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Time-dependent Deformation in Prestressed Concrete
Déformation dépendant du temps dans le béton précontraint

Zeitabhangige Verformung im Spannbeton

M.A. SAEED J.B. KENNEDY
M.A.Sc., Research Assistant Ph.D., Professor and Department Head
Department of Civil Engineering, University of Windsor, Windsor, Ont., Canada

l. INTRODUCTION

A fictitious modulus of elasticity for concrete was first introduced by
Dischinger [1], and was later revised by Fritz [2] who included the effect of
reinforcing. The application of this fictitious modulus of elasticity and the
two-fibre method of Busemann [3] and Habel [4] lead to the determination of
rotation and deflection of a section in a prestressed concrete structure. In
this work the effect of creep and shrinkage of concrete on deformation is taken
into account in such a way that the resulting deformations are in terms of in-
itial design parameters.

A time~dependent modulus of deformation Ee is introduced which accounts for
deformation and hence stress redistribution due to creep in the concrete, Thus,
such modulus of deformation can be utilized together with initial material and
geometrical properties and initial moments to yield rotations and deflections.
The use of Ee may be also extended to treat more realistically stability problems

which would involve, in general, orthotropic analysis.
2, ANALYTICAL APPROACH

The derivation of an expression for the effective modulus of elasticity is
based mainly on Busemann's two fibre method [3], [4] as applied to simply sup~
ported beams. It is assumed that: For short term loading the modulus of elasti-
city of concrete, Eco' remains constant; plane sections remain plane after de-
formation; creep deformation is linearly proportional to the stress level i.e.

it follows hooke's law; curves of creep factor versus time and shrinkage strain
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versus time are similar to one another; and, in multi~layer prestressing (more

than two layers of steel) the stresses in the various layers are linearly related.
2.1. THEORETICAL BACKGROUND

Considering a cross-section of a prestressed concrete beam such as shown in

Fig. 1, a bed-force Fi (or an external force) is applied at point Pl of such
magnitude that the resulting stress at point P_ is zero, Let the component of

2

FO carried by the concrete be denoted by Fc If Yo is the distance from the

1
point of application of Fc

1'
1 to the centroid of the concrete, c.g.c., then ycz,

the distance of the fibre with zero stress to c.g.c., is found from:

y ,F F
cl cl cl . - 2 _ 2
Ic P K:r-- 0, With Ic = Acrc' it follows that yclyc2 = B,

whexe AC is the concrete cross~-secticnal area and r. is the radius of gyration of

the concrete about the c.g.c. Y., can also be found graphically [5]. By Betti's
a
2

at P2 will produce zerc stress at Pl' Thus the fibres at P1 and P2 deform inde-

pendently of each other, irrespective whether such deformations are elastic or

reciprocal theorem it can be readily observed that an external force F_ applied

plastic due to creep and shrinkage. From geometry, Fig, 1,

Gcl = coc/yc2 = CFcl/ACYCZ' or ocl = Fcl/Acl

where = =

Ac1 Acyc2/c 4nd. & Ye1 + Yoo
a
2

2
- . a _
oc2 = Fcz/Acz_ Fz/Acz, since F2 Fc

Similarly, for the force F_ applied at P_ the stress at P, will be

2

+ F52(=0), where Ac = A /'

2 2 cycl

It is evident that Ac + Ac = Ac. Thus the equivalent areas Ac and Ac are

fractions of Ac distributedzto points Pl and Pz according to thellever-aim prin-
ciple. Whence the stresses can be readily computed when the concrete cross-

section is visualized as two independent columns concentrically loaded. Further-
more, an applied moment, Ma, can be made equivalent to a couple of two equal but

opposite forces acting at Pl and P2 with magnitude Ma/c.

Due to the presence of steel, the effective equivalent areas, Ael and Aez'

and axial stiffness coefficients, a, and a, of the columns become:
i P_: = = A = A + nA
For point 1 Acl Ac ycz/c, Asl Asp' = cl sp'
E
Gl = Eg Asl —
cOAcl s sl

For point P2: Ac2 = Acycl/c, Asz = 0, Aez = Acz + As2 = Acz(51nce Asz =0
i . N - - . = nu
in this case,) Putting n = ES/Eco and u, Asl/Acl' vield @y —t,

For the general case where there are a number of prestressing tendons as



M.A. SAEED — J.B. KENNEDY 219

well as non-tensioned steel in the section, Fig. 2, the following procedure is

followed: Let Esp = modulus of elasticity of prestressing steel; E = modulus

s0
of elasticity of non-tensioned steel; no = EsO/EcO‘ np = Esp/Eco; ns=Esp/EsO<l'o
B g
\R
i, . !
c e
C (o] o’-&l
Y%, | “Ac
iy \
R A ,5 , .
o bution Stress Distribution
Due to Fey Due to Fea

I'—ig.l
(in case of wire-rope tendons); Ic = moment of inertia of concrete only about
c.g.c.; I_ = moment of inertia of all steel about c.g.s. = LD A y
2 s .8 sp’ sp
XAsOyso where Ysp and Yoo are the distances of the individual prestressing and
non-tensioned steels from the c.g.s.; and, total area of steel, As = Aso + nsAsp'

2 2 _ 2 2 _
then Yer¥ez = Tc where r_ = Ic/Ac, and Yo 1¥ep = ¥g where r, IS/AS.

LegeND : 8 Nontensioned Steel, AgoiEr =EsP \
o Prestreseed Steel, Asp; Ewp }ns ETO<

F= - Ey M"

Loy 0ee=© ST - I
RO r
- |
A
]
c 1
:
e MG
:
A
1o bro Mo
| fEkePe |
71 F°

Sfrass Distributfion Stress Distribution
Due to Forces Acting Due to Forces Achng
At P only At B orly

Fis. 2

Yorr Yo' Ygr! and y g2 Can be obtained graphlcally [5], or by geometry from, for

2 2 2 2
example: r - - + [ 2 r - y
¥ Yo1 = = 77 e %o -’Jrs +( g 2yc 0 2 where Yo is the distance
0 0

between the c.g.c. and c.g.8.



220 tt — TIME-DEPENDENT DEFORMATION IN PRESTRESSED CONCRETE

Thus, considering the concept of concentrically loaded columns at P; and P2,
the expressions for the effective equivalent areas and stiffness coefficients

are as follows:

For Point Plz A, = Acyc2/c' A5pl = Asp ysz/C. Ay = B Ysz/ca
= +
Rai = Bex * RolBggy * MR = By F 0GR,
= +
where Asl AsOl nsAspl

&) = EgoPs1/ BopPer + BgoPsy) = Mot/ + ngup)

where u, = Asl/Acl'

1
For Point P2: Ac2 = Acycl/c, Asp2 = Aspysl/c
= & + + = +
A502 AsOYSZ/c' Rez ™ Be2 “o(Asoz nsAspz) Rea ¥ Pohso2
where A52 = As02 + nsAspz

o, = Egg A/ (E

2 ) = nouz/(l + n.u,)

cofe2 * EgoPs2 02

where u, = Asz/Acz.
; ; _ 20 _ g©
Thus, referring to Fig. 2, ocl = Fl/Ael and oc2 Fz/hez. In general, one
can write, for any one fibre, the stress at time t, accounting for creep, as
_u¢
Gct 90 © .

section the stress at time t is given by 0 .. = (1 -e-a¢) esEco/¢

Similarly, accounting for shrinkage in a creeping concrete

where ¢ is the creep factor and € is the shrinkaye strain. The strain in con-
crete will be increased under sustained stress due to creep phenomenon, Fritz
[2] has accounted for this phenomenon by introducing fictitious moduli of elas~
ticity accounting for stresses induced by sustained loads and shrinkage of con-
crete. For creep, he introduced Ec . 1) = EcOB

od

£ = aEco/(a + e

where B = a/(a+ e - 1). Fig. 3 gives values of B for various ¢ and a. Simi-
larly, for shrinkage in a creeping concrete section, Fritz gave the following
expression for the fictitious modulus of elasticity,

E g = Eoo/lL + 0e%%/(™ - 1) - 1/0l.

2.2 REDUCTION FACTORS DUE TO CREEP AND SHRINKAGE

The strain at any fibre of a section subjected to sustained loading can be
expressed as:

E:ct = cct/ch or Ect = ocO/YEco

where y = G/(l-e—a¢+ae-u¢1. ‘One ca, therefore, define the effective modulus of
elasticity of the fibre at time t in the following manner: Ee = Ecoy

Y. being the reduction factor for the short-term-loading modulus of elasticity
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due to creep; values of y for various ¢ and o are shown in Fig, 4, It should
be noted that since a in general varies from fibre to fibre, so does y.
The constraining shrinkage strain in a concrete fibre due to the presence of
reinforcing is defined as est = Gcs/chs' The net remaining strain is
{eg = €g¢) = Eg"
where n = (1 - a) (1 - e-a¢)/a¢-
The values of n for various ¢ and a are plotted in Fig., 5, Here also n varies
from fibre ®#6 fibre since a, the stiffness coefficient, is a function of position.
Once the deformations of the fibres at Pl and P2 are determined, the strains
and stresses in the concrete at other fibres as well as the rotation of the
section can be found by employing the accepted assumption of plane sections

remaining plane.

2.3. TRANSFER OF FORCES TO FIBRES P, AND P

1 2
(a) Prestressing Force: At time t = 0, the prestressing bed force F° can
be transferred to points Pl and P2 as Fi and Fg respectively, Fig, 2; such

forces will act concentrically on the equivalent areas at these points. The

. o o
= = + -
concrete stress at P, will he ¢ Fl/Ael FI/(Ac n A )

1 cl(0)
At any given time t the concrete stress will be
_a¢
o =0 e 1
cl(t) cl(0) . The stress loss at time t is
-a1¢ o
Aocl = °c1(0) - ocl(t) = OCI(O)(I - e }« The loss in the Force F1 will be
_a¢
AF, =A (Ad ) =A_c_ (l-e ")=a FP(l-e »4A +na_).
1 cl cl cl “cl{0) cl 1 sl
The net remaining force will be
-a, ¢ ~a. ¢
o (o] 1 $1. =© 1
Fye) = Fy = &F) = Fy [L-(1L-e Y/ 1+ noul)]~ Folngu, + e )/(14nu,) .

Similarly, for point P2,
_u¢
Fo(nu, + e )/l + nu,).

Fate) = F2(no¥; o%2

In practice, many structures are post-tensioned and grouted immediately after
tensioning to establish bond between concrete and steel tendons. Let the ini-
tial prestressing force in the tendon be F (jack force) with components Fl and
F2 at points P1
to consider the part of the force Fl {or Fz) carried by the concrete alone at

= F)/{Ayy * nghooy?e

It can be readily shown that

and P2 respectively. For such cases, it is more advantageous

Pl(or Pz). Considering point Pl at time t = O: Ocl(O)

Now Fy =~ Foq* Fa1 ™ 2a1 %c2¢0) ¥ Po %cito) Paor

Fcl = Fl/(l + nousl) where u, = 501/A . After time t, the reduction in
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-a, ¢
the force carried by the concrete will be AF_; = A, Ucl(o)(l - e 1 ). Thus
-a1¢
Fcl(t) = Fcl - AFcl = Fl e /(1 + n, usl). Similarly, for point P2,
-a, s
Foaqey = Fa & /1 +n5u,) vwhere u,, = A /A ,-

(b) Externally Applied Longitudinal Force: 1In this case, the force, being
invarient with time, can be readily transferred to pecints P1 and P2 by means of
the lever arm principle. See Figs. 2 and 6.

(c) Externally Applied Transverse Forces: Such forces will produce a
moment on any one section; this moment can be replaced by a couple formed from
two equal and opposite forces applied at Pl and P2 (See Figs, 2 and 6),., Such
forces are also invarient with time.

2,4. MOMENTS ON A SECTION AT TIME t

(a) Due to Prestressing:
Pre-tensioned Case - Here the moment on the whole section, based on

the bed force Fo, is given by:

Mgy = Free) Yoy ™ Yerr)? ™ Faqe) Yoz * Yeqry!
-0 ¢ -a_ ¢
& noul + e 1 n0u2 + e 2
=E {(_l_+n_r )(ycl - ye (t))b- ( l +n.u )(YCZ * Ye(t))a}/c

c1l 02

where Ye(t) is the distance of the effective centroid of the whole section from
the c.g.c. at time t, and will be deduced later on,
Post-tensioned Case - The moment on the concrete part alone, given in

terms of the initial jack force F, will be:

y e Y
F o cl c2

M =P v - F y = b-
t
c(t) cl(t) “e1 c2(t)‘c2 1+ ng Yy, 1+ ng u_,

(b) Due to Externally Applied Longitudinal Force: For a force Fa, applied

e

a)/c

a
below the c.g.c., the moment M: = F® [yc2 -a , and for the force F

= Yeoity)
. ; a a
" = - +
applied above the c¢.g.c., the moment is M, F [ycl b Ye(t)]
where a = distance from the applied load to Pl (a is =-ve in Fig. 2), and
b = distance from the applied load to PZ'
{(c) Due to Externally Applied Transverse Forces: The moment produced by

such forces on any section will remain constant for any time,
2.5 SECTION PROPERTIES AT TIME t

Since concrete creeps under sustained load resulting in a reduced modulus
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of elasticity, the position of the effective centroid of the whole section
changes with time, Considering the axial stiffness of the concrete one can in-

tuitively relate the stiffness components at P1 and P2 to the overall stiffness

f t - - - = -
o he concrete :; the c.g.c yzgus, ch Ac Acl chl + AC2 chz
ox, chAc = ('27-AC)SIEC0 +(_E_ Ac)BZEcO’
H = + = =

ence  E o = E vy + v By)/c = BsE , whereB, = (y .8, + v ,8))/c

c2'1

(a) Effective Centroid ~ Taking the c.g.c. as a datum, the distance of the
effective centroid of the whole section at time t = 0 from the c¢.g.c. will be
(see Fig, 2):

Y
e(0)
the effective centroid will shift toward the c.g.s. By taking moments about

=nAvy./(A+nA), After time t due to creep in concrete
0's° 0 c O's

the c.g.c, the distance of the effective centroid from the c.g.c, at time t

becomes Yoty = EsAsyO/(chAc + ESAS) = nOASyO/(BOAc + nOAS). Thus the shift

in the effective centroid at time t will be e = ye(t) ~ Yat0)®

(b) Effective Moment of Inertia - the effective moment of inertia of the
whole section at time t = 0, IO, based on the short-term-loading modulus of
elasticity of concrete Ec , is given by:

2
e(0)

Similarly, the effective moment of inertia at any time t, based on the ficti-

0

2

1= + .
1 ALY 17}

+ +
o c n, {Is A (y

o~ ye(O)

tious modulus of elasticity of the creeped concrete, ch, can be shown to be:
I, =1 + A y2 +n{I +AaA [y.~-y¥ ]2}/8 @
t c c “e(t) 0 "s s 0 e{t) 0
2.6, ROTATION AND DEFLECTION

Figure 6 shows the strains and rotations of the section taking into account
shrinkage and creep of concrete. From Fig., 6 (a), the rotation due to shrinkage
of a small element of length Ax is:

8 = (¢

s a2 = ssl)Ax/c = (Esn

2 esnl)Ax/c
or, 95 = es(n2 - nl)Ax/c.

The curvature of a creeped section under sustained load is [See Fig. 6(b}]:

- cOl c02 .
Bc/Ax = (Ecl - ecz)/c = ) Y, )/(Eco ¢}. Thus the total rotation ©

and deflection y of any section of a structure subjected to creep and shrinkage

can be found by numerical integration of the well known equations =-

0= f8 dx, and vy = ffO dx dx
Values of vy and n are given for various ¢ and ¢ in Figs. 4 and 5 respectively,
It is worthwhile to note that the above deduced expressions for rotation and

hence deflection depend solely on the initial values of stresses and the

15. Bg. Schlussbericht
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short-term-loading modulus of elasticity, E g+ as well as on the assumed shrinkage

strain in an unreinforced concrete section.

2.7. MODULUS OF DEFORMATION OF SECTION

By relating curvature to the moment on a section at any time t, one can de-
duce an expression for the modulus of deformation, Ee' based on the initial de-

sign parameters at time t = 0. Mathematically

1 dzz
(=) = ( } = M, /IE = M /I E
pt dx2 t" Tt ef 0" 0O e

t
where Ee = (It/IO)(MO/Mt)ECf

The ratios (It/IO) and (MO/Mt) are obtained by substituting the appropriate
design parameters for time t = O and t = t in the expressions derived earlier
except for the post-tensioned case. It should be noted that for this case the

expression for Ee reduces to Ee = [ with the substitution of the

Mc(O)/Mq:(t)]ch
0 and t = t.

appropriate parameters at time t
3. CONCLUDING REMARKS

The influence of shrinkage and creep on rotation and deflection of prestressed
uncracked simply supported structures can be readily estimated from the pertin-
ent design parameters at time t = 0, The expressions derived are applicable
within the elastic range of the materials considered.

The analytical results, with the aid of a computer, may be extended to treat
realistically stability problems, taking into account, of course, the problem of

orthotropy.
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SUMMARY

The two-fibre method of Busemann and Habel together with Fritz fictitious
modulus of elasticity are utilized to yield rotation and deflection of simply
supported prestressed concrete structures accounting for creep and shrinkage in
concrete. Furthermore, expressions for a modulus of deformation for various
loading cases are derived. These derivations are in terms of pertinent design

parameters at time t = 0,

RESUME

La méthode des deux fibres de Busemann et Habel, en con-
jonction avec le module fictif d'élasticité de Fritz est utilisée
pour déterminer la rotation et la fléche des ouvrages & armature
simple, en béton précontraint, rendant compte des forces de fluage
et de retrait. De plus, des expressions pour un module de défor-
mation sont dérivées pour différents états de charge. Ces dériva-
tions se réferent & des termes des paramdtres du projet respectif,
au temps t = O.

ZUSAMMENFASSUNG

Das Zwei-Fasern-Verfahren von Busemann und Habel zusammen mit
dem von Fritz entwickelten fiktiven Elastizitdtsmodul des Betons
ist zur Bestimmung des Drehwinkels und der Durchbiegung der frei
aufliegenden Spannbetontragwerke unter Beriicksichtigung des Kriechens
und Schwindeng des Betons verwendet worden. Ferner sind Ausdriicke
fir den Verformungsmodul fiir verschiedene Belastungsfille abgeleitet
worden. Diese Ableitungen beziehen sich auf die betreffenden Anfangs-
werte des Schnittes, d.h. zur Zeit t = 0.
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