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Time-dependent Deformation in Prestressed Concrete

Déformation dépendant du temps dans le béton précontraint

Zeitabhängige Verformung im Spannbeton

M.A. SAEED J.B. KENNEDY
M.A.Sc., Research Assistant Ph.D., Professor and Department Head

Department of Civil Engineering, University of Windsor, Windsor, Ont., Canada

1. INTRODUCTION

A fictitious modulus of elasticity for concrete was first introduced by

Dischinger [1], and was later revised by Fritz [2] who included the effect of
reinforcing. The application of this fictitious modulus of elasticity and the

two-fibre method of Busemann [3] and Habel [4] lead to the determination of
rotation and deflection of a section in a prestressed concrete structure. In
this work the effect of creep and shrinkage of concrete on deformation is taken

into account in such a way that the resulting deformations are in terms of
initial design parameters.

A time-dependent modulus of deformation E^ is introduced which accounts for
deformation sind hence stress redistribution due to creep in the concrete. Thus,

such modulus of deformation can be utilized together with initial material and

geometrical properties and initial moments to yield rotations and deflections.
The use of may be also extended to treat more realistically stability problems

which would involve, in general, orthotropic analysis.

2. ANALYTICAL APPROACH

The derivation of an expression for the effective modulus of elasticity is
based mainly on Busemann's two fibre method [3], [4] as applied to simply
supported beams. It is assumed that: For short term loading the modulus of elasticity

of concrete, Ec0» remains constant; plane sections remain plane after
deformation; creep deformation is linearly proportional to the stress level i.e.
it follows hooke's law; curves of creep factor versus time and shrinkage strain
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versus time are similar to one another; and, in multi-layer prestressing (more

than two layers of steel) the stresses in the various layers are linearly related.

2.1. THEORETICAL BACKGROUND

Considering a cross-section of a prestressed concrete beam such as shown in
Fig. 1, a bed-force F° (or an external force) is applied at point P^ of such

magnitude that the resulting stress at point P2 is zero. Let the component of
F° carried by the concrete be denoted by F If y is the distance from the1 1 * cl "'cl
point of application of F^ to the centroid of the concrete, c.g.c., then yc2»
the distance of the fibre with zero stress to c.g.c., is found from:

yclFcl Fcl 2 2
_ y - 0. With I A r it follows that y ,y rI -*02 A c c c clc2 c

c c

where Ac is the concrete cross-sectional area and rc is the radius of gyration of
the concrete about the c.g.c. y^ can also be found graphically [5], By Betti's
reciprocal theorem it can be readily observed that an external force F3 applied
at P2 will produce zero stress at P^. Thus the fibres at P^ and P2 deform

independently of each other, irrespective whether such deformations are elastic or
plastic due to creep and shrinkage. From geometry, Fig. 1,

°cl " C°c/yc2 " cFcl/Acyc2* °r °cl Fcl/Acl
where ^ A^/c and c + y^.
Similarly, for the force F3 applied at P2 the stress at P2 will be

°c2 Fc2/Ac2 F2/Ac2' Sinœ F2 Fc2 + FS2(=0>' Where Ac2 Acycl/C-

It is evident that A^ + Ac2 A^. Thus the equivalent areas A^ and A^2 are

fractions of Ac distributed to points P^ and P2 according to the lever-arm
principle. Whence the stresses can be readily computed when the concrete cross-
section is visualized as two independent columns concentrically loaded. Furthermore,

an applied moment, M3, can be made equivalent to a couple of two equal but

opposite forces acting at P^ and P2 with magnitude Ma/c.

Due to the presence of steel, the effective equivalent areas, A
^ and &e2'

and axial stiffness coefficients, a^ and a2 of the columns become:

For point PlS Acl Ac yc2/c, Agl - Agp, Ael Acl + nAgp,

ax Es_Asl
E A + E A

CO cl S si
For point P2: Ac2 A^/c, Ag2 0, Ag2 A^ + Ag2 Ac2 (since Ag2 0

in this case.) Putting n E /E and u A /A yield a n ui
s eu i si ci i i + n

For the general case where there are a number of prestressing tendons as
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well as non-tensioned steel in the section, Fig. 2, the following procedure is
followed: Let Eg modulus of elasticity of prestressing steel; Eg0 modulus

of elasticity of non-tensioned steel; n E -/E „; n E /E .; n =E /E -<1.01 o sO cO p sp cO s sp sO

Stress Distribution Stress Distribution
Due to FC| Due to Fca

r"& 1

(in case of wire-rope tendons); I moment of inertia of concrete only about
c 2

c.g.c.; I moment of inertia of all steel about c.g.s. En a y +
2 s .s sp'sp

ZA „y „ where y and y _ are the distances of the individual prestressing and
sCrsO -*sp sO r

non-tensioned steels from the c.g.s.; and, total area of steel, A A - + n A
sO s sp

I*"11 yclyc2 where r I /A
c c' and yslys2 - rs where rs I /A

S s

LlrGEAlO Alon-leo&ionecl 5to«.l, A60>E»o ^ 1

0 Prastressed S+e.e.\, A«,pi / *°

y i, y _, y and y can be obtained graphically [51, or by geometry from, forcl C2 si 2 2 2 HI 2 2 2
r - r - y_ +. 2 r - r - y. _s c 0 ~/\rB s c °)2 where y„ is the distance

2v
<

2yn
» y0

example:
si

>etween the c.g.c. and c.g.s.



220 II - TIME-DEPENDENT DEFORMATION IN PRESTRESSED CONCRETE

Thus, considering the concept of concentrically loaded columns at and P2,
the expressions for the effective equivalent areas and stiffness coefficients
are as follows:

For Point Pn: A A y _/c, A A y _/c, A A y _/c,1 cl cJc2 spl sp J s2' ' sOl sO -*s2 '

A A + n„(A +nA A + n„Ael cl 0 sOl s spl cl 0 si
where A =A +nAsi sOl s spl

cx — E A ,/(E „A + E A n„u,/(l + n„u,1 sO si cO cl sO si 01 0 1

where ^ A^/A^.
For Point P2: Ac2 Acycl/c, Asp2 A^y^/c
A A v _/c, A_=A_+n„(A^_+nA _) A „ + n A „s02 sO s2 e2 c2 0 s02 s sp2 c2 0 s2

where As2 A^ + n^
a2 " Es0 As2/(EcOAc2 + Es0As2) n0U2/(1 + «W

where u2 As2/Ac2.

Thus, referring to Fig. 2, F^A^ and F°/Ae2. In general, one

can write, for any one fibre, the stress at time t, accounting for creep, as
—aà

acQ e Similarly, accounting for shrinkage in a creeping concrete
section the stress at time t is given by a (1 -e-0"'') e E /ies s cO T

where <|> is the creep factor and eg is the shrinkage strain. The strain in
concrete will be increased under sustained stress due to creep phenomenon. Fritz
[2] has accounted for this phenomenon by introducing fictitious moduli of
elasticity accounting for stresses induced by sustained loads and shrinkage of
concrete. For creep, he introduced E Œ „/(a + e0"*"- 1) E „0CI CO cO

where 0 a/(a+ e°"^ - 1). Fig. 3 gives values of 0 for various <(> and a.
Similarly, for shrinkage in a creeping concrete section, Fritz gave the following
expression for the fictitious modulus of elasticity,

Ecfs Ec0/[1 + - 1/a].

2.2 REDUCTION FACTORS DUE TO CREEP AND SHRINKAGE

The strain at any fibre of a section subjected to sustained loading can be

expressed as:
e a ,/E or e ^ o „/yE „ct ct cf ct cO cO

where y a/(l-e a<^+ae a^) One cai, thertfore, define the effective modulus of
elasticity of the fibre at time t in the following manner: E E _y

e cO

y, being the reduction factor for the short-term-loading modulus of elasticity
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^'aoxov-j k/oi±:>nci3 y
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due to creep; values of y for various 4> and a are shown in Fig. 4. It should

be noted that since a in general varies from fibre to fibre, so does y.
The constraining shrinkage strain in a concrete fibre due to the presence of

reinforcing is defined as e a /E The net remaining strain is
Sv CS CIS

(es - St» - V
where n (l-a)(l-e °"'')/aij>.

The values of n for various <|> and a are plotted in Fig. 5. Here also n varies
frcoi fibre to fibre since a, the stiffness coefficient, is a function of position.

Once the deformations of the fibres at and are determined, the strains
and stresses in the concrete at other fibres as well as the rotation of the

section can be found by employing the accepted assumption of plane sections
remaining plane.

2.3. TRANSFER OF FORCES TO FIBRES Pj^ AND Pj

(a) Prestressing Force; At time t 0, the prestressing bed force F° can

be transferred to points P.^ and P2 as F° and F° respectively, Fig. 2; such

forces will act concentrically on the equivalent areas at these points. The

concrete stress at P^ will be acj^0) Fl^Ael Fl^Acl + n0Asl' "

At any given time t the concrete stress Will be

cl(t) ~ cl(0)e The stress loss at time t is
"'"l''1 oAa a - a a (1 - e The loss in the Force F, will becl cl(0) cl(t) cl(0) 1

AF1 Acl(Aacl) Acl °cl(0)(1 " e ' AclFl (1 " e V<Acl + n0Asl)*

The net remaining force will be

-a <|> -(*.
Fl(t) F1 " AF1 F° t1 ~ (1 " e )/(l + Fi(noui + e J/d+njjUj).

Similarly, for point V

-a <\>

F2(t) F2(n0U2 + 6 2,/(1+n0U2)<

In practice, many structures are post-tensioned and grouted immediately after
tensioning to establish bond between concrete and steel tendons. Let the

initial prestressing force in the tendon be F (jack force) with components F^ and

F2 at points P^ and P2 respectively. For such cases, it is more advantageous

to consider the part of the force F^ (or F2) carried by the concrete alone at
P, (or P„). Considering point P at time t 0; o F,/(A + n„A „,).12 l ciiuj l cl o SOI

Now F, F + F A a .+ n. a _ A It can be readily shown that1 cl si cl cl(0) 0 cl(0) sOl

Fc^ Fj/(1 + nQugl> where ugl As0]/Aci* After time t, the reduction in
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f Aci, AÄO<21
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-a^
the force carried by the concrete will be AFci Acl °cl(0) ^ ~ e Thus

-c*1*
Fcl(t) Fcl " AFC1 F1 e /(1 + n0 usl)- similarly' for point P2,

"®2*
Fc2(t) F2 6 /(1 + n0 Us2) Where Us2 As02/Ac2-

(b) Externally Applied Longitudinal Force: In this case, the force, being
invarient with time, can be readily transferred to points P^ and P2 by means of
the lever arm principle. See Figs. 2 and 6.

(c) Externally Applied Transverse Forces: Such forces will produce a

moment on any one section; this moment can be replaced by a couple formed from

two equal and opposite forces applied at P^ and P2 (See Figs. 2 and 6). Such

forces are also invarient with time.

2.4. MOMENTS ON A SECTION AT TIME t
(a) Due to Prestressing:

Pre-tensioned Case - Here the moment on the whole section, based on

the bed force F°, is given by:

M(t) Fl(t)(ycl " ^(t)' " F2(t)(yc2 + ye(t))

" F°{( Y+
noUl

> (ycl " ye(t))b" I I
nQu2

> (yc2 + ye(t))a}/c

where Yejtj is the distance of the effective centroid of the whole section from

the c.g.c. at time t, and will be deduced later on.
Post-tensioned Case - The moment on the concrete part alone, given in

terms of the initial jack force F, will be:

-a^ -a2<j>

Mc(t)-Fci(t) yd - Fc2(t)yc2 =F lmr^rJa~ mrf-a)/c
0 si 0 s2

(b) Due to Externally Applied Longitudinal Force: For a force F applied
below the c.g.c., the moment M3 Fa [y _ -a - y /4.] and for the force F3

u C* 6J
applied above the c.g.c., the moment is M3 Fa [y - b + y ...]t cl e (t)
where a distance from the applied load to P^ (a is -ve in Fig. 2), and

b distance from the applied load to P2.
(c) Due to Externally Applied Transverse Forces: The moment produced by

such forces on any section will remain constant for any time.

2.5 SECTION PROPERTIES AT TIME t
Since concrete creeps under sustained load resulting in a reduced modulus
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of elasticity, the position of the effective centroid of the whole section
changes with time. Considering the social stiffness of the concrete one can

intuitively relate the stiffness components at P^ and Pto the overall stiffness
of the concrete at the c.g.c. Thus, E _ A A E + A „ E „.y 2 y cf c cl cfl c2 cf2
0r ' Ecfac - AC) 61EC0 +(— V 62EC0-

Hence Ecf E^ly^ + yclß2>/c - ß^ whereB0 (y^ + yclß2)/c
(a) Effective Centroid - Taking the c.g.c. as a datum, the distsuice of the

effective centroid of the whole section at time t 0 from the c.g.c. will be

(see Fig. 2): y n A yn/(A + n A After time t due to creep in concrete6 lUJ U S U Q US
the effective centroid will shift toward the c.g.s. By taking moments about
the c.g.c. the distsuice of the effective centroid from the c.g.c. at time t
becomes y E A y„/(E .A + E A n„A y./(ß„A + n„A Thus the shifte(t) s s 0 cf c ss 0 s 0 Oc Os
in the effective centroid at time t will be e ~ ye(o)*

(b) Effective Moment of Inertia - the effective moment of inertia of the
whole section at time t 0, I based on the short-term-loading modulus of

0
elasticity of concrete E^, is given by:

*0 - Zc + Ac Yli0) + n0 {ls + As Cy0 " ye(0)]2}-

Similarly, the effective moment of inertia at any time t, based on the fictitious

modulus of elasticity of the creeped concrete, E^f, can be shown to be:

*t lc + AC y^(t) + n0{ls + AS [y0 - ye(t)]2}/ß0-

2.6. ROTATION AND DEFLECTION

Figure 6 shows the strains sind rotations of the section taking into account

shrinkage suid creep of concrete. From Fig. 6 (a) the rotation due to shrinkage
of a small element of length Ax is:

8„ (e _ - e )Ax/c (e n_ - e n.JAx/cs s 2 si s 2 si
Or, 6 e (n- - n.)Ax/c.S S 2 1

The curvature of a creeped section under sustained load is [See Fig. 6(b)]:
°c01 °c02

9 /Ax (e - e _)/c (—— - ——)/(E c). Thus the total rotation 0
c cl c2 y2 c0

and deflection y of any section of a structure subjected to creep and shrinkage
can be found by numerical integration of the well known equations -

0 /0 dx, and y ff6 dx dx

Values of y and n are given for various a and (f> in Figs. 4 and 5 respectively.
It is worthwhile to note that the above deduced expressions for rotation and

hence deflection depend solely on the initial values of stresses and the

15. Bg. Schlussbericht
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short-term-loading modulus of elasticity, Ecq, as well as on the assumed shrinkage
strain in an unreinforced concrete section.

2.7. MODULUS OF DEFORMATION OF SECTION

By relating curvature to the moment on a section at any time t, one can

deduce an expression for the modulus of deformation, E based on the initial de-
e

sign parameters at time t 0. Mathematically

(I, (fLX) « „t/ItEcf M0/I0Ee

t
where Eß (I^) <M0/Mt>Ecf

The ratios (I^/I^) and (M^/M^) are obtained by substituting the appropriate
design parameters for time t 0 and t t in the expressions derived earlier
except for the post-tensioned case. It should be noted that for this case the
expression for E reduces to E [M ,„,/M ...]E with the substitution of thee e c(0) pit) cf
appropriate parameters at time t 0 and t t.

3. CONCLUDING REMARKS

The influence of shrinkage and creep on rotation and deflection of prestressed
uncracked simply supported structures can be readily estimated from the pertinent

design parameters at time t 0. The expressions derived are applicable
within the elastic range of the materials considered.

The analytical results, with the add of a computer, may be extended to treat
realistically stability problems, taking into account, of course, the problem of
orthotropy.
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SUMMARY

The two-fibre method of Busemann and Habel together with Fritz fictitious
modulus of elasticity are utilized to yield rotation and deflection of simply
supported prestressed concrete structures accounting for creep and shrinkage in
concrete. Furthermore, expressions for a modulus of deformation for various

loading cases are derived. These derivations are in terms of pertinent design

parameters at time t 0.

RESUME

La méthode des deux fibres de Busemann et Habel, en
conjonction avec le module fictif d'élasticité de Fritz est utilisée
pour déterminer la rotation et la flèche des ouvrages à armature
simple, en béton précontraint, rendant compte des forces de fluage
et de retrait. De plus, des expressions pour un module de
déformation sont dérivées pour différents états de charge. Ces dérivations

se réfèrent à des termes des paramètres du projet respectif,
au temps t 0.

ZUSAMMENFASSUNG

Das Zwei-Fasern-Verfahren von Busemann und Habel zusammen mit
dem von Fritz entwickelten fiktiven Elastizitätsmodul des Betons
ist zur Bestimmung des Drehwinkels und der Durchbiegung der frei
aufliegenden Spannbetontragwerke unter Berücksichtigung des Kriechens
und Schwindens des Betons verwendet worden. Ferner sind Ausdrücke
für den Verformungsmodul für verschiedene Belastungsfälle abgeleitet
worden. Diese Ableitungen beziehen sich auf die betreffenden Anfangswerte

des Schnittes, d.h. zur Zeit t 0.
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