch ausdeuten:
Für Momentenbeanspruchung fällt die Drucklinie der Umlagerungs-

größen des Betons mit der Stahlzuglinie zusammen.
Für Normalkraftbeanspruchung und Schwinden ist die Drucklinie

der Umlagerungsgrößen des Betons identisch mit der Drucklinie der
Vorspannung. Deshalb sind diese Zwänggrößen unmittelbar proportional

der Zwängung aus Vorspannung.
Für die Berechnung der Umlagerungsgrößen von Stahlverbundträ-

gern mit großem Stahlträgheitsmoment sei auf Ü8j verwiesen.
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ZUSAMMENFASSUNG

Mit der linearen zeitabhängigen o-e- Beziehung des Betons aus (9) werden die
Umlagerungsgrössen und damit die Spannungsänderungen infolge Kriechen und
Schwinden für beliebig bewehrte Spannbetonquerschnitte explizit angegeben. Bei
statisch unbestimmten Spannbetonträgern können zusätzliche Zwängungen nur aus
Normalkraft und Schwinden entstehen, während sie aus Biegung vernachlässigbar sind.
Mit der kurzen Formel (33) sind die zeitabhängigen Aenderungen der Auflagerkräfte
und Schnittgrössen zu bestimmen.

SUMMARY

The linear, time-dependent o-e relation for concrete presented in Ref. 9 is used
to determine the redistribution of internal actions and stresses as a result of creep
and shrinkage in prestressed concrete sections with an arbitrary arrangement of
reinforcement. Additional restraint forces in statically indeterminate prestressed
concrete girders can only be produced by axial forces and shrinkage; those produced by
bending action are negligible. Equation 33 allows the time-varying support forces and
the internal actions to be determined.

RESUME

A l'aide de la relation o-e linéaire du béton, en fonction du temps, voir (9), on
calcule explicitement les efforts de redistribution et les changements de contraintes
dûs au fluage et au retrait pour des sections de béton précontraint. Dans les poutres
hyperstatiques en béton précontraint, des efforts supplémentaires ne peuvent être
provoqués que par un effort normal ou par le retrait, tandis que ceux venant de la
flexion sont négligeables. On détermine aisément les variations dans le temps des
réactions d'appuis et des efforts à l'aide de la formule (33).
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1. INTRODUCTION

The construction of large pre-stressed concrete bridges
built by the free cantilever technique is normally carried out
in a series of repetative operations. The travelling carriages
move the shutters forward at each end of the cantilever, the
formwork positioned, and the concrete poured. As soon as the
concrete has gained sufficient strength these units are
prestressed, the cycle completed, and the carriages moved forward
again. This cycle is repeated for most of the bridge, and is
controlled in time by the construction program. The repetative
nature of the construction readily lends itself to analysis by
computer methods.

The extent of the bridge constructed, and the nature of its
support will change during building - a temporary prop being
used in various positions to take the out of balance moment.
During construction the internal forces are statically
determinate, while for final conditions they may well be indeterminate.

The behaviour of concrete is affected by shrinkage, creep
and Young's Modulus, and is therefore age and time dependent as
well as being affected by the previous stress history. These
effects are taken into account.

The program is designed in such a way as to evaluate loss of
pre-stress at each program stage and print the cumulated stresses
and vertical deflections at any section and any stage, both during
construction and after completion.

Fig 1

The computer program described was developed, for symmetrical
three span bridges as shown in Fig. 1, and has been used on the
Aire Bridge1 - England, and the Kingston Bridge3 - Scotland.
Because of symmetry only half the bridge is analysed.
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2. GENERAL PRINCIPLES

The program is built up from a series of routines. This is
helpful not only for the purpose of the organisation of the
program itself but also enables the program to be easily modified
to take into account the peculiarities of a particular bridge.In dealing with the problem of creep the Principle of
Superposition of Strains3 is adopted, creep being assumed to be linearly

proportional to stress. All forces and deflexions are therefore
dealt with on an incremental basis.
The cycle of construction is split into two parts:(a) Pre-stressing and moving the carriages - always the even

program stage.
(b) Pouring of the two extreme concrete units, diaphragms or
ballast - normally the odd program stage.

There are several ways of solving this problem. In this
program it was decided to operate on each bridge section (i) throughits stages (n) for l<n<nt, rather than all sections through
each stage. The method îs perfectly valid while the structure
remains statically determinate, however when this is no longer
so, the pre-stress losses together with the creep deflexions have
to be modified to conform with the new indeterminate boundary
conditions.

imi. f rL~-s~-

h'^Urrl rri-|3rr
I r

fh>p2 | prop J-

ipCn)

Fig 2

3 PROGRAM controls
3.1 Sections The bridge is split up into a series of

concrete pours, the mid point of which is called a section (i) at
which bending moments and stresses are evaluated - see Fig. 2,
the extent of the completed half structure being defined in the
data by section limits iml and imr.

3.2 Extent of construction The extent of construction at
stage (n) is defined by routine LIMCON, ipl(n) and ipr(n) define
the section limits poured, and conversely np(i) defines the stageat which section (i) is poured. The routine LIMCON is important
as it defines CYCLE LIMITS for other parts of the program.

3«3 Boundary conditions The stage and place of boundary
condition changes due to prop movement or the indeterminate
nature of the completed bridge, are defined early in the program,
as they affect the distribution of moments.

3.4 Concrete age Young's Modulus, shrinkage and creep areall time dependent properties. Time is defined by the age of
the concrete-age (i,n). Routine AGECON generates this information
from data read in for age (0,n) and age (i,nt). An example of
part of the generated data is shown in Table 1.

3»5 Section properties Values of area, section modulii,
second moment of area, position of centroid and eccentricity are
generated by routine SECPR from the vertical profile and crosssection data of the bridge.
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k. LOADING

External loading is in two forms: (a) that due to the self
weight of the concrete, ballast or surfacing, and (b) due to

Age of Concrete .(days)

Section (i) No

stage(n] 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 82 82 82 2 0 0 0 0 0 0 0 0 0
2 84 84 84 4 0 0 0 0 0 0 0 0 0
3 112 112 112 32 2 0 0 0 0 0 0 0 0
4 114 114 114 34 4 0 0 0 0 0 0 0 0
5 129 129 129 49 19 2 0 0 0 0 0 0 0
6 131 131 131 51 21 4 0 0 0 0 0 0 0
7 i4i 141 141 61 31 14 2 0 0 0 0 0 0
8 143 143 143 63 33 16 4 0 0 0 0 0 0

9 151 151 151 71 41 24 12 2 0 0 0 0 0
10 153 153 153 73 43 26 14 4 0 0 0 0 0
11 162 162 162 82 52 35 23 13 2 0 0 0 0
12 164 164 164 84 54 37 25 15 4 0 0 0 0

13 173 173 173 93 63 46 34 24 13 2 0 0 0
14 175 175 175 95 65 48 36 26 15 4 0 0 0

Table I

the movement of the carriages. In case (a) the loads are applied
onee in a given position while for (b) the same load is moved
along the superstructure. The bending moments in the statically-
determinate condition is evaluated by routine CONCMTS, typical
input for which is shown in Table II.

Concrete self weight loading data

stage(n) Vr(tonf) Xr(ft) W^tonf) x^ft)
1 275.1 15 261.1 -25
1 265.5 25 251.7 -35
3 256.9 35 240. 7 -45

Table II
The bending moments due to loads applied in the indeterminate
state e.g. for surfacing and finishes, are dealt with as above
but modified for continuity by routine CONMTS, using the
flexibility method of analysis. The moments due to the carriage movements

could have been evaluated using alternate loading and unloading
in one position followed by loading in the next position -tedious. A special routine CARRMTS was therefore written. The

incremental bending moment due to external loading dmc(i,n) is
derived from either one or a combination of the above routines.

Bg. 27 Schlussbericht
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5. PRE-STRESSING

There are various ways of inputting this information depending
on the layout of the pre-stress. In Kingston Bridge most of

the tendons are in the top flange of the box section, with rather
smaller numbers in the soffit slab at midspan and near the
abutments, none changing position from top to bottom or vice versa.
The cables lie close together and so an average eccentricity
could he assumed for evaluating the losses. Two routines are used,
MAINBAR for the top and SOFBAR for the soffit bars. The data is
input for MAINBAR as shown in Table III.

Prestreas bar data

stage(n) Jacking
Section

No* of
Bara

Anchorage
Section

Position
of Bare (in)

4 4 5 -4 10

6 5 4 -5 10

6 5 2 4 10

Table III
The data is first used to generate and accumulate the number

of bars dnpt(i,n). The pre-stress moment dmpt(i,n) and dmps(i,n)
are then evaluated from a centroid distance generated by SECPR

and its position within the slab given by Column 5 in Table III.
The midspan soffit tendons are-stressed while the structure is
statically indeterminate, the continuity moments being then
obtained by CONMTS. It is assumed in all cases that the tendons
are grouted immediately after pre-stressing, so that there is no
need to average the losses over the length of the tendon.

6. MATERIAL PROPERTIES

As for most bridges of this kind the time dependent properties
of the concrete were examined at the early stages of the contract.
Uniaxial compression tests on cylinders were carried out at various
stress levels and concrete ages, under controlled temperature and
humidity conditions. The results were used as a guide to form the
theoretical expressions used in the program.

6.1 Young's Modulus

ym(t)=mk(l)./(loglo(1+logjQ(t+l))) where t=age(i,n)

6.2 Shrinkage For shrinkage and creep two relationships
were used: (a) alogrithmia expression, giving rather high
long term values -

shrinkage strain( t) -mk( 2) +mk( 3)-logj, o t+1 where t=age(i,n)
(b) an expression after Ross4

shrinkage strain(t)=mk(4).t./(mk(5)+mk(6) .t)
The increment of shrinkage strain in the interval (n-1) to (n) is
given by

dshs=mk(4).age(i.n) - mk(4).age(i.n-1)
mk(5) + mk(6).age(i,n) mk(6) + mk(6).age(i,n-1)

The corresponding loss in steel stress est.dshs. The loss of
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pre-stress moment for top tendons mpt(n-1).est.dshs/po. - since
the increment of shrinkage effects all previously stressed tendons
by the same amount.

6.3 Creep of concrete The creep strain is assumed to be
linearly proportional to stress. At each stage the principle of
superposition of strains is used in conjunction with the stress
history to evaluate the incremental creep strain. Two separate
functions are used to define the creep behaviour.
(a) The ultimate specific creep, based on the age (t=age(i,m))
of the concrete when Pressed, and shown in Fig. 3a.
(b) The proportion of this creep which has taken place since
stressing, and shown in Fig. 3b.
The increment of specific creep in interval (n-1) to (n) is therefore

given by

eultddc=f age(i,n)-age(i,m) - age(i,n-l)-age(i,m) 1

\mk(8)+age(i,nj-age(i,m) mk(8)+age(i,n-1)-age(i,m)J
and the increment in creep strain at the level of the top tendons
due to the stress applied at stage (m) is ddc.dftt(m). The total
increment of^cçeep strain due to the previous loading history is

dctt Y ddc.dftt(m)
m=np(i)+1

dcts ddc.dfts(m)
i=np(i)+l

for top and soffit tendons respectively. The incremental loss
in pre-stress moment for top tendons at stage (n) due to creep
is given by

dmlcrt est.dctt.mpt(n-1)
po

Apart from its effect on .loss of pre-stress,creep also produces
a change of curvature which is independent of the direct stress.
This is taken into account by postulating an equivalent elastic
creep moment decm(i,n).

.0
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Fig 3 a
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Fig 3b

6.4 Relaxation in steel tendons An expression such as

dpr (n,m) .Ol.logj 0 (nik( 9) t+1)

is used to define fractional loss of pre-stress due to relaxation,
where t age(i,n)-age(i,m). The fractional loss in the interval
(n-1) to (n) is dpr(n,m)-dpr(n-1,m), due to pre-stressing carried
out at stage (m). The incremental loss at stage (n) due to all
previous top pre-stressing bar is given by



420 III - COMPUTER APPROACH OF A FREE CANTILEVER PRESTRESSED CONCRETE BRIDGE

m=n-1

dmlrt / dmpt(i.,m) (dpr (n,m)-dpr (n-1 ,m)
m=np(i)+l

6.3 Friction losses The majority of tendons in the two
bridges examined followed the curvature of the top and bottom
slabs, consequently the main source of friction was wobble of the
ducts. The expression for the tendon stress is

-(mk(10).x)
px po.e

The loss of pre-stress moment due to friction is given by
dmlft=dmpt i ,m) 1-e
6.6 Losses The losses

described above are evaluated in routine
LOSSES, and individual loss

moments and cumulative values
for top and soffit tendons may
be printed on call if required.
The effect of losses taking place
during the interval (n-1) to (n)
are applied to the structure with
the loading at stage (n).

I STOP

7. PROGRAMMING

FT.Otf CHART OF COMPUTER PROGRAM

Fig 4

A flow chart of the program
is shown in Fig. 4. It is split
into four major sections.
Part 1 deals with the preparation
of program controls, incremental
bending moments, pre-stressing
forces and moments as previously
described.
Part 2 contains the routine LOSSES
and deals with the incremental
stresses due to moments and forces
in Part 1, at a given section
for each advancing stage. Pre-
stress losses are evaluated, and
stresses corrected and accumulated.
The equivalent creep moment is
stored. Losses and equivalent
creep moments are evaluated assuming

no interaction between secions.
A bending moment dm(i,n), is calculated

which is the sum of all the
moments, losses and equivalent
creep moment to serve Part 4 in
evaluating the deflexions. This
bending moment will also be modified

in Part 3•
Where the structure finally

becomes statically indeterminate
the results of Part 2 are not valid.
Part 3i which contains the routine
CONLOSS resolves this problem, dealing

with the re-distribution of
loss moments and equivalent creep
moments. A flow diagram of this
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part of the program is shown in Fig.
5. It becomes effective at stage
(nc) when the structure becomes
continuous. At stage (n) the loss at
each section is scanned and routine
CONMTS is applied to obtain the
corresponding continuity forces.
The consequential stresses are evaluated

at each section and added to
those previously obtained. However
the presence of these consequential
stresses will affect creep strains
at subsequent stages (m>n), so that
the loss of pre-stress due to creep
and the equivalent creep moments
previously calculated will be modified,

assuming again that there is
no interaction between section.

It should be clearly understood
that the previously calculated
equivalent creeep moments deem (i,n)
themselves are only to be used to
determine creep deflection. However
the equivalent creep moment distribution

along the length of the bridge
will (using CONMTS) produce real
continuity forces decmc (i,n) at
each stage (n), which will affect
the stresses at that stage. When
these stresses are added to those
previously obtained - the stresses
are then correct at stage (n). These
affect the creep strains at later

stages. The process described in this paragraph is known as creepre-distribution.
The program will have stored and will now have available a

total incremental moment dm (i,n) from which Part 4,(which includes
the routine DEFLN) evaluates the incremental deflections at all
sections, and prints out the accumulated deflections at each stage.
The deflections are available as absolute vertical values, and
also as relative to the 'attitude' of the superstructure.

The program was'written in Atla« Autocode, and for the Kingston
bridge 44 sections and 47 stages were considered. The program
took some 9 minutes to run on the KDF 9 computer. The program now
is being rewritten in Fortran.
8. CONCLUSIONS

The program described has been successfully used on two major
bridges. It provides a useful tool for the designer who wishes
to examine the effect of various shapes of superstructure and
different layouts and stages of pre-stress. For the contractor
precambering details are easily obtained from the calculated deflection.

Since the deflections are printed at each section and each
computer stage the deformation of the real structure may be
compared with that of the computer program model at each construction
stage.
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NOTATION

age(i,n) age of concrete at section (i) and stage (n)
ddc increment of specific creep due to stress at given

age of concrete
dctt,dcts increment of creep strain at level of top and soffit

bars due to previous stress history
dshs increment of shrinkage strain
dpr fraction of tendon stress due to relaxation
dftt(m) increment of concrete stress at level of top tendon at

stage (m) due to direct and bending action
dmlcrt,dmlrt,dmlft, incremental loss of top pre-stress moment due

to creep, relaxation and friction respectively
decm(i,n) equivalent creep moment
decmc(i,n) the continuity moment resulting from a distribution of

decm(i,n) to conform with new boundary conditions
dmc(i,n) incremental bending moment due to external loading
dnpt(i,n),dmpt(i,n) incremental number of top bars and corres¬

ponding pre-stress moment
dm(i,n) an incremental moment taking account of all factors

producing deflexion
mpt(n) total of top pre-stress moment up to stage (n)
est Young's Modulus for steel barsi section number, iml and imr defining the extreme

sections of completed bridge
ipl(n),ipr(n) section members defining extent of bridge

constructed at stage (n)
mk(l)...(10) constants defining material behaviour
m,n,nc,nt construction stages, including continuity and final

stages
np(i) the stage at which the concrete for section (i) is

poured
po initial pre-stress on jackingt time in days
ym(t) Young's Modulus of concrete at age (t) days
x distance along tendon from jacking end

SUMMARY

The paper describes a method of calculating the prestress losses, stresses,
and deflexions of large concrete bridges subject to creep re-distribution.

RESUME

La communication décrit une méthode pour calculer les pertes de précontrainte,
ainsi que les contraintes et les déformations de grands ponts en béton sujets à la
rédistribution par le fluage des moments fléchissants.

ZUSAMMENFASSUNG

Diese Arbeit behandelt ein Berechnungsverfahren zur Bestimmung der Vorspannverluste,

Spannungen und Biegungen von grossen Betonbriicken, die der Kriechum-
teilung ausgesetzt sind.
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Einleitung
Vorgespannt® und Verbundkonstruktionen »erden heute in Bau-

vesen in zahlreicher Formen angewendet.Die Erscheinungen des
Kriechens und Sohwindens des Betons spielen hei diesen
Konstruktionsarten eine Besondere Rolle.

Im letztem Dezennium hat das Interesse für die Berechnung
von Trägern mit,in der Horizontalebene gelegener,gekrümmter Achse
zugenommen.Einer der Gründe dafür ist die immer häufigere
Ausführung von Brüoken mit gekrümmter Achse welche eine Folge der
Anpassung der modernen Strassen an die Erfordernisse des
Schnellverkehrs ist.

In konstruktiver Hinsicht gehören diese Brücken öfter in
den Bereich der dünnwandigen Träger.

Die Einflüsse des Kriechens und Schwindens haben bei Stäuben

mit gekrümmter Achse eine besondere Bedeutung,da neben der
Beanspruchung auf Biegung,die Torsionsbeanspruchung eine wesentliche

Rolle spielt.
« Der Einfluss des Eigengewichtes des Trägers sowie die

Wirkung der Vorspannung rufen bei dem Träger mit gekrümmter Achse
ungünstigere Beanspruchung hervor als bei dem Träger mit gerader
Achse.

In diesem Beitrag werden die Einflüsse des Kriechens und
Schwindens des Betons auf den dünnwandigen Stab mit offenem
Querschnitt und mit in einer Ebene gelegener,gekrümmter Achse,
behandelt.

Der Querschnitt des Trägers petzt sich aus einem Beton-
und aus einem Stahlanteil zusammen.Der letztere kann die Bewehrung

oder,im Falle des Verbundträgers,der Querschnitt des
Stahlanteiles sein.

Der hier vorgeschlagene Berechnungsvorgang kann als
Häherungslösung auch für den dünnwandigen Träger mit geschlossenem
Querschnittsprofil angewendet weiden,soferne die entsprechendem
Unterschiede im Verhalten gegenüber der Torsionsbeanspruchung
Berücksichtigung finden.
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2«Verformung des Stabes

Die beliebig geformte Profilmittellinie ersetzen wir durch
eiftSÄ Polygonzug,dessen Seitenlängen wir je nach der gewünschten

Genauigkeit den krummlinigen Teilen derselben anpassen«

In den Stabquerschnitt legen wir ein Kartesisches Koordinatensystem

.Den Koordinatenursprung C verlegen wir so damit die
folgenden Bedingungen befriedigt werden:

fx Ùcts Û 0)
s *

und
es)

vo durch den Ausdruck bestimmt ist.

Die Achse X und die Stabachse Abb.la) mit dem Halbmesser &,
welche die Punkte C der Stabquerschnitte verbindet»liegen in einer
Ebene.Die längs der Stabachse gemessene Bogenlänge von einem
vorherangenommenen Querschnitt aus ist durch die Koordinate Z bestimmt.

Ausser den Koordinaten X,2,z wählen wir auf der Mittelfläche
des Stabes ein System orthogonaler,krummliniger Koordinaten S,<Zf ,wo
S die Länge der Profilmittellinie des Ijuerschnitts ist und die
Länge des kreisförmigen,mit der Stabachse konzentrischen Bogens auf
der Mittelfläche des Stabes.



NIKOLA HAJDIN 425

Sett Abstand von der Hittelfläohe in der Richtung der normalen
bezeichnen vir mit S •

Nach der Theorie des dünnwandigen Stabes mit offenem Profil,
fuhren vir die folgenden Toraussetzungen Uber die Verformung ein:

a/Die Querschnittsform des Stabes bleibt vährenu der Verformung
unverändert, und

b/die Gleitverzerrung £s in der Hittelfläche des Stabes wird
vernachlässigt«

Die Verschiebungskomponenten J und £> des beliebigen Punktes
der Hittelfläche in Richtungen X und y sind unter Berücksichtigung
der Voraussstzung a/ durch die folgenden Ausdrücke bestimmt:

S* Sj> - (y--foj y> (V
* ?» W

wo und ipjf die Verschiebungen des Punktes mit den Koordinaten
JCj, und jfp ,und die Verdrehung des Querschnitts um diesen Punkt.

Die Verschiebungskomponente W in Richtung der Tangente auf
der Stabachse wird auf Grund der Voraussetzung b/ nach [1J wie folgt
ausgedrückt:

«v - gx i-p^hcf-%)- +(/-f)C0Z»-<«), es)

wo x

4 «>-cv

und iV0»H4C*Jdie Verschiebung des Punktes C ist
Der Ausdruck C<J wird oft als spezifische Verwindung bezeichnet»

Die Grösse CO stellt die sektorielle Koordinate oder Einheitsverwöl-
bung des Stabes mit gekrümmter Achse dar,wobei ^ der Abstand der
Tangente an der Profilmittellinie vom Pol 2> ist.

Pttt einen Stab mit schwach gekämmter Achse können wir schreiben:

s
CO - J^äs CJ

e>
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überführt werden,wo

B^ -

und

1+4-

C/7a.^J

A - —^-3-/ / v-_&

* -
Die Werte ^ und Ç^stellen die NormalSpannung und Schubspannung
für +r=0 dar.

Wenn man die Spannungs-Verzerrungs-Bezishung des Betons nach
Trost [3] annimt,ergeben sich die folgenden Werte für 4L»(Tund A- •

e r**IT — £_ CrA
h*r / +j>p ; ^
/a.

wo (vgl.T3j ,ai.4j/^
p ^ X *&*) .JîL.

J ti-o fijo-6S -éo

ist.
Für den Stahlanteil gelten die Beziehungen auf Grund des Hookeschen

Gestzes:

é£ "r Bau £ f*9J

2»*
5.Torsion des Stabes

Die Schnittkräfte können wir,unter Benutzung der Gleichungen
<73 J O*). r/?/und (2^ ,und der Ausdrücke C9) und Co) durch
die Verschiebungsparameter Ai J ausdrücken.

Durch Einsetzen dieser Werte in das Gleichungsystem f/2) können
wir die Differentialgleichungen des Stabes erhalten

Der Einfachheit halber setzen wir voraus dass der Stahl über
die Wandstärke "t symmetrisch angeordnet ist.Der Anteil der Stärke
welchen wir mit bezeichnen wollen,stellt die,ailf Einheit der
Profilmittellinie bezogen Fläche der Beafcrung (siehe Abb. tb)oder,im
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A"- % 1-Pz-jt-O
Mj- %+/>*. +n>J " O

fJ "HT/) *Py flz«--*)

* m<>

//J+ 72'~ ä (My-tfy*) +/nj> + a?u — O

wo psofy und Pï die Linienbelastungen in den Richtungen •*; £ und

Z ,und "loj f71x.jW#/Wi0 das äussere verteilte Torsionsmoment,die
Biegemomente und das Bimoment sind.

4.Beziehungen zwischen den Schnittkräften und Formänderungen

Das visko-elastische Verhalten des Betons wird in der Weise

dargestellt,wie es von M.Djuric vorgeschlagen wird E*J

Die Spannungs-Verzerrun^-Bezi«hung wird auf folgender Art
ausgedrückt: e£-£H*Ap)-

K - £ (H* */ 5» C'y)
wo ~ NormalSpannung für den Betonanteil des Querschnitts

t* St.Venantsche Schubspannung für den Betonanteil des
Querschnitts

4>-4>d) Kriechzahl
& Grenzwert der Krieohzahl für

SSek Endschwindmass des Betons
£"+ Elastizitätsmodul
<h Schubmodul

bedeuten.

Unter der Vorauaetzung linearen Veränderlichkeit der Spannungen
mit der Zeit,können die bestimmten Integrale auf den fechten Seiten
der Gleichungen auf folgender Weise ausgedrückt werden:

jtf

J%U «0 -
und die Ausdrücke fäj und fin die Gleichungen

% - (e-e.) -/> SL

Z, «vy X -/* C")
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Utr die Dehnung in z-Richtung ergibt sich nach [11 x

- o-"co - * n/°/

Wenn wir von der Kirchoff-Loveschen Hypothese,welche charakteristisch

für die Theorie der dünnwandigen Schalen ist,ausgehen,erhalten

wir nach fi3 für die Gleitverzerrung 2Q ausserhalb der Mittelfläche

den folgenden Ausdruck:

« 2&e Co)

3.Schnittkräfte und Gleichgewichtsbedingungen

Die Schnittkräfte des Stabes definieren wir wie folgt:

/V- jGctF
<3* '/(*UCOSoC- S/noc) ciF

Qy s Je S/n« +Zes COSttJCtP

H* ' cU= c*\a-L)

T - / /£» /t,, + S, (h^eJJcLF

ZïedF
wo 6" NormalSpannung und und ^ die SchubSpannungen sind.

Die ersten drei Ausdrücke stellen Reihe nach die Normalkraft
und die Querkräfte des Querschnitts dar.Durch die Ausdrücke

sind die Biegemomente in bezug auf die Achsen y und <x sowie das
Torsionsmoment in bezug auf den funkt -2) bestimmt.Durch den Aus.—

druck (ff9) ist das Bimoment M<o gegeben ,und die Grösse 7) stellt
das sog.St.Venantsche Torsionsmoment dar.

Wenn Wir die Gleichgewichtsbedingungen der,auf ein Element des
Stabes wirkenden Kräfte aufstellen,erhalten Wir nach £1] die folgenden

Gleichungen:
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Falle des Verbundträgers,des Stahl ante ilea dar
Setzen wir

tt * 4. ; CaJ

wo ein beliebiger konstanter Elastizitäts modul ist.
Die Punkte und O wählen wir in der Weise damit die

folgenden Bedingungen erfüllt werden:

A
Jocco cCFp **0

FJ$"> m °
^Joo otfp

Der Punkt -Z> stellt den Schubmittelpunkt des Querschnitts aus
homogenen Material mit der Wandstärke

Die Ausdrücke für das Bimoment Ho und das St .Venant s che

Torsionsmoment /£" können wir jetzt in der folgenden Form anschreiben:

Muj ~ ~ B ^coeo & ~J^Hbta0 ~~ ^ca/scJ> f-ZZj
und

77- Zso &V
Jccxc "" f^ J Ho^seA ~ J

wo

und
Mp — 4 fC e +/£ öfefeJ c^s

ist. ' 3 &

Die,mit 6 bzw.o, bezeichnete Integrale beziehen sich auf Betonbzw.

Stahlabteil der Wandstärke.
Die Werte

^ècoo
J /£o <£ A fclsc'eoCe,

h6 3 é
betrachten wir als bekannt und durch die Berechnung des elastischen
Stabes mit der Wandstärke ~kf

~£/ y ^ /#> c^&

und Torsionskonstante é c et, <

*r '*,/(-/-§te%<*e- +J ds
erhalten. 4 Ä

Durch Einsetzen der Ausdrücke /-^und/&^in die Gleichung f/2at)
erhalten wir die Differentialgleichung der Torsion:

Bc Jcoaj &'*- ~ "Ij, ^
- ikfMy J -/^(Hbeoo+Zso) C2^)
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Die Gleichung (ZV) hat dieselbe Form wie die klassische Gleichung der
Wölbkrafttorsion.Die Grössen

A/» Aty J&y <&~
r F

sind fur den statisch bestimmten Träger bekannt.Ist dies nicht der
Fall,so erhalten wir die Lösung der Aufgabe durch parallele Behandlung

der Biegungs-und Axialbeanspruchung des Stabes.Bei den Trägern
mit grösserem Krümmungsradius können die Grössen /V und My wie für
den geradeh Träger in Rechnung gesetzt werden.

Schrifttum
C.F.Kollbrunner und h.Hajdin:Beitrag zur Theorie dünnwandiger
Stäbe mit gekrümmter Achse.Inst.f.bauwissenamhaftiche Forschung,
H.8., Verl.Leemann, Zürich 1969.

M.Dnuric:Theorie der Verbund-und vorgespannten Konstruktionen
/serbo-kroatisch/.Serbische Akademie der Wissenschaften und Künste,

Mono raphi en, Band. CCCLXIVjBeograd 1963.

H.Trost:Folgerungen aus Theorien und Versuche für die baupraktische

Unersuchung von Kriech-Relaxationsprobleme in Spannbeton -
tragwerken. Symposium"Dar Binfluss des Kriechens, Schwindens und der
Temperaturänderungen in Stahlbetonkonstruktionen",Madrid,197o,
Vorbericht.

ZUSAMMENFASSUNG

In diesem Beitrag werden die Grundlagen für die praktische Berechnung
dünnwandiger Stäbe mit gekrümmter Achse, unter Berücksichtigung der Einflüsse des
Kriechens und Schwindens des Betons, gegeben. Diese Einflüsse haben bei Stäben

mit gekrümmter Achse eine besondere Bedeutung, da neben der Beanspruchung auf
Biegung, die Torsionsbeanspruchimg eine wesentliche Rolle spielt.

SUMMARY

The paper deals with the analysis of thin-walled members curved in the
horizontal plane, taking into account the effects of concrete creep and shrinkage.
These effects are of particular importance in curved members, which are subjected
to torsion in addition to moment.

RESUME

Dans cet article, on présente une méthode pour le calcul des poutres à parois
minces avec axe courbe en tenant compte des effets du fluage et du retrait du béton.
Ces effets ont une influence particulière pour les poutres à axe courbe, car, en
plus des contraintes de flexion, les contraintes de torsion jouent un rôle
considérable.



Ill

Tensions et déformations différées dans les ponts en encorbellement

Spannungen und Verformungen in Freivorbaubrücken

Differential Stressesand Deformations in a Cantilever Built Bridge

GIORGIO CROCI
Istituto di Scienza del le Costruzioni

Université di Roma
Italia

1 Aspects généraux du problème

Nous allons examiner l'évolution dans le temps de la distribution des
tensions et des déformations par effet de 1'élasticité,du retrait,de la relaxation
et de la température, d'abord dans le cas plus général d'une structure hypersta
tique composée d'éléments de matériaux divers rendus adhérents par stades succès
sifs, ensuite dans le cas particulier de ponts bâtis en encorbellement.

Etant donné le peu d'espace à disposition, nous sommes forcés d'omettre tout
passage analytique, le programme pour le computer et nombreux diagrammes.Nous re
stons à la disposition de quiconque voudra nous demander de plus amples
renseignements.

Dans l'exposé général nous allons considérer comme variables dans le temps
soit la géométrie d'une seule section (soudure d'éléments divers) (fig.l a),soit
la géométrie de la structure dans son ensemble (soudure de voussoirs divers)(fig
1 b),soit la configuration statique (introduction ou abolition de liens nouveaux)

2) Hypothèses et symboles

Bien que la théorie suivante soit valable en cas plus général,nous allons
traiter le cas d'une structure en béton armé précontraint à câbles injectés a-
près mise en tension.

2.1) Géométrie de la section fig. 1

Une section générique S sera constituée dans le cas général de l'union d'un
certain nombre d'éléments "rigides à la flexion" en béton (Si) et d'éléments qui
"n'ont pas de rigidité à la flexion", voir les câbles de précontrainte (fl.ei)
l'acier ordinaire (Ae,i) (en indiquant par ei l'excentricité de l'élément flou A

à partir de l'axe de barycentre de l'élément Si qui les contient

Nous allons indiquer en outre :
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-Si

Qar>*r?<jt/a)

S«,

prîncîpcLJJ
Çac/ar
f-'contrcùiit)

Ol). Coup* tra.n9v9nsa.l9 b)-Coupa lonß'tud'nala c). Forças sur un

-Fig. 1 - a/amant Sa <*t S?

SQ : aire de la section transversale du premier élément mis en oeuvre (élément
principal

: ordonnée d'une fibre générique à partir du barycentre de l'élément Si
x : abscisse d'une section S

gi(x,y,e); gi(x,y); gi(x) : rapport entre la tension dans la fibre et la sollici
tation qui la produit(respectivement pression-flexion,flexion, effort normal).

2.2) Forces agissant sur l'élément principal S„ fig. le)
Forces connues (moments M, effort normal N (1) :

•
Ne Mc : dues aux charges extérieures

(2): dues à la mise en tension d'un câble

Forces inconnues :

Vxk' xk dues aux réactions hyperstatiques Xjç aux lians extérieurs
dues à l'action mutuelle entre les éléments S0 et S

J
et fi

o et ^ei
due à 1'action mutuelle entre les éléments S

due à l'action mutuelle entre les éléments S,

2.3) Forces agissant sur les autres éléments

Il s'agit uniquement d'actions mutuelles transmises entre éléments contigus
(par ex. [NeJ ,Nij, Mjj, Nei, Ne^ agissent sur S^; dans ßei on a [NeJ Nei ;

dans A, on a N.ei ~ "ex
2.4) Caractéristiques des temps

fi
instant générique pendant lequel on examine le phénomène
instant de coulée d'un élément ou de mise en tension de l'élément XI

instant d'application d'une variation de sollicitation.
2.5) Déformations

Les déformations sont dues à

(1) Nous allons indiquer par un point les dérivées par rapport au temps.
(2) Imaginons que la mise en tension Neo soit faite dans un temps très limité

mais fini afin qu'il y soit la dérivée Neo Les parenthèses indiquent que
ce terme existe seulement au moment de la mise en tension.
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- 1'élasticité : nous allons adopter le module d'élasticité constant Ea pour
l'acier, et variables dans le temps ECC, t^ pour le béton -

- le fluage : nous allons considérer le "fluage linéaire" pour le béton sur la ba
se des dernières "Récommandations du Comité Euroéen du Béton" en adoptant une
expression : r^-fr\

étant E(28) le module d'élasticité à 28 jours et<p(t,ti,T) une fonction du temps
qui dépend des conditions climatiques, âge du béton lors de la mise en charge,é-
paisseur fictive de la pièce, température, composition du béton. Pour l'acier de

prétension les phénomènes de viscosité sont représentés dans le cas de "déformation

libre" suivant l'expression £ (t) 6/Ea .R(6).r(t,tj), en indiquant par
r(t,t^) la fonction de relaxation dans le temps, CT la tension initiale du câble,
R(6") une fonction de la tension initiale prise égale à zero pour 6"-0,6 603

- retrait dans le béton : toujours suivant les Récommandations du C.E.B, on prend
£ctJ=£..' S (t 1 ti) où S«» répresente la déformation à temps infini et § (t,ta) une
fonction du temps dépendant des paramètres analogues à ceux du fluage

- température : tout en étant presque égaux les coéfficients de dilatation du bé -
ton et de l'acier - si la loi de distribution des températures dans la section
n'est pas linéaire - on a, outre que des réactions hyperstatiques aux liens exté

rieurs, même des actions mutuelles inconnues entre fibre et fibre, telles à

assurer la conservation des sections planes. Si la section est partagée en élé -
ments Sa de hauteur suffisamment petiteCDou pourra considérer dans chaque
element une température moyenne: on considère donc une déformation £(t) aT(t)

3) Expressions générales des déformations

Comme nous avons déjà dit la déformation dépend des forces indiquées dans les
paragraphes 2.2), 2.3) et des phénomènes indiqués au paragraphe 2.5).

En cas général on parvient aux expressions suivantes :

3.1) Variation de déformation longitudinale, à l'instant t, dans une fibre en p£
sition y de l'élément SQ

êoyr.y-
+

't+I; .g»(x,y,ej ^r -3^,y,ej. <p[t,t.,VdZ+Zt^L^2

-SM+fT,

3.2) Variation de déformation longitudinale,à l'instant t, dans un câblefîei

(1) : On tient compte seulement de la variation de température dans la hauteur
de la section et non dans la largeur.

Bg. 28 Schlussbericht
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3.3) Les variations de déformations dans les éléments et Ae^ sont respectivement

analogue à la surnommée (3.1) sans les valeurs relatives aux forces exté
rieures et aux réactions hyperstatiques et à la (3.2) sans la valeur relative à

la relaxation.

3.4) Les expressions des variations de courbure d'un élément peuvent être obte
nues directement suivant l'hypothèse de conservation des sections planes selon
1'expression

f(x n= èAÇîiML- e(*>yii>U-so,yi2,t)^ ; «y vu -yi2
4) Solution du problème

Le problème a été résolu suivant la méthode des forces qui exige deux
types d'équations de congruance:
a) Equations de congruance "locale" qui expriment, section par section, l'égalité

des variations des déformations unitaires £ entre toutes les fibres contigues
qui font partie de deux éléments divers, aussi que l'égalité des variations de
courbure CC Au cas où l'un ou bien les éléments voisins les deux soient dépourvus

de rigidité à la flexion (par ex.les câbles de précontrainte et les aciers
ordinaires)il faut imposer seulement l'égalité des £ correspondants.

Il ai résulte un système du type:

-» i i,J =1,2,3... congruence des déformations entre
les éléments Si et Sj

-* congruence des déformations entre les éléments Si et
les -ßei> Aei correspondantes.

=.XjCx.O —»• congruence des courbures entre les éléments Si Sj

(4.1 K

PxO^t) LS0t,l) MtfOOdx =0

b) Equations de congruance "globale" exprimant la compatibilité avec les liens e^

xtérieurs'et qui fournissent,dans le cas où ces derniers ne présentent aucune
déformation, un système du type :

jCiCx.t) M'kC*) dx 0
(4.2)

[ /) »s X if f*. a ^ N

étant M', M" les moments dûs respectivement à une force et à une couple unitai¬
res appliqués au lien K,sur la structure rendue isostatique.

4.1) Le système constitué des équations (4.1) plus (4.2) permettrait de résoudre,
dans certaines conditions, "d'un point de vue théorique", le problème

fournissant pour chaque valeur de l'abscisse x et de temps t, les valeurs des variations

des efforts dans les câbles (Ne^) et dans l'acier ordinaire (N*i), des
réactions mutuelles (Nij,Mij) et des reéactions hyperstatiques (Xk).La solution e^f

fective du système d'équations intégro-différentielles (4.1) plus (4.2) est pour
tant pratiquement impossible; ainsi le système a été rapporté aux différences
finies et résolu par l'emploi d'un computer (1)

5) Ponts en encorbellement

Le système de cdnstruction est assez connu pour en souligner les moyen
d'éxecution. La fig.2 montre les phases d'exécution d'un pont,actuellement en
construction, auquel on a appliqué la méthode ci-dessus exposée; naturellement dans
ce cas-ci on a un seul élément de béton S et plusieurs éléments-fle Afl (fig.1);
(1) Le programme a été préparé avec la collaboration de 1'ing.Giuseppe Pedretti



GIORGIO CROCI 435

PHASES DE CONSTRUCTION

— conshnjchon de la pile ef du tablier néceesaire
pour le montage du coffrage roulant.

©

—montage du coffrage routant, bé tannage du
premier voussoir er mise en tension des câbles

-montage du deuxième coffrage routant,bétan
noge et précontrainte des voussoirs successifs.

- fin de la construction des cantilevers A et B

-démontage des coffrages routanb t mise en tension
des câbles dans la, semelle inférieur du cantilever A
et appui sur la culée correspondante-

ro/üM

— fin de la construction des canhtayers C et D,
soudure au milieu avec résiné egoxy et mise
en tension des cables de continuité -

© - démontage du coffrage roulant employe bout
kl eoudure au milieu er execution du revêtement
routier.

-Fig. 2-
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la "congruance locale" se réduit donc seulement à des équations d'égalité des d£
formations (t), et la "congruance globale" à des équations d'égalité des flèches
et des rotations relatives dans la clé du pont. Le programme réalisé en language
Fortran pour le computer UNIYAC du Centre de calcul de l'Université de Rome four
nit directement, outre que les valeurs des actions mutuelles, des chûtes de
tension dans les câbles et des réactions hyperstatiques, les valeurs des tensions et
des flèches aussi. La valeur des flèches à temps infini répresente les modifications

à faire à l'instant de la construction de chaque voussoir pour aboutir au
niveau prévu dans le projet; pourtant le coffrage roulant supporte en effet des
déformations produites par le bétonnage du voussoir pris en considération.Il faut
donc tenir compte même de ce terme.

6) Résultats numériques

Quelques résultats numériques sont illustrés dans les figures suivantes:

- figure 3 : montre les déformations des voussoirs n°4,8,12,concernant les cantilevers

centraux B et C. Il faut se rappeler que la construction du cantilever C

est successive à la construction du cantilever B (cfr.fig.2).Pour chaque voussoir

on a calculé quatre défo.rmées différentes comme est-il indiqué dans la fi^
gure n.3 elle même.

- figure 4 : on montre la déformée de la structure dans son ensemble dans les
instants plus significatifs,dépuis fin construction des cantilevers jusqu'au
temps théorique infini; ce dernier répresente à moins de la déformation du cojf
frage roulant, les contre-flèches à donner au moment du bétonnage.

- figure 5 : montre les diagrammes des moments dûs aux différentes conditions de

charge et les diagrammes résultants, en tenant compte du seul effet élastique
et de l'effet total.

7 Conclusions
Dans le pont en objet les moments de précontrainte sont supérieure à ceux du

poids propre: ceci comporte que tandis que la relaxation et le retrait provoquent
des flèches tournées vers le bas, le fluage comporte des flèches vers le haut.On
ne peut pas donc établir ä l'avance,en général,si les déformations différées
seront positives ou négatives, sauf savoir: dans les petites portées le moment de

précontrainte est plus grand que le poids propre (donc les flèches de fluage
seront vers le haut) tandis que dans les grandes portées vaut le contraireCles
déformations complessives différées seront donc sûrement vers le bas et beaucoup

plus grandes). Dans la prévision des contre-flèches est très important l'effet
des déformations vers le haut dues au démontage des coffrages roulants et à la m
se en tension des câbles de continuité (figg.3,4); il faut donc tenir compte que

souvent, comme il arrive dans le cas en examen,est-il necéssaire d'imposer, àl'in
stant du bétonnage, des contre-flèches tournées vers le bas et non vers le haut,
comme pourrait-il paraître plus logique.

Pour ce qui concerne les moments valent des considérations pareilles: n'est-
il pas toujours vrai que les phénomènes différés comportent un rehaussement de

la fondamentale des diagrammes des moments résultants. Pour avoir des renseignements

plus adhérents à la réalité à l'égard des coéfficients et des fonctions du

fluage, du retrait, de la relaxation et de l'influence de la température, on est
en train d'effectuer des essais sur le pont en question illustré dans la fig.2,
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et sur des éléments Isolés en béton et acier.

Rome - Istituto di Scienza delle Costruzioni - Cattedra di Costruzione di Ponti.

RESUME

On a examiné l'évolution dans le temps de la distribution des tensions et des
déformations dans les structures composées d'éléments rendus adhérents par stades
successifs.

Le problème a été résolu à l'aide d'un computer selon la méthode des forces.
Quelques diagrammes illustrent des résultats numériques relatifs à un pont bâti en
encorbellement.

ZUSAMMENFASSUNG

Es wird die Entwicklung der Spannungs- und Verformungsverteilung im
Verlaufe der Zeit an Bauwerken geprüft, die aus hintereinander angehafteten Teilen
zusammengesetzt sind.

Das Problem wurde mit der Kräftemethode durch einen Elektronenrechner
gelöst; einige Diagramme zeigen die numerischen Ergebnisse bei einer
Freivorbaubrücke aus vorgespanntem Beton.

SUMMARY

A study was made of the time-varying distributions of stress and strain in
structures built from successively assembled prestressed elements. An analysis
was carried out using a computer program based on the force method.

Some of the results, obtained from a worked example for a cantilever built
bridge, are presented in diagrammatic form.
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Zur Frage der näherungsweisen Ermittlung von Zwangsschnittgrößen

Approximated Computation Method of Restraint Forces

Calcul approximatif des hyperstatiques dues aux déplacements d'appuis

KARL KORDINA
Braunschweig
Deutschland

1. Einleitung und Aufgabenstellung
Im modernen Spannbetonbrückenbau ist die Berücksichtigung von

Zwangwirkungen selbstverständlich. Die Auswirkungen von behinderten
Temperatur-oder Schwindverformungen und von Setzungsdifferenzen
benachbarter Widerlager werden rechnerisch verfolgt und bei Bemessung
und Bewehrungsführung berücksichtigt. Im Hoch-und Industriebau
hingegen wurden bisher Zwangwirkungen vielfach vernachlässigt, obwohl
in einer Vielzahl von Schadensfällen vor allem der Gebrauchswert dieser

Bauwerke beeinträchtigt wurde. Der Grund hierfür scheint darin
zu liegen, daß die wirklichkeitsnahe Ermittlung der Zwangschnittgrößen

bei Stahlbetonbauten infolge der ungleichmäßigen Steifigkeitsän-
derungen durch die Rißbildung langwierig ist und über die Berücksichtigung

von Zwangschnittgrößen bei der Bemessung vielfach Unklarheit
besteht: Zwangwirkungen werden ja bei Annäherung an den Erschöpfungszustand

abgemindert, während Lastschnittgrößen stets voll aufzunehmen
sind, - allenfalls umgelagert werden. Die Möglichkeit,

Zwangschnittgrößen wie Lastschnittgrößen mit Querschnittswerten nach
Zustand I zu ermitteln und bei der Bemessung in gleicher Weise zu
berücksichtigen, führt zu so offensichtlich unwirtschaftlichen Lösungen,

daß man das andere Extrem bevorzugte und Zwangwirkungen vielfach
vernachlässigte.
In der vorliegenden Studie werden vereinfachte Berechnungsverfahren

zur Ermittlung von Zwangschnittgrößen in Spahlbetonbauwerken des
Hoch-und Industriebaues angegeben und wird die Berücksichtigung von
Zwangschnittgrößen bei der Bemessung diskutiert. Veranlaßt wurde diese

Arbeit durch die Neufassung von DIN 10^5 - Bemessung von
Stahlbetonbauteilen - wo für bestimmte Fälle die Erfassung der Zwangschnittgrößen

gefordert wird.
Zwangschnittgrößen beeinflussen vor allem den Gebrauchszustand

von Massivbauwerken, dagegen in geringerem Maße deren Standsicherheit.
Die Vernachlässigung von Zwangschnittgrößen bei der Bemessung

macht sich vqrzugsweise bemerkbar durch unerwünschte Risse, die zu
einer Beeinträchtigung der Nutzung des Bauwerks - z.B. Undichtigkeit
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von Behältern - zu einer Schmälerung der Dauerhaftigkeit infolge
erhöhter Korrosionsgefahren und zu Schönheitsfehlern - etwa bei
Sichtbetonflächen - führen können. Eine Beeinträchtigung der
Standsicherheit durch Nichtberücksichtigung von Zwangschnittgrößen wird
dagegen selten beobachtet, weil Zwangschnittgrößen bei Annäherung
an den Erschöpfungszustand im untersuchten Bauteil infolge der dann
gegebenen höheren Verformbarkeit in der Regel abgebaut werden. Bei
der rechnerischen Behandlung von Zwangschnittgrößen geht man daher
im allgemeinen vom Gebrauchszustand aus; dies ist bei der Bemessung
zu beachten, weil neuere Bemessungsverfahren meist auf den
Erschöpfungszustand abstellen.
2. Zwangschnittgrößen im rissefreien Bauwerk

In diesem Falle erfolgt die Berechnung sämtlicher Schnittgrößen
nach Zustand I; um eine hinreichend hohe Sicherheit gegenüber
unerwünschter Rißbildung zu erhalten, ist normalerweise Vorspannung
erforderlich. Die Veränderung der Zwangschnittgrößen durch Kriechen
ist zu beachten; bei der Bemessung sind die Zwangschnittgrößen den
gleichzeitig wirkenden Lastschnittgrößen zu überlagern. Überlegungen
dieser Art sind für den Entwurf von Brückenüberbauten oder Behältern
aus Spannbeton kennzeichnend. Die Betonzugfestigkeiten bzw.
Biegezugfestigkeiten dürfen nicht überschritten werden; die nach Zustand I
ermittelten und für die Analyse des statisch unbestimmten Systems
benötigten Biegesteifigkeiten dürfen nicht abgemindert werden.

Die Berechnung der Zwangschnittgrößen erfolgt somit unter Anwendung

der auch für die Ermittlung der Lastschnittgrößen benutzten
Grundlagen und bedarf keiner weiteren Erläuterung. Es erscheint aber
statthaft, die Zwangschnittgrößen bei der Bemessung gegenüber den
Lastschnittgrößen mit geringerem Gewicht zu berücksichtigen,'was bisher

vielfach bauaufsichtlich nicht zugestanden wird.
Wird von einer Aufspaltung der gebräuchlichen globalen

Sicherheitsbeiwerte Gebrauch gemacht, wurden folgende Ansätze empfohlen
[1,2,3,^]:

Zwangschnitt¬
größen größen

Unsicherheit der Last 1,15 1,00
tf der Lastermittlung 1,15 1,15

Unsicherheit der Baustoffgüte 1,10 1,10
t! H Bauausführung 1,20 1,20

Gesamt-Sicherheitsbeiwert 1,75 1,50
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3. Zwangschnittgrößen bei mäßiger Rißbildung -
Normalfall für Stahlbetonbauwerke

3.1 Umfang der Untersuchungen
In diesem Falle sollte das für die Ermittlung der Lastschnittgrößen

benutzte Rechenverfahren möglichst auch für die Bestimmung

der Zwangschnittgrößen angewendet werden können, trotzdem
aber den steifigkeitsmindernden Einfluß der Rißbildung berücksichtigen.

Dies wird ermöglicht, wenn es gelingt, jeweils für einzelne
Tragwerksteile Abminderungsbeiwerte der Steifigkeiten anzugeben.

Dieser Versuch scheint aussichtsreich zu sein, weil sich die
hier maßgebende Verdrehung der Endquerschnitte aus einer Integration

über die gesamte Bauteillänge ergibt, wobei die stark
unterschiedlichen Verkrümmungen der Einzelquerschnitte ausgeglichen
werden.

Um die Möglichkeit dieser Lösung zu überprüfen, wurden einige
typische Beanspruchungszustände und Bauteile ausgewählt und im

Hinblick auf die Auswirkungen eines Zwanges studiert. Als
Zwangwirkungen wurden Temperaturgradienten eingesetzt, wobei in getrennten

Untersuchungen von einer Erwärmung der Bauteilunter- bzw.
-Oberseite ausgegangen wurde. Außerdem wurden die Auswirkungen von
Setzungsdifferenzen studiert. Die Ergebnisse dieser Untersuchungen
können auch dazu herangezogen werden, den Einfluß von Schwindverformungen

großer Flachdecken auf die Biegemomente in den zugehörigen
Stützen abzuschätzen, wobei der Lastfall Biegung mit Achsdruck

zugrunde zu legen wäre.
Die vorliegende Untersuchung erstreckt sich auf Rechteckbalken

und Plattenbalken mit konstantem Querschnitt, wobei überwiegend
beidseitige starre Einspannung vorausgesetzt wurde. Weil das

Superpositionsgesetz nicht gilt, mußte eine gleichzeitig wirkende
äußere Last vorgegeben werden; als Lastschnittgröße wurde jeweils
ein Moment aus gleichmäßig verteilter Last und - in einer
ausgewählten Anzahl von Fällen - eine zusätzliche Längsdruck- oder
LängsZugkraft eingeführt.

3.2 Rechengrundlagen und Rechengang
Als Rechengrundlagen dienten eine parabelförmige, nichtlineare

Spannungsdehnungslinie des Betons für Kurzzeitbelastung sowie
eine bilineare Spannungsdehnungslinie für Betonstahl (Bild 1).
Es wurde Beton mit einem Mittelwert der Würfeldruckfestigkeit von
300 kp/cm2 sowie Betonstahl mit einer Fließgrenze von 4200 kp/cm2
vorausgesetzt. Die Mitwirkung des Betons auf Zug wurde nur bis
zum Erreichen einer von der Art der Beanspruchung abhängigen
Randspannung angenommen; nach Eintritt einer Rißbildung wurde der
Beton zwischen den Rissen als nicht mitwirkend angesehen.
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-S'A
I °'85 ßw

-22J5 kp/cm*

B5t *+2/50

2,2 3,5 ~£°/oo 2,0 +£

Bild 1

Die untersuchten Querschnittsformen sind in Bild 2 wiedergegeben.
Die Bewehrung der Ober-bzw. Unterseite der Balken wurde
zwischen den Einspannquerschnitten und den Momentennullpunkten
jeweils als konstant vorausgesetzt. Dies dürfte eine gegenüber der
gebräuchlichen Bewehrungsführung (Staffelung der Stütz-und
Feldbewehrung, aber Weiterführen eines Bewehrungsteiles über die
Momentennullpunkte hinaus) vertretbare Näherung darstellen. Das
Verhältnis zwischen Stütz-und Feldbewehrung wurde variiert. In
einigen Sonderfällen und bei Biegung mit Längskraft wurde auf
beiden Balkenseiten eine durchgehende oder gestaffelte Bewehrung
vorausgesetzt.

A

b

h d h

]_^=M
0 F,

h'/h 0,7
d/d0 - 0,2 b/b0*th
h'/h « 0,7 Bild 2



KARL KORDINA 445

Bild 3 zeigt schematisch die untersuchten Zwangwirkungen und
Lagerungsbedingungen :

-AT
Temperaturgradienten: AT Î 15, 20, 25°C

+AT
Setzungsdifferenzen: As L/300; L/500; L/1000

bei d/L 1/20

Statische Systeme: ^

Bild 3

±AT |Jl t AT
i AS -----'T

A±
~h'AS

Das Ziel der vorliegenden Studie ist, Beiwerte zu ermitteln,
die in Verfahren der Elastizitätstheorie zur Ermittlung

von Zwangschnittgrößen eingeführt werden können, um wirklichkeitsnahe

Ergebnisse herbeizuführen. Lösungen auf der Grundlage
der Elastizitätstheorie legen i.d.R. Zustand I zugrunde, weswegen

die gesuchten Beiwerte als Verhältnis c (E•J) /(. •J.
ausgedrückt wurden, wobei der Index w "wirksam"
bedeuten soll. Ein Beispiel soll dies erläutern:
Berechnung eines Zwangmomentes M infolge eines Temperaturgradien-z

i ^
<xr-A.T>Ei.'Oh

ten nach E-Theorie- z

cL

Hierin ist y ein von den Lagerungsbedingungen der Stabenden
abhängiger Wert, der beispielsweise beim beiderseits starr
eingespannten Balken zu 1,0 wird.

Mit Hilfe der zu ermittelnden Beiwerte c ergibt sich hingegen
für Zustand II:

m?- r ^A,dLCE'7)w M?-c

Der Beiwert c reduziert somit die Biegesteifigkeit des
ungerissenen Betonquerschnitts (E.-J. auf den für den betrachteten
Lastfall bzw. Zwang maßgebenden wert (E-J)

w
In Bild k sind die wichtigsten Ergebnisse für einen der

untersuchten Bewehrungsgehalte dargestellt. Das bezogene Moment
M/b*h2*Bn entspricht dem Stützmoment aus äußerer Last q, nach
Elastizitätstheorie für Zustand I ermittelt (vergl. Bild 3» beiderseitige

Einspannung). Als Betongüte wurde die 5?-Fraktile der
Würfelfestigkeit Bn eingeführt, hier 250 kp/cm2. Die Ordinatenwerte c
entsprechen jedoch den Steifigkeitsverhältnissen im oben angedeuteten

Sinne, die sich bei zusätzlicher Wirkung des untersuchten
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Zwangmomentes einstellen. Aus diesem Grunde reichen die Kurven

Der flache Verlauf von c f(m,m im Bereich der
Gebrauchsbeanspruchung läßt die vorteilhafte^ z Tatsache erkennen, daß c
bei überwiegenden Lastschnittgrößen von m nur sehr wenig abhängt.
Das bezogene Zwängungsmoment m verändertqsich im Beispiel von
Bild 4 bei + AT 250c insgesamt nur von m 0,039 für
mq 0 auf mz 0,015 für m^^iiiy. Die Veränderung der Beiwerte c

in Abhängigkeit von Bewehrungsgrad und -Verteilung auf Stütz-und
Feldbereich ist ebenfalls nicht erheblich, weswegen eine Neuberechnung

der Zwangschnittgrößen im Falle einer zu ihrer Abdeckung
erforderlichen nachträglichen Bewehrungsverstärkung und der damit verbundenen

Steifigkeitserhöhung in der Regel unterbleiben kann.
Die Bilder 5 und 6 zeigen eine Zusammenfassung der Ergebnisse,

bezogen auf Rechteckbalken bzw. Plattenbalkenquerschnitte unter
Biegebeanspruchung und gleichzeitiger Zwangeinwirkung. Zu beachten
ist, daß in diesen Bildern Angaben für die Werte c im Gebrauchszustand

(m nijj/1,75) und für den Erschöpfungszustand enthalten sind.
Bei kleinen Bewehrungsgehalten ergeben sich je nach Art der

Zwangwirkung teilweise sehr unterschiedliche Werte c, wodurch die
Angabe eines einheitlichen Beiwerts erschwert wird. Zwangschnittgrößen
hängen aber entscheidend von der Belastungsgeschichte ab; ihre Höhe
wird weitgehend von der größten vorangegangenen Beanspruchung des
Bauteils bestimmt. Die vorliegenden Rechenergebnisse setzen
gleichzeitiges Auftreten von Last und Zwang voraus; geht die Belastung dem
Zwang zeitlich voraus, werden vor allem die vergleichsweise hohen
Werte c in diesem Bereich abgemindert, was der angestrebten Vereinfachung

zugute kommt.

Einige Ergebnisse wie in den Bildern 5 und 6 gezeigt, wurden
auch für die Beanspruchungszustände Biegung mit Längsdruck bzw.
Längszug erarbeitet.
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A C (E • JV <Eb • V Bild 6

A "25

Ai-25

A +25

A+25

a+25 A+25

i +25

J

A -25 ï S£-25
S f + 25

A-25

"-25 V>-25 T - 25
AS 1+25 1

A S 1-25
A -25 T PLattenbalken

A-25 Gebrauchszustand Bruchzustand
+ AT=25°: A+25 A+25
-AT -25°: A'25 A-25

A 5 L/300t AS AS

1,0 2,0 3,0 ACO'^,
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3.3 Zusammenfassung der Ergebnisse
Die rechnerischen Untersuchungen sind begreiflicherweise

sehr umfangreich und noch nicht abgeschlossen. Schon jetzt läßt
sich aber sagen, daß für die überwiegende Zahl üblicher Fälle des
Hoch-und Industriebaues die Angabe einheitlicher Abminderungsbei-
werte, gültig für einen ganzen Tragwerksabschnitt, bei gegenüber
den Zwangschnittgräßen überwiegenden Lastschnittgrößen möglich ist

Für die Ermittlung der Zwangschnittgrößen können auf Grund
der vorliegenden Untersuchungen vorläufig die nachfolgend angegebenen

Abminderungsbeiwerte c empfohlen werden:

Beiwerte c (E.J)w/ (Eb.Jb)
für Gebrauchszustand

Rechteckquerschnitt
Plattenbalken

Biegung mit Achsdruck
(annähernd konstante, symmetr.
Bewehrung)

Biegung f(einseitige Bewehrung,/x, =Fe/b .h
Bewehrungsgehalt der Zugseite
im Einspannquerschnitt)

Biegung mit Achszug
(annähernd konstante, symmetr.
Bewehrung)

0,6 + 15(ytl +

0,6 + 10 ytc

0,2 + 15(/tt + fl

0,65

Die vorstehend genannten Beiwerte c sind auf mittlere Betongüten
und normale Bewehrungsgehalte aus BSt 42/50 abgestellt. Istbei den Lastfällen Biegung mit Längskraft die Bewehrung der

Querschnittsseiten nicht konstant oder nicht symmetrisch, ist ein
Mittelwert für (1C+/L) unter Berücksichtigung der Verteilung der
Bewehrung über die Bauteillänge zu bilden.

Unterschiede innerhalb des BerechnungsVerfahrens danach, obdie Zwangwirkungen den Lastwirkungen entgegengesetzt gerichtet sindoder die Lastwirkungen erhöhen, wurden - im Gegensatz zu DIN 1045 -nicht gemacht, weil in der Mehrzahl aller Fälle innerhalb eines
Bauteils beides eintritt und der Konstrukteur überfordert wäre,
wenn er gesonderte Überlegungen zu dieser Frage anstellen müßte.
Die für den Gebrauchszustand genannten Ansätze führen innerhalb
der durch den Sicherheitsbeiwert gedeckten Schwankungsbreite zubrauchbaren Werten für die Zwangschnittgrößen.

An die Beschränkung der Rißbreite durch Beachtung der zulässigen
Größtdurchmesser der Bewehrungsstäbe wird erinnert!

Auch bei Stahlbetonbauteilen wird man bei der Bemessung vonder Vorstellung ausgehen, daß die Zwangschnittgrößen mit geringeremGewicht berücksichtigt werden dürfen wie die Lastschnittgrößen.Wird eine Aufspaltung des globalen Sicherheitsbeiwertes zugrundegelegt,ist eine Herabsetzung des Gesamtsicherheitsbeiwertes fürZwangschnittgrößen auf 1,3 ~ gegenüber einem Gesamtsicherheitsbei-
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wert für Lastschnittgrößen von 1,75 - vertretbar. Als Begründung
für den gegenüber Abschnitt 2 niedrigeren Wert mag gelten, daß die
Versagenswahrscheinlichkeit im vorliegenden Fall geringer
veranschlagt werden darf als bei einem Bauwerk, das rissefrei bleiben
soll [5]. Die Abminderung der Zwangschnittgrößen durch Kriechen
kann zwar in Ansatz gebracht werden, doch ist dies rechnerisch
etwas beschwerlich, weil gerissene Querschnitte vorliegen;
wirtschaftlich ist durch die Berücksichtigung des Kriechens wohl nurin Ausnahmefällen ein fühlbarer Gewinn zu erzielen.

Zwangwirkungen, die den Lastschnittgrößen entgegengerichtet
sind, wird man bei der Bemessung i.a. unberücksichtigt lassen, -
es sei denn, die Zwangwirkung ist größer als die Lastschnittgröße
infolge min q.

Die Untersuchungen werden fortgesetzt.
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ZUSAMMENFASSUNG

Zwangwirkungen in statisch unbestimmten Systemen des Hoch- und Industriebaues

wurden bisher^ selten berücksichtigt, weil einfache Berechnungsverfahren fehlen,
die auch den Einfluss der Rissbildung erfassen. Mit der vorliegenden Studie wird
versucht, solch ein vereinfachtes Verfahren anzugeben, wobei Abminderungsbeiwerte
für die Biegesteifigkeit der einzelnen Tragwerksteile Verwendung finden. Ausserdem

werden Angaben gemacht, wie Zwangschnittgrössen zusammen mit Lastschnitt -
grössen bei der Bemessung zu berücksichtigen sind.

Bg. 29 Schlussbericht
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SUMMARY

Restraint forces in hyperstatic systems of structural buildings are rarely
calculated, because of the lack of simple computational methods, which take into
account the influence of cracking. In this paper a simple method of calculation is
proposed, in which reduction factors are used to evaluate the effective bending stiffness
of individual members. In addition, the dimensioning of cross sections is discussed
with respect to both restraint and load effects.

RESUME

On tient rarement compte aujourd'hui des efforts hyperstatiques dûs aux déplacements

d'appuis dans les structures des bâtiments et des constructions industrielles
statiquement indéterminées, parce qu'on ne dispose pas d'une méthode de calcul
simple comprenant l'influence de la fissuration.

On a essayé dans la présente étude de donner une méthode simplifiée qui emploie
des coefficients de réduction pour la rigidité flexioneile de chaque élément. En outre,
on indique la manière de combiner pour le dimensionnement les efforts dûs aux
déplacements d'appuis avec les autres efforts.
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Die Auswirkungen von Temperaturänderungen auf die Verformung stabförmiger
Tragwerke
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Les effets des changements de température sur les déformations des cadres

IGOR UHERKOVICH
Schweiz

Das klassiche Ingenieurdenken, das sich hauptsächlich auf den
Endzustand konzentriert, nämlich die Dauerstandsicherheit des Bauwerkes

zu beurteilen, und den vorübergehenden Zuständen nient allzuviele Aufmerksamkeit schenkt, ist noch sehr ausgeprägt. Von drei,auch von diesem Symposium behandelten Einflüssen : Schwinden,Kriechen und Temperatur, kommt letztere weitaus zu kurz. Die meisten
Theoretiker wie auch Praktiker tragen der Tatsache zu wenig

Rechnung, dass die im Freien sich befindlichen Bauten einer ständigsich ändernden Temperatur der Umgebung ausgesetzt sind, dass sie
von der Sonneneinstrahlung oder anderen Wärmequellen direkt beein—flusst werden, dass sie aber diesen unregelmässigen Wärmewellen,
wegen der verhältnismässig geringen Wärmeleitzahl des Betons, nicht
ganz folgen können. Jeder Punkt eines Baukörpers erhält innerhalbeiner gewissen Zeit eine von anderen Punkten verschiedene
Temperaturänderung. Als Folge dessen treten am Baukörper Formänderungenund Spannungen auf. Es nützt wenig, Ratschläge für Massnahmen zurVerringerung des Temperatureinflusses zu geben, wenn der überwiegenden

Zahl der Ingenieure der ganze Temperaturmechanismus in
Baukörpern nicht ganz klar ist. Hinzu kommt ein weiteres. Es gibtheute eine Reihe von Bauverfahren, bei denen die Beherrschung des
Deformationsmechanismus der im Bau sich befindenden Konstruktionfür die Endform ausschlaggebend ist. So muss man zum Beispiel beim
Freivorbau von Brücken den jeweiligen Bauabschnitt so einstellen,dass die Konstruktion nach Aufbringen der ständigen Last und nach
Abklingen von Schwinden und Kriechen die vorgesehene Höhenlage
einnimmt. Die verlangte Genauigkeit ist dabei ziemlich gross. Ein
späterer Ausgleich fordert als Preis meist eine erhöhte ständige
Last, die man kaum noch als Nutzlast betrachten kann, die ferner
eine Reduktion der Spannungsreserven bewirkt und die häufig ein
grösseres Kriechen verursacht. Die durch die sich ständig ändernden
Temperatureinflüsse bewirkte Forminstabilität der Konstruktion
erschwert aber diese Aufgabe derart, dass sie nicht mehr mit einfachen

Mitteln zu bewältigen ist. Es wird daher notwendig, dem Problem
eine grössere Aufmerksamkeit zu widmen und zu versuchen, auf

Grund einer Analyse den ganzen Vorgang besser kennenzulernen und
zu beherrschen.

Als Ausgangspunkt muss man sich der physikalischen Kenntnisse
über die Wärmetechnik bedienen und erst nachher die daraus ermit-
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telten Wärmeeinflüsse von unserem bautechnischen Standpunkt aus
prüfen. Die Wärme als Energie ist hier einer Last gleichzustellen.
Zuerst ist daher die Grösse und Verteilung dieser "Last" zu
bestimmen

Die mit der Zeit veränderliche Temperaturerhöhung T eines
dreidimensionalen Körpers an der Stelle m(x,y,z) ist allgemein
durch die Fourierische partielle Differential-Gleichung definiert :

eine physikalische, ausschliesslich durch die Materialeigenschaften
gegebene Konstante darstellt (A Wärmeleitzahl, c spezifische
Wärme, y Rohdichte). Man muss dabei berücksichtigen, dass die
Wärmezufuhr in den Körper nicht nur durch Wärmeströmung von der um-
schliessenden Umgebung, die durch die Wärmeübergangsformel
definiert ist, sondern auch durch die Absorbierung der Wärmestrahlung
erfolgt.

Auch wenn die Lösung dieser Aufgabe für komplizierte Baukörper
nicht eben als einfach angesehen werden kann, ist sie dank der
heutigen Mittel der Rechentechnik doch meist möglich. Um die
Randbedingungen zu erfassen und zu formulieren, muss sich aber der
Ingenieur bereits auch mit 'meteorologischen Messungen befassen. Es
ist also möglich, das Temperaturfeld eines bestimmten Baukörpers,
genauer gesagt die Aenderungen dieses Temperaturfeldes, aus
vorgegebenen Temperatureinflüssen rechnerisch herzuleiten.

Die weitere Lösung des Problems ist schon einfacher, wenn auch
mit rechnerischem Aufwand verbunden. Die elastische Dehnung des
stabförmigen Tragwerkes in Richtung seiner Längsachse x ist zum
Zeitpunkt t definiert (wenn y,z die Querschnittskoordinanten sind) :

wobei a
2 *

C*

Die Krümmung der Längeneinheit des Stabes ist :
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An der Stelle m(y,z) des Querschnittes bleiben daher Restspannungen,

die wegen des Ebenbleibens der Querschnitte in keine Verformung

transformiert werden können :

E .a.

ï J

Selbstverständlich haben diese Formel nur Gültigkeit bei
unbehinderter Verformung des Baukörpers. Trifft das nicht zu, so treten
Zwängungsspannungen auf, die dem behinderten Teil der Verformung
entsprechen. Bei veränderlichem' Querschnitt oder ungleichem Wärme-
einfluss längs der x-Koordinate sind die Ausdrücke der zu integrierenden

Glieder um die veränderliche x noch zu erweitern.

Die Grössenordnung der von Temperaturänderungen verursachten
Verformungen und Spannungen will ich an einem Beispiel veranschaulichen.

Der durch einen Temperaturunterschied in der Luft von +10° C

innert 5 Stunden und eine kurzzeitige intensive Sonneneinstrahlung
verursachte Temperaturanstieg verschiedener Messpunkte eines vereinfachten

Brückenquerschnittes ist aus Bild 1 ersichtlich.

u IS_33»_
15 23 14 u ^

13 2C

,5Su9 16.
23 7<t><t>201

22» 18,

15 823®

181
21 21

«B
18

152 2020*-
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4241
£
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2<p <P 27»2

Bild 1 Zwei nacheinander folgende Temperatur¬
messungen und die Differenzen in °C an
einem Brückenquerschnitt

Linter der Annahme, dass sich dieses Bild in allen (immer gleichen)

Querschnitten eines 4Q m langen Kragarmes wiederholt, ergibt
sich aus Gl. [3] für die Durchbiegung am Ende des Kragarmes ein Wert
von 23 mm, was einer elastischen Durchbiegung unter einer am
Kragarmende angreifenden Einzellast von 55 Mp oder einer qleichmässig
über die ganze Brückenplatte verteilten Last von 300 kp/m^
entspricht. Wie ersichtlich, können die Verformungen die rein auf im
Laufe eines Vormittags sich veränderten klimatischen Verhältnissen
zurückzuführen sind gleich gross sein, wie etwa die vom Gewicht eines
3 m langen Betonierabschnittes! Diese berrechneten Werte stimmen mit
auf der Baustelle gemessenen gut überein.

Zu den Verformungen kommen noch Restspannungen (Gl.[5]), wie
sie in Bild 2 dargestellt sind. Sie wurden an verschiedenen Punkten
des Querschnittes ermittelt. Die Grösse dieser Spannungen ist so
beträchtlich, dass man sie nicht vernachlässigen sollte.
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Bild 2 Temperaturspannungen in Folge einer Erwärmung nach
Bild 1 an frei verformbarem Stab, bei Annahme E=400 ' 000kp/ci^

Die praktische Ermittlung der Auswirkungen von Temperatureinflüssen
ist auf drei Wegen möglich :

1. Eine rein theoretische, rechnerische Lösung, welche wie er¬
wähnt die Aufstellung eines klimatischen Modells erfordert
und zu komplizierten, mathematischen Ausdrücken (Gl. El])
führt. Dieser Weg ist nur mit entsprechenden Computern zu
bewältigen, ist aber allein imstande, schon bei der
Projektierung ein Bild über diese Einflüsse zu schaffen.

2. Durch die Temperaturmessung an schon ausgeführten Bauabschnit¬
ten einer im Bau befindlichen Konstruktion. Mit diesen gemessenen

Werten führt man gemäss Gl. [2] " [5] die Verformungsund
Spannungsberechnung durch. Bei Trägern mit veränderlichem

Querschnitt wird dabei ein Tischcomputer von höchstem Nutzen
sein.

3. Die direkte Verformungsmessung. Da man bei normalen Nivel¬
liermethoden wegen des grossen Zeitaufwandes zu spät Resultate

erhält, möchte ich dazu eine feste Installation
vorschlagen, bei der eine Polaroid-Camera montiert an einem
selbstjustierenden Nivelliergerät von einer festen Messteile
aus Messlineale fotografiert, die am Bauwerk unverrückbar
befestigt sind. Dies ermöglicht in wenigen Minuten Resultate
vorliegen zu haben, mit denen Höhenkorrekturen vorgenommen
werden können.

Am besten wäre es, an ausgewählten Bauobjekten alle drei
Methoden zu erproben, um vergleichen zu können.

Lieber das Thema Temperatureinflüsse auf Betonbauten liegen viele
wertvolle Resultate vor, Messungen und theoretische Arbeiten auf
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den Gebieten Bautenbrandschutz, Kaminbau, Betonfahrbahnen, Talsperren.
Es ist eine unserer Aufgaben, auf diesen Erkenntnissen

weiterzubauen, um auch dem Ingenieur, der auf anderen Gebieten des
Bauwesens tätig ist und sich mit diesem Problem noch nicht beschäftigt
hat, den Blick dafür zu öffnen.

ZUSAMMENFASSUNG

Bei im Freien stehenden Beton-Konstruktionen können unter Einwirkung von
Aussentemperatur und Sonneneinstrahlung Formänderungen und Eigenspannungen
beträchtlicher Grösse auftreten. Die Temperaturverteilung in der Konstruktion ist
durch Lösung der Fourierschen Differentialgleichung erfassbar. Bei bekannten
Temperaturfeldern sind dann die Verformungen und Spannungen leicht zu ermitteln.

SUMMARY

The influence of external temperature and solar irradiation on open-air concrete
structures can create large internal deformations and stresses. The temperature
distribution in a structure can be determined by solving the Fourier differential
equation. With the temperature fields known, it is a simple matter to determine the
resulting deformations and stresses.

RESUME

L'influence de la température extérieure et du rayonnement solaire direct sur
les constructions en béton peut donner des déformations et des contraintes internes
très grandes. En résolvant l'équation différentielle de Fourier, on obtiendra la
distribution de la température dans la construction; ensuite, on calculera facilement
les déformations et les contraintes.
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1. Introduction
It is well-known that the creep of concrete causes the gradual change with

time of deformations and stresses in concrete structures subjected to sustained
loads. Both experimental and theoretical studies with respect to this phenomenon
have been carried out in the past by many investigators, but most of them have
dealt with the cases under the action of sustained loads of constant magnitude.
Since main purpose of these works is satisfactory prediction of maximum deflection

under constant sustained loads, it is difficult to obtain analytically
deflections and stresses at an arbitrary time after loading. In addition, most of
these analytical methods are incapable of yielding reliable results for the creep
of concrete structures subjected to repeated or varying loads. Although the
creep-behavior of concrete under variable stress and repeated loads has been
studied by A.D.Ros^ C.A.Miller and S.A.Guralnick2,5 the subjects of their studies
are restricted to such uni-axial members as plain concrete specimens and singly
reinforced concrete beams, and numerical results for response of stresses are
not obtained yet.

The authors published the papei^in 1969 with respect to the analysis of
creep in flexed reinforced concrete slabs subjected to constant sustained loads.
In the present paper, the previous theory is extended to the case subjected to

any load, the intensity of which varies with an arbitrary time-interval, and the
creep responses of deflections and stresses in reinforced concrete slabs obtained
from numerical calculations are illustrated.

In order to simplify the procedure, the following assumptions are made in
the subsequent development of our theory.

1) Plane sections normal to the neutral surface of the slab before bending
remain plane and normal to the neutral surface after bending even though creep
occurs in concrete.

2) The reinforcement behaves ela.stica.lly under all conditions.
3) Modulus of elasticity in concrete is invariable with time.
4) The creep function of Arutyunyan^type is used as the time-dependent law

connecting stresses and strains in plain concrete.
5) The effect of shrinkage in concrete is neglected.



458 III - CREEP IN REINFORCED CONCRETE SLABS SUBJECTED TO REPEATED LOADS

2. Stress-Strain Relation of Concrete Considering the Effect of Creep under
Repeated Loads

Let us consider that a structure made of concrete of age Ta is subjected to
load Qi (i=0,l,2, ,n) which varies
with time-interval as shown in Fig.l.
Denoting the normal stresses of concrete

at an instant t (tsT()with respect to
any cartesian coordinate system o-xy by
Qxo( t) and Cyo(t), the total normal
strain £Xo(t) of concrete at an instant
t (r«itST,) is expressed as follows:

Load Stress

_ Oxo C t - i) (T%o t

- [Qio(T)-Pöj»CC))^C(t,r)dT
(1) Fig. 1

where Ec and i> are modulus of elasticity and Poisson's ratio of concrete, respectively,

and C(t,"C) is creep function.
The form of function C(t,T) is determined on the basis of creep tests in

plain concrete, and an expression of Arutyunyan-type is used in this paper.
That is, C(t,T) f(T) [l-e"r(t_T)]

<P(t) <*/t + ß (2)

where 0 (3 and i" are constants.
To obtain the total strain £xu(*) concrete at any time t (tiîw), Eq.(l)

is easily extended as follows:

gw(t)=<^t)-^t) -Z ftfo(T)-i>(fri(t))&c<t.t)dt
^ tÄ0

- J1 [<î.1lCT)-i)(Tr(T)]à%C(t,t)dr (3)

Substituting Eq.(2) into Eq.(3) and differentiating the obtained equation with
respect to t, we get, after some transformations, the following equation:

è^Ct) k»( t} +1y t [Oxu( t - GyS t )] - r j* [CSiTu(X)-i>(Jyi,(T))^(9(t)i3'(t"fl]dt

-ySj^'[öxi(t)-pa^a))^{f(t)er(t^}dT. (4)

Eliminating the integral terms in Eq.(4) by using Eq.(3), we obtain the following
equation:

Wt) + r£xn(t) (i+Ec(p(t)}

<-oJty J a

Differentiating Eq.(5) with respect to t, we can derive the following differential
equation:

0Swi<t)-^Ö^Ct)+ (öüsn.Ctj-PÖ^nJCt)) EC{£X11,( t) +rE^C t)} (6)
For determination of (Jxn.(t) and OyiCt), another differential equation is necessary

and it is easily derived as follows:
Öyl(t)-Pöxn.(t) + ar{l+EtC(>U)} [(T8n(t)-PÔxu(t)] Ec { £JU( t) +r£^ t)J (7)

On the other hand, by considering the total shearing strain ^n(t) of concrete
subjected to shearing stress T.u(*) > *he differential equation for determination
of TjcjpCt) is obtained as

Tx^t) + r{i+Ec<p(t)}tx^(t) • (8)
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The initial conditions are

1 +^£yiSc*)} +EcZ! f dt-
i=o\a (TJ fri{i (tn) +PÊxu(rj} +ECZ f%-(t)àC^)dT

- î 0 Jt; ^
TxytifVid 2(1+P) '

4u(^)=ir^[^r-)+') +Jr^ jT'öii (* (t)e ^^dt-rE^cr^cy:«
ày&J1=ÏI^{V(U) +P ^EX l^'Ö^Ct )^[cf (T e HU_T)}dt - yEt <*> CTO(J^(T^>

(9)

V^io^VV+n* £ 1? ^)è!r(VT))dt-ïEc(?(Vrx^V
Solving the differential equations (6),(7) and (8) under the initial conditions

of Eq.(9), we find the required stress-strain relations of concrete considering
the effect of creep in the following form:

ft<Jctl(t)=qx„,w4 e^fcU^o+Af (yî)+ryt)+p(£,,(t)^D)}e*re)dt]dt,
^

Jt/n,

OynX t =ö^n(« +j e"VT) [5^) + J^£{£^t + r£^(t +)> &X7£Z + r^-C )} e"i(t) dt] dt,

^jc^n( t)=Tx^Ct/n) + e* [Xx^u(^) +
2(i+p J f^ dtj dt

^TV

where \{t) ^ j {_l+E&Cp(X)} dZ
tn,

3. Basic Equation of Flexed Reinforced Concrete Slab
Take a cartesian coordinate system o-xy in the neutral

plane of a. rectangular reinforced concrete slab as shown in
Fig.2, where z-axis is perpendicular to x-y plane,and assume
that reinforcements are set parallel to x and y axes.
As the reinforcement is assumed to behave elastically under

all conditions, its normal stresses ÖJXU(t), t) and shearing

stress are expressed as

>(10)

(Jsx?l( t -E5 EsxtS t » ösV7t,( "t -E^ S^lJTlC t

tsxytC t)=

C5XUV 1 > ' ^SgnS L > ~S c-sgrù-

Es
r^icvu( t (11)

— a —

Fig. 2
2(1+Ps)"«r

where £$x.n,(t), £îj*(t) and ïsxyifD are normal strains and shearing strain of
reinforcement, and Eä, )>s are modulus of elasticity and Poisson's ratio of
reinforcement, respectively.

Denoting the bending moments and the twisting moments of a slab per unit
width by MXTL(t), M^uft) and Mxj^t), M^Ct), respectively, we can express them
by using Eqs.(10),(11) and the deflection w(t) of a slab as follows:

WW * t "fP ')^ •

V< »= ««V

AWH,.., ft^-Trtlr ft^#w(T).^w(T)|

(12)
where

Myu(t)= Mc^(T.)+Mcr^Vj%-1(t,dt+MTU(t)-(l-P)Dcj%^(T,(]t]gg-) +rf^}etWdl] dt

t(t«0 jöx^CW zdz Mctflt(T-,) JO^OW zdz -MCXjrtttJ =Mc^(tJ jttynCV zdz

Mcx-nC^n) Jzdz Mcr(t.) J(T^(T^) zdz ~ J zdz
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M f+1=_n ^ ^ m r -t-l-. n ^ w( M ffi- 3w(t) ft)- 3*w(t)
"3x! T 33 a y2 sxr 1+* 3xäy ^ "äxdy~,

Dc : Flexural rigidity of concrete section per unit width with respect to
neutral axis,

D«> Ps'J : Flexural rigidity of reinforcement per unit width about y and x-axis,
respectively.

Denoting the intensity of the load acting on a slab at an instant t tiTwl)
by qu(x,y), we represent the equation of equilibrium in the following form:

a Mxu( t) d^My-nXt) d Mx^ t) d M^f t)
B x2 ayz Bx3y ax3y

Substituting Eq.(12) into Eq.(13), we can obtain the basic equation of a flexed
reinforced concrete slab subjected to repeated loads as follows:

B 0 Mcy-i^T-O ^ 0 Mcx^CTO f 02 MCXUCLH) 0 McMn(t-n) ^ (^McxH-n-CL".) 1 f^ (I) r3 x2 +~9^ 2
3x3y

+ +~T^ 2~0^ it
^+^-)2(w(T)+ rw(T)] e^dtjdT =-q^(x,y) (14)

T*i

Putting t=t* in Eq.(14), we have the initial condition as

« aVt«0 „ öVt,) „ „ B*w(T„)
_ _Q-JIPr +P2~J^ +2P3-3xtj-i=

where £,= DC+D5X, ^2= Dc+Di? 2ß 2De +
^

q,(x,V)=qJx,y)+Ec| [{-q. x, y +qf|g> +^i^>} [ C(W -C(W\

+ J^vv-C^t)} jV(w(T)+rw(T )et(T' dtjdtj
Differentiating Eq.(14) with respect to t and putting t= D*. in the obtained eq-

ation, we can get a differential equation, which gives an initial condition of
w(t) as well as Eq.(15), as follows:

H *

Differentiating Eq.(14) twice with respect to t, we derive, after some transformations,

the following differential equation for determination of w(t):
,-*=*»( t) in«fniäVt) f 1 /w(t) f Rx+Dw., ./wet)

Q +ß 5yt +^dx*dy2 lrDL+D^l(t)] T^ lrD^D<fl(t)J Tjr + l2Wt+-I^l(tjf^ryi-0
(17)

The solution of the basic equation (14) is equivalent to that of a linear
differential equation (17) under the initial conditions given by Eqs.(15) and (16).

4. Solution by Double Trigonometric Series

In this study we deal with only simply supported rectangular slabs, and
then analysis by double trigonometric series is quite suitable. By taking the
coordinate axes x and y as shown in Fig.2, boundary conditions for simple support
are represented in the following forms:

w(t) 0, Mocu(t)=0 for x=0, a and w(t)=0, M^(t) 0 for y=0,b (18)
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where general expressions of Mxn(t) and Myv(t) are given by Eq.(12).
Now assume that the solution of differential equation (17) takes the following

form of series satisfying boundary conditions of Eq.(18):
w(t) 21 IL A;k t) sin'iî^sin^^- (19)

^IH < ab
where AJ|<(t) is a. function of t only.
Substituting Eq.(19) into Eq.(17), we obtain the following differential equation

for determination of Aj.k(t):
Äjk(t) + Qjk(t)Äjk(t) =0 (20)

r j^p k^p
«here Qjk(t) r [l V^w ' 2 a*b2 3

The solution of Eq.(20) can be expressed in the following form:
t fx

A^CD Ajk(i;) + ÂjkOo[ e"Jc.Qik(T)dTdT; (21)
• "Vis,

A)k (ti) and Aj k CU) in Eq.(21) are determined by the initial conditions of Eqs.
(15) and (16) as follows:

24^g)

_
ttXlP (ti) [ q-^k~ °sx + ~b»V" iktf )Ajk <Xi )J +q>«jk

A]k ^jlß+^a+2Jl^ß)V" b*' 2 a2 bx\3

where q„jkis a coefficient of load q^(x,y) in double Fourier series, namely,
O

4 r"^ / -, • Jïï* • jq-ji< =7bJJ0V(x'y)sin—sin—dxd^'
_ 4 f'ffe- x • Jix • kny. 4 fVb= jïïx krry.

and q.jk=IFJ 1 q-(X'y)Sln"Sln^dXdy' q*jk=abi J q^x,y)srn—sin^-dxdy _

<J 0 6 q 0 0

Substituting thus obtained results of Eq.(21) into Eq.(19), we finally find
the deflection w(t) in a slab at any time t.

By using Eqs.(11) and (19), normal stresses of reinforcements are obtained as
follows :

CWt) Dsin^sinHX
H H

<Vt) ESZS^L^-A^k(t)sin^sin^l
1

i'-l kl D ' a D

where zs is a distance between neutral plane and reinforcement.
Stresses of concrete are also obtained from Eq.(10), but numerical calculation

for them has to make use of an iteration procedure.

5 Numerical Examples

To illustrate some practical applications of our theory, we consider singly
reinforced.square slabs with various percentage of reinforcements. The

following characteristics are assumed for elastic constants and the creep function:
Et=2.1xl0^ kg/cm* v> =0.15 Es=2.1xlo' kg/cm* Ä=0.3,

(X=4.82xl0r, (3 =0.9xidr r=0.026.
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Numerical calculations are performed for the following two purposes:
(1) Pursuit of creep response of deflections and stresses in slabs for cyclic

sustained loads.
(2) Calculation of creep recovery of deflections and stresses after the applied

load is removed at any time.

0

1

2-

3

4-

5

10 days interval

Einnnnnpn,
20 days interval 30 days interval

1 r
5 0 100

A

150days

10'

/

\

A A

\J \ \ \ N

50 100 150
A/l A'A ' '// / i/ /A

days

/ /
3 16qa*

iT2Dc

\ \]
DEFLECTION

w( t)

0i.( t)

4

3

2-\

1

0

103i^-Eszs

0.5 per cent reinforcements

1.0 per cent reinforcements

STRESS IN REINFORCEMENT

t
A

M \

A A

N

A

\|

A

\

A

N

59 190 i;>oday°

A

\
/

^0 190 l?0da^S

5-

0

- 5-

-10-

-15-

-20.

-25-1

(Tc(t)
-, Tfi 16qa? „ „:WEtZ

STRESS IN CONCRETE

/ y v \y

s

V V y y
Fig. 3

50 100 150days

30 190 i?oda_y^



T. YAMASAKI - T. CHISYAKI - H. HIKOSAKA 463

Response for Cyclic Loads

Fig.3 shows the calculated responses of deflections, stresses in reinforcement
and stresses in concrete at the center of square slabs, when a uniformly

distributed load qft(x,y)= q is applied at the age of concrete r0=2S days and
thereafter unloading and reloading are repeated cyclically with time-intervals
of 10 days, 20 days and 30 days, respectively. Here, solid lines are results
for 0.5 per cent reinforcements in both x and y directions and dashed lines are
those for 1.0 per cent. Deflections and tensile stresses in reinforcements
illustrate analogous curves and it is noticed that stresses in reinforcements
due to creep in concrete remain after complete removal of applied load. Stresses
in concrete decrease during a period of constant sustained loading, and immediately

upon removal of applied load, compressive stress changes to tensile one.
In the slab with high percentage of reinforcement, both deflections and

stresses in reinforcements naturally decrease but residual stresses in concrete
somewhat increase.

When a cyclic load, with a period of full loading and half loading, is
applied, the calculated responses are as illustrated in Fig.4, where response of
stress in reinforcement is omitted because of its similarity to that of deflection.

It is interesting that during early periods of half loading deflection
increases and stress in concrete decreases, namely, creep is in progress, but

during later periods of half loading creep is in recovery.
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Creep Recovery

Immediately upon complete removal

of applied load, deflections and
stresses in concrete structures do
not recover to zero, but a certain
deflection andstress due to creep in
concrete remain. Although these
residual deflection and stress are
gradually reduced to zero, i.e. it is
called creep recovery, some quantities

remain permanently. In reinforced
concrete structures this phenomenon
of creep recovery becomes especially
complicated, because creep recovery
of concrete and elastic recovery of
reinforcement are mixed in them.

By using the theory in this paper,
creep recovery of reinforced concrete
slabs is easily calculated, that is,
we only have to set qu(x,y) equal to
zero during the period of unloading.

The solid lines plotted in Fig.
5 show creep and recovery curves of
deflections, stresses in reinforce.-
n.ents and stresses in concrete at
the center of square slab of 0.5 per
cent reinforcements in both x and y
directions, when a uniformly distributed

load q^(x,y)= q is applied at
the age of concrete T0=28 days and
the load is removed after a period
of 10, 20, 30, 40 and 60 days,
respectively. Dashed lines in Fig.5
are results for the cases when the
load is not removed completely,but
left by half. It is noticed that
recovery of stress in concrete is
almost independent to the length
of loaded period.
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SUMMARY

Deflections sind stresses in simply supported reinforced concrete slabs
subjected to repeated sustained loads have been treated in this paper. A theory for
calculating slab deflections and stresses in reinforcement and concrete has been
developed which uses the creep function of Arutyunyan-type for plain concrete. By
using electronic digital computer for the numerical work, creep response of flexed
reinforced concrete slabs under the action of an arbitrary varying load can be easily
calculated. Creep recovery curve of deflections and stresses at an arbitrary time after
unloading can be also obtained without adding any serious complications in the procedure.

RESUME

On étudie dans le présent article les flèches et les contraintes des dalles en béton
armé simplement appuyées et soumises à des charges répétées. On développe une
théorie pour calculer les flèches de la dalle et les contraintes dans l'armature et dans
le béton, en utilisant la fonction de fluage d'Arutyunyan. A l'aide de l'ordinateur, on
peut alors facilement calculer le comportement au fluage des dalles en béton armé
soumises à une charge variable quelconque. En outre, on peut obtenir sans difficulté
la courbe de recouvrement du fluage pour les flèches et les contraintes à un moment
quelconque après la suppression ou la diminution de la charge.

ZUSAMMENFASSUNG

In diesem Beitrag werden die Durchbiegungen und Spannungen von frei aufliegenden
Stahlbetonplatten unter Wechsellast behandelt. Es wurde eine Theorie zur

Berechnung der Plattendurchbiegungen und -Spannungen in der Bewehrung und im Beton
entwickelt, welche auf der Kriechfunktion von Arutyunyan (4) für Vollbeton fusst.
Mittels digitaler Elektronenrechner kann das Kriechverhalten biegebeanspruchter
Stahlbetonplatten unter beliebiger Wechsellast leicht ermittelt werden. Ebenso kann man
die Kriecherholungskurve (creep recovery curve) der Durchbiegung und der Spannungen
zu beliebigem Zeitpunkt nach Entlasten ohne zusätzliche Schwierigkeiten erhalten.

Bg. 30 Schlussbericht
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