Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 5 (1970)

Artikel: Zur Frage der Rissbildung an zwängungsbeanspruchten

Stahlbetonstäben

Autor: Eibel, J.

DOI: https://doi.org/10.5169/seals-6931

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Frage der Rissbildung an zwängungsbeanspruchten Stahlbetonstäben

Crack Formation in Restrained Reinforced Concrete Beams as a Result of Shrinkage and Temperature Change

Formation de fissures dans des poutres en béton armé soumises au refroidissement

J. EIBEL
AV und Prof. Dr.-Ing.
TU Braunschweig
Deutschland

1. Allgemeines

In den letzten Jahren sind mehrere Untersuchungen zwängungsbeanspruchter Stahlbetonbauteile erschienen, die zum Teil eine recht gute Übereinstimmung mit vorliegenden Versuchswerten zeigen. Die meisten der darin angegebenen "Rißformeln" gelten jedoch nur für den Bereich reiner Biegung. Sie enthalten außerdem empirische Faktoren, deren mechanische Deutung nicht immer befriedigt. Der Verfasser hat deshalb versucht, eine "Rißformel" abzuleiten, bei der nur die Verbundeigenschaft des verwendeten Bewehrungsstahles als empirisch zu ermittelnde Größe vorauszusetzen ist. Die wichtigsten Ergebnisse dieser Untersuchung [1] sollen im folgenden wiedergegeben und kurz diskutiert werden.

2. Die analytische Erfassung der Zwängungsschnittkräfte bei vorgegebenem Verbundgesetz

Wir betrachten das idealisierte Modell eines an beiden Enden unverschieblich festgehaltenen Stahlbetonstabes mit gleichmäßig verteilter Bewehrung gleichen Durchmessers. Dieser Stab sei zum Zeitpunkt to einer über den Querschnitt konstanten Temperatur T unterworfen, die mit wachsendem t abnimmt. Unter dieser Voraussetzung steigt die Normalkraft im Stab zunächst linear bis

(2.1)
$$N = \beta_{\overline{e}} \cdot F_{\overline{b}} \cdot (1 + n\mu) ; \qquad n = \frac{F_{e}}{F_{\overline{b}}} ;$$

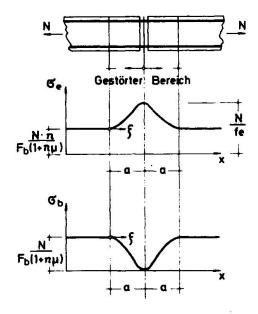
 $(\beta_z = \text{zentrische Zugfestigkeit des Betons } \beta_z = 1,2 / \beta_w)$

an, bis sich der erste Riß bildet. Im Bereich des Risses (vgl. Bild 1) ergeben sich folgende Gleichgewichtsbedingungen [1]:

(2.2)
$$\frac{\partial N_e}{\partial \xi} d\xi - \Delta N(\xi) d\xi = 0;$$

$$\frac{\partial N_e}{\partial \xi} d\xi - \Delta N(\xi) d\xi = 0;$$

$$N = N_e + N_{\bar{\delta}};$$



wobei $\Delta N(\zeta)$ die durch den Verbund zwischen Beton und Stahl übertragene Kraft je Längeneinheit bedeutet.

Mit dem daraus resultierenden Schnittkraftverlauf:

$$(2.3) \begin{cases} N_{\delta}(\xi) = -\int \Delta N(\xi) d\xi + \frac{N}{(1+n\mu)} \end{cases}$$

$$(2.3) \begin{cases} N_{\epsilon}(\xi) = \int \Delta N(\xi) d\xi + \frac{N \cdot n \cdot fe}{f_{\delta}(1+n\mu)} \end{cases}$$

erhält man unter Beachtung von:

$$(2.4) \qquad \mathcal{E} = \frac{\partial v}{\partial f} ,$$

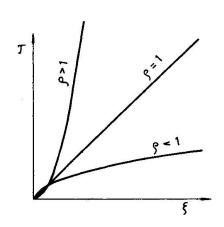
folgenden Ausdruck für die Rißweite, d.h. die Verschiebungsdifferenz:

Bild 1

Hierin bezeichnet:

die Änderung der Normalkraft (vgl. Bild 1) infolge Verbundwirkung. Die auf die Stahloberfläche bezogene Verbundkraft τ - es handelt

sich um keine Spannung im Sinne der Elastizitätstheorie – ist bei Rippenstählen gleicher Profilierung im wesentlichen eine Funktion der Betongüte und der Verschiebung. Für ihren Verlauf (vgl. dazu auch $\begin{bmatrix} 1 \end{bmatrix}$, $\begin{bmatrix} 4 \end{bmatrix}$) wird daher mit Rücksicht auf die Bedingung $\begin{bmatrix} \tau \end{bmatrix}_{\zeta=a}$ ein Ansatz von der Form:



gemacht. Setzen wir zunächst nach [3], [4]
- für eine weitere Begründung wird auf
Abschnitt 3 verwiesen - p=1, so gilt

(2.7)
$$\Delta N - \sum \ddot{u} k(\beta_2) f$$
.

Aus der Bedingung:

(2.8)
$$\int \Delta N(\xi) d\xi = \frac{N}{(1+n\mu)}, \text{ (Bild 1)}$$

Bild 2

folgt dann:

(2.9)
$$a = \sqrt{\frac{2N}{(1+n\mu)} \cdot \tilde{z} \tilde{u} \cdot \hat{k}(\beta_{\delta})} = \sqrt{\frac{N \cdot \phi}{2(1+n\mu) \cdot f_{e} \cdot \hat{k}(\beta_{\delta})}},$$

$$bzw.$$

$$bzw.$$

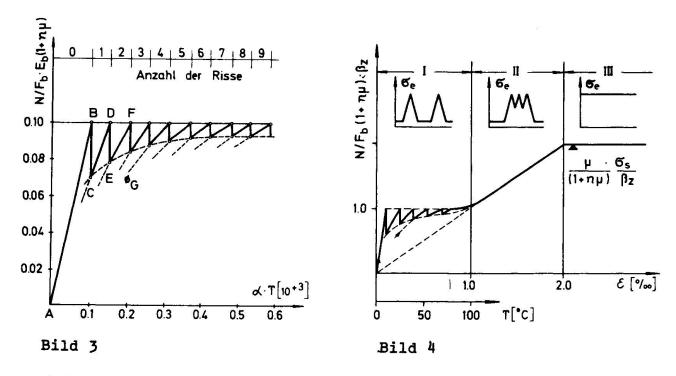
$$k = \sqrt{\frac{0.222 \cdot N^{3} \cdot \phi}{\hat{k}(\beta_{\delta}) \cdot (1+n\mu) \cdot f_{e}^{3} \cdot E_{e}^{2}}.$$

Die in (2.9) und (2.10) auftretende Normalkraft N ermitteln wir aus folgender Bedingung für die Stablänge eines gerissenen Stabes mit i-Rissen:

Nach kurzer Umformung erhält man daraus:

(2.12)
$$\overline{\xi} + i\overline{\xi} \cdot \sqrt{\gamma}\overline{\xi} = 7. \propto ,$$
wobei
$$\overline{\xi} = \frac{N}{E_{\delta} \cdot F_{\delta} (1 + n\mu)}; \qquad \gamma = \frac{0.222 \cdot \phi \cdot E_{\delta}}{n^{3} \mu^{3} L^{2} \cdot E(\beta_{\delta})}.$$

(α = Temperaturausdehnungskoeffizient.)



In [1] ist die Auswertung (2.12) an einem Beispiel gezeigt (Bild 3). Mit fallender Temperatur steigt die Normalkraft bei Erstbeanspruchung zunächst von A nach B an, fällt beim Entstehen des ersten Risses nach C ab, steigt wieder bis D anusw.

Bild 3 stellt einen Ausschnitt aus einem vollständigen " σ - ϵ -Diagramm" eines gezwängten Stahlbetonstabes nach Bild 4 dar. In der Praxis interessiert dabei auch bei großer Abkühlung und starkem Schwinden [1] meist nur Bereich I, der durch die Bedingung

begrenzt ist. Bei unbekannter "Lastgeschichte", d.h. bei zum Zeitpunkt der Beanspruchung unbekannter Rißanzahl, ist aber, wie in [1] näher aufgeführt, stets von der größten Normalkraft

auszugehen.

Damit erhält man aus (2.9) und (2.10)

(2.14)
$$w = \sqrt{\frac{9222 \ \phi \cdot 6e^{3}}{k(\beta_{e}) \cdot (1+n\mu)}} \cdot E_{e}^{2} \quad \text{oder} \quad \frac{45 \omega^{2}}{\beta_{e}^{3}} \frac{M^{3} \cdot k(\beta_{e})}{(1+n\mu)^{2}} \cdot E_{e}^{2} = \phi$$

265

(2.15)
$$a = \sqrt{0.5 \frac{\beta_{z} \cdot \phi}{k(\beta_{z}) \cdot \mu}}$$

3. Diskussion des Verbundgesetzes

Von der allgemeinen Form eines Verbundgesetzes:

$$(3.1) \qquad \qquad \gamma = k(\beta_z) \cdot \xi^{S}$$

nach Bild 2 ausgehend, haben wir bislang nur den Sonderfall $\rho=1$ behandelt und daraus (2.14) (2.15) abgeleitet. Wenn wir statt dessen (2.14) in allgemeiner Form angeben, so erhalten wir:

(3.1)
$$\phi \leq \frac{w}{\beta_{2}^{(g+2)}} \frac{u^{(g+2)}}{(1+n\mu)^{(g+1)}} k \cdot E \frac{(g+2)}{2^{(g+1)}} .$$

Bild 5 zeigt eine Auswertung von (3.1) für drei verschiedene Werte Aus Vergleichsgründen wurde allen Kurven ein gemeinsamer Punkt, der z.B. durch einen Versuch mit $B_z=20~\mathrm{kp/cm^2}$, $\mu=0.8$ %, Ø 17 mm, W=0.02 cm gegeben sei, zugrunde gelegt. Man sieht daraus, daß für eine Festlegung des maximal zulässigen Durchmessers der genaue Verlauf von $\tau=k\cdot\zeta^p$ unerheblich ist. Gleiches gilt für die oftmals diskutierte Frage nach der Potenz von σ_a , wenn man 3.2 wegen (2.13) in der Form:

(3.2)
$$\phi \leq 4(1+n\mu) \frac{2w}{\frac{6}{6}(9+2)} - k(\beta_2) \cdot E_e \frac{(9+2)}{2(9+2)} \frac{(9+2)}{(9+2)}$$

schreibt. Aus Gründen der Rechenvereinfachung und mit Rücksicht auf [3], [4] sollte p=1 gesetzt werden, wie in Abschnitt 2.

4. Diskussion einiger Rißformeln

In [2] berichtet Falkner über sieben durchgeführte Zwängungsversuche, deren Ergebnisse er mit den Angaben von Rehm bzw. CEB für die maximalen Rißabstände $\ell_{\rm EM}$ in [5]:

(4.1)
$$l_{EM} = (4 + 0.125 \frac{d}{u})$$
; $w_m = l_{EM} \frac{Ge}{E_e} \left(1 - \frac{S}{u^2 G_e^2}\right)$; (Rehm)

(4.2)
$$l_{EM} = (4+0,160 \frac{6}{\mu})$$
; $u_m = l_{EM} \frac{5e}{Ee} (1 - \frac{f}{\mu.6e})$; (CEB)

vergleicht.

Tabelle I zeigt diese Gegenüberstellung erweitert um einen Vergleichswert:

$$l_{EH}^* = a + 2$$
 cm Betondeckung

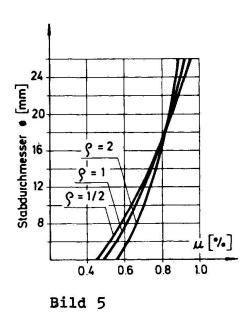
mit "a" nach Gleichung (2.15). Die angegebene Vergrößerung um 2 cm (vgl. dazu auch [5]) ist notwendig, weil die Übertragungslänge" a" unter der Voraussetzung einer völlig gleichmäßig verteilten Bewehrung ermittelt wurde. Bei Annahme einer Kraftausstrahlung unter 45° im Beton ist daher "a" um die Betondeckung zu verlängern, wenn ein Vergleich mit gemessenen Rißabständen erfolgen soll. Tab. I zeigt außer-

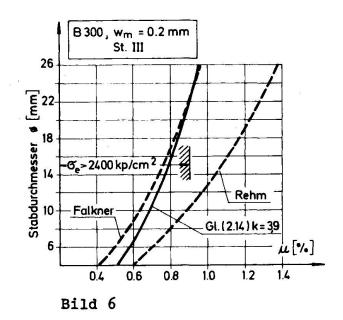
£_{EM} ²EM LEM EM W Ø Nr. μ **G1.(2.15)** G1.(2.14)Versuch Versuch Rehm CEB k=3,9k=3.95 cm mm cm cm cm mm cm 14,0 17,2 0,20 15,4 16,7 0,19 0,5 0,48 19,5 24,1 17,8 20,3 0,17 0,22 27,5 | 34,0 | 28,4 25,0 0,32 0,27 0,77 13,0 | 16,0 | 6 16,5 0,10 0,13 12,5 0,75 24,0 | 29,0 | 22,8 0,19 28,8 0,23 1,00 8 14,0 | 12,3 16,7 0,08 0,12 12,2 21,5 26,4 21,3 0,16 0,16 22,5

Tabelle I

dem eine Gegenüberstellung der gemessenen Rißweiten mit denen nach Gl. (2.14). Einen Vergleich der w_m -Werte nach (4.1) und (4.2) hat Falkner nicht durchgeführt, da er die angegebenen δ nicht als zutreffend erachtet. Er hat vielmehr aus den gemessenen w_m -Werten neue δ -Werte errechnet.

J. EIBEL 267





In Bild 6 ist die von Falkner gegebene " $\emptyset-\mu$ -Empfehlung" den Ergebnissen des Verfassers für k=3,9 und einer Auswertung von (4.1) mit δ =50 für zentrischen Zug gegenübergestellt.

Man sieht aus Tab. I, daß ein k-Wert von 3,9 gut den gemessenen Werten entspricht und auch von den ℓ_{EM} -Werten nach Rehm bestätigt wird. Eine weitere inzwischen von Rehm durchgeführte Untersuchung, die demnächst veröffentlicht wird, bestätigt für B 300 den hier gewählten k-Wert. Der aus [4] entnommene Wert k=1, wie er u.a. in [1] angegeben wurde, gilt nur für sehr geringe Betongüten.

Die aus Bild 6 ersichtliche Abweichung der Kurve nach (4.1) resultiert aus einer unterschiedlichen Einschätzung der Mitwirkung des Betons zwischen den Rissen. Schreibt man (4.1) in der Form:

so gibt Falkner ß mit 0,55 an. Nach den Ansätzen des Verfassers:

der von ausgewerteten Biegeversuchen [3] übernommen und für den Fall zentrischen Zuges geringfügig modifiziert wurde, liegt dagegen wesentlich höher.

Fraglich bleibt, inwieweit die mit Rücksicht auf einen Vergleich mit [2] vorgenommene Bezugnahme auf w_m , d.h. auf einen Wert, der von der Hälf-

te aller Versuche überschritten wird, geeignet ist. Sinnvoller erscheint eine Bezugnahme auf $\mathbf{w}_{\mathbf{Q5}}$, wie von Rehm vorgeschlagen.

Literatur:

1. Eibl, J. Zwängung und Rißbildung von Stahlbetonstäben bei Behinderung der Längsverformung Bautechnik H 11 (1969)

2. Falkner, H. Zur Frage der Rißbildung durch Eigen- und Zwängungsspannungen infolge Temperatur in Stahlbetonbauteilen DAfStB H. 208

3. Rao, P.S. Die Grundlagen zur Berechnung der bei statisch unbestimmten Stahlbetonkonstruktionen im plastischen Bereich auftretenden Umlagerungen der Schnittkräfte DAfStB Heft 177

4. Rehm, G. Über die Grundlagen des Verbundes zwischen Stahl und Beton DAfStB H. 138

5. Rehm, G. Zur Frage der Rißbegrenzung im Stahlbetonbau Martin, H. Beton- u. Stahlbetonbau H. 8 (1968)

Zusammenfassung

In [1] wurde das Verhalten eines durch Abkühlung bzw. Schwinden zentrisch gezwängten Stahlbetonstabes analysiert. Die dabei gewonnenen Ergebnisse, die nur auf einem empirisch zu bestimmenden Verbundfaktor aufbauen, werden mit anderen "Rißformeln" und Versuchen verglichen und diskutiert.

Summary

In [1] the behaviour of a reinforced concrete beam was analyzed assuming the longitudinal deformation due to cooling and shrinkage to be fully restrained. The results, based on only one bond factor to be determined empirically, are discussed and compared with other "crack formulas" and tests.

Résumé

Dans [1], le comportement d'une poutre fut analysé en supposant que l'on empêche la déformation longitudinale due respectivement au refroidissement et au retrait. Les résultats obtenus par une méthode empirique, et seulement basés sur <u>un</u> facteur d'adhérence, sont analysés et comparés avec d'autres "formules de fissures" et d'autres essais.