Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 5 (1970)

Artikel: Einfluss von Schwinden und Kriechen auf seilabgespannte Betonbalken

Autor: Bauer, F.

DOI: https://doi.org/10.5169/seals-6920

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

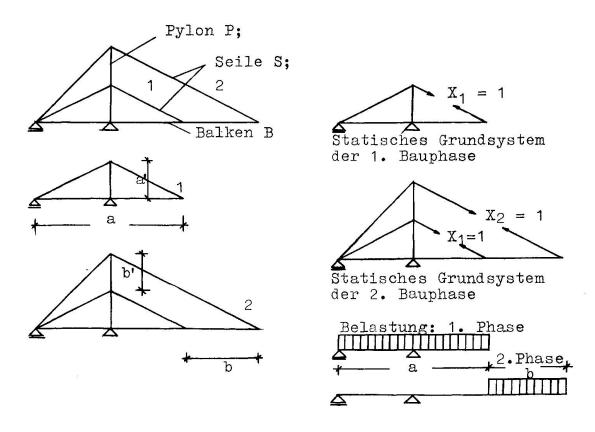
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Einfluss von Schwinden und Kriechen auf seilabgespannte Betonbalken

Influence of Shrinkage and Creep on Concrete Beams Suspended from Inclined Cables
Influence du retrait et du fluage sur les poutres en béton, suspendues par des câbles inclinés

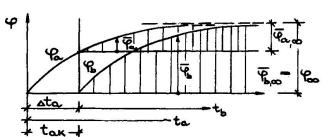
F. BAUER Dipl.Ing.Dr.techn.o.Prof. Technische Hochschule Graz Oesterreich

Werden Stahlbeton- oder Spannbetonbalken zur Erzielung großer Spannweiten mit Schrägseilen aus Stahl abgespannt, so treten durch die Kriecherscheinungen des Betons Veränderungen der Schnittkräfte infolge der ständigen Belastung auf. Zur Veranschaulichung der Verhältnisse wird ein einfaches, zweifach statisch unbestimmtes System gewählt. Die gewonnenen Ergebnisse werden dann verallgemeinert.



Die Seile gleiten am Pylon, sodaß im Pylon, wenn man von Reibungskräften absieht, keine Biegemomente entstehen. Das System wird abschnittweise hergestellt, zuerst die Abschnitte a und a' und dann werden die Teile b und b' angefügt. Zwischen der Herstellung der Balkenteile a und b und auch der Pylonenabschnitte a' und b' bestehe die Zeitdifferenz At. Die gleiche Zeitdifferenz bestehe zwischen dem Zeitpunkt der Lastaufbringung bzw. dem Anspannen der Seile.

Der Beton habe in den Abschnitten a und b, bzw. a' und b' die gleichen Eigenschaften. Hinsichtlich der Kriechfunktion gelte:



Beginn des Schwindens und

Kriechens falle mit dem Zeitpunkt der Lastaufbringung
ta=0 bzw. tb=0 zusammen.

Die Kriechfunktion sei $\mathbf{P}(t) = \mathbf{R} \cdot \mathbf{P}(t)$ und gelte für den ganzen Träger. Wenn die beiden Abschnitte a und b zum Zeitpunkt $\mathbf{t_a} = \mathbf{t_{ak}}$ bzw. $\mathbf{t_b} = \mathbf{t_{bk}}$ miteinander verbunden werden, so gelte für das nach diesem Zeitpunkt noch vorhandene Kriechvermögen

$$\overline{\varphi}(t) = \varphi(t) - \varphi(t_k)$$

für den Balkenabschnitt a $\overline{\varphi}_a = \mathcal{C}[g(t_a) - g(t_{ak})]$ und für den Abschnitt b $\overline{\varphi}_b = \mathcal{C}[g(t_b) - g(t_{bk})]$ Nun ist $t_a = t_b + \Delta t_a$

$$\frac{\overline{q}_{b}}{\overline{q}_{b}} = \frac{g(t_{a}) - g(t_{a}x)}{g(t_{b})} = \frac{g(t_{b} + \Delta t) - g(\Delta t_{a})}{g(t_{b})}$$
wird für $g(t) = 1 - e^{\beta t}$ gewählt, so ist
$$g(t + \Delta t) = 1 - e^{\beta \Delta t} \cdot e^{\beta t} = 1 - ke^{\beta t}$$
mit $k = e^{\beta \Delta t}$

und es wird
$$\frac{\sqrt{k_a}}{\sqrt{k_b}} = k_a = e^{-\beta \cdot \Delta t_a}$$

Diese einfache Beziehung die eine weitere analytische Untersuchung bei Zeitdifferenzen der Abschnitte ermöglicht, wird nur mit dem Gesetz $g(t)=1-e^{-6t}$ erhalten. Für das Verhältnis

wird - 7 gesetzt.

Es werden nun folgende Belastungszustände untersucht:

165 F. BAUER

- 1) Ständige Last g
- 2) Zwangskräfte $X_{i,z}$ (Seilverkürzungen)
- 3) Schwinden des Balkens und des Pylons

Am System der 1. Bauphase gilt:

Belastung $X_1=1$: $\delta_m = \delta_{m,\alpha} + \delta_{m,\dot{\alpha}} + \delta_{m,\dot{s}_1}$

Belastung g: $\delta_{19} = \delta_{19} + \delta_{19}$ (Momente und Längskräfte berücksichtigt)

Seilverkürzung (Zwang): 812 - 612.51

Schwinden (affin zum Kriechen): 510 - 61000 . Pa

Rist die Kriechzahl des Bauabschnittes a von der Zeit der Lastaufbringung an gerechnet. Zum Zeitpunkt ta=0 ist:

 $X_{1g,0} = -\frac{\delta_{1g}}{\delta_{11}}; X_{1z,0} = -\frac{\delta_{1g}}{\delta_{11}}; X_{1s,0} = 0;$ Die gegenseitige Verschiebung der Schnittufer bei 1 am statisch bestimmten Grundsystem ist nun bei Berücksichtigung der Kriecheinflüsse und unter Bedachtnahme darauf, daß die statisch unbestimmte Größe X_1 zeitabhängig ist, da nur der Pylon und Balken, nicht aber die Seile kriechen:

$$\frac{\delta_{1}}{4} + \epsilon_{+} \delta = \delta_{1} \delta_{1} a_{1} (1 + \varphi_{a}) + \delta_{1} \delta_{1} a_{2} (1 + \gamma_{a}) + \delta_{1} \epsilon + \frac{\delta_{1} \delta_{1} a_{2}}{4 c} \cdot \varphi_{a} + \int_{\epsilon=0}^{\epsilon} \frac{d x_{1}(\epsilon)}{\epsilon} \left\{ \delta_{11} + \delta_{11} a_{1} \right\} d\epsilon$$

$$+ \delta_{11} a_{1} \left[\varphi_{a}(\epsilon) - \varphi_{a}(\epsilon) \right] + \delta_{11} a_{1} \cdot \gamma_{a} \left[\varphi_{a}(\epsilon) - \varphi_{a}(\epsilon) \right] d\epsilon$$

In jedem Zeitintervall dt, muß die Klaffung verschwinden. Es muß somit di.dta=0 sein.

$$\frac{d\tilde{h}}{dt} = \int_{Q_n} \frac{dy_n}{dt} + \int_{Q_n} \frac{dy_n}{dt} + \int_{Q_n} \frac{dy_n}{dt} + \frac{dx(t)}{dt} \cdot \int_{Q_n} \frac{dy_n}{dt} \cdot \int_{Q_n} \frac{dy_n}{dt} + \frac{dx(t)}{dt} \cdot \int_{Q_n} \frac{dy_n}{dt} \cdot \int_{Q_n} \frac{d$$

$$\frac{dX_1}{dy_{0}} + \frac{\delta n_0 + \gamma \cdot \delta n_1 \cdot \delta}{\delta n} \cdot X_1 + \frac{\delta n_0 \cdot \alpha + \gamma \cdot \delta n_0 \cdot \alpha}{\delta n} + \frac{\delta n_0 \cdot \alpha}{\beta n} = 0$$

Die Lösung dieser Diff.-Gleichung ist

$$X_1 = C.e^{-\lambda R_0} - \frac{\delta_{10,0} + 7.\delta_{10,0} + \frac{\delta_{10,0}}{R_0}}{\delta_{10,0} + 7.\delta_{10,0}}; \text{ mit } \lambda = \frac{\delta_{10,0} + 7.\delta_{11,0}}{\delta_{11}}$$

Zur Zeit ta=0 ist X1=X1,0; somit C=X1g,0+X1z.0+ diga+7.64a+ final+ final+

Für die 1. Bauphase gilt:

$$X_{1}(t_{\alpha}) = (X_{1}g_{1}o + \frac{\delta_{1}g_{1}a + \tau_{1}\delta_{1}g_{1}a^{2} + \frac{\delta_{1}g_{1}a}{\varphi_{2}o}}{\delta_{1}g_{1}a + \tau_{1}\delta_{1}g_{1}a^{2}} + X_{1}g_{1}o)^{1}e^{\lambda q_{\alpha}} - \frac{\delta_{1}g_{1}a + \tau_{1}\delta_{1}g_{1}a^{2} + \frac{\delta_{1}g_{1}a}{\varphi_{2}o}}{\delta_{1}g_{1}a + \tau_{1}\delta_{1}g_{1}a^{2}}$$

$$(1)$$

Bringt man zum Zeitpunkt $t_a=0$ eine Zwangskraft durch Verkürzung des Seiles 1 $X_{1z,0}$ auf, welche den Wert

dann treten keine Schnittkraftumlagerungen im Balken auf, da der Wert in der Klammer der Beziehung (1) verschwindet. Führt man die Bezeichnungen ein:

$$-\frac{\delta_{19,a}+\gamma.\delta_{19,a}}{\delta_{11,a}+\gamma.\delta_{11,a}}=\overline{X}_{19}; -\frac{\delta_{19,a}}{\delta_{11,a}+\gamma.\delta_{11,a}}=\overline{X}_{19}$$

so wird
$$X_1(t_0) = (X_{19,0} - \overline{X}_{19} - \frac{1}{400}\overline{X}_{15} + X_{15,0}) \cdot e^{\lambda Y_0} + \overline{X}_{19} + \frac{1}{400} \cdot \overline{X}_{15}$$

wobei \overline{X}_{1g} und \overline{X}_{1s} jene Werte sind, welche man als statisch überzählige Größen bei starrem Seil ($\delta_{11,s}$ =0) erhielte. Für den Lastfall g allein würde dies die starre Stützung des Balkens (Durchlaufträger) bedeuten, wenn die Verformungen aus den Längskräften vernachlässigt werden. Der Zwang (Verkürzung), der aufzubringen wäre, um X₁ zeitunabhängig zu erhalten ist

$$X_{12,0} = \overline{X}_{1q_1} + \frac{1}{\gamma_{00}} \overline{X}_{13} - X_{1q_10}$$

Alle Zustände, welche von diesem Zwang abweichen, werden bei diesem einfachen System nach der Funktion e abgebaut und die Überzählige nähert sich dem Wert \overline{X}_{1g} + $\frac{1}{4\infty}$ \overline{X}_{1s} , wenn $t_a \rightarrow \infty$ und λγω→∞ geht. Das heißt je größer das Kriechvermögen und je steifer die Seile sind, desto eher wird dies erreicht.

Nun zurück zum allgemeinen Fall. Zum Zeitpunkt $t_a = t_{ak} = t_b = 0$ hat X1 den Wert X1.tka erreicht, der aus (1) berechnet werden kann.

Für die zweite Bauphase, bei welcher im Balkenteil b und Pylonenteil b' die Belastung aufgebracht wird, erhalten wir

$$b^{\delta_{1}q} = b^{\delta_{1}q,a} + b^{\delta_{1}q,b} + b^{\delta_{1}q,b} + b^{\delta_{1}q,b}$$

$$b^{\delta_{2}q} = b^{\delta_{2}q,a} + b^{\delta_{2}q,a} + b^{\delta_{2}q,b} + b^{\delta_{2}q,b}$$

wobei diese Verformungswerte nur für die Belastung im Abschnitt b und b' am statisch bestimmten Grundsystem zu ermitteln sind.

Die Systemwerte am neuen statisch bestimmten Grundsystem (a+b) sind: 5, = 5, a + 6, a + 6, b + 6, b + 6, s

$$\delta_{12} = \delta_{12,0} + \delta_{12,0} + \delta_{12,b} + \delta_{12,b} + \delta_{12,51}$$

$$\delta_{22} = \delta_{22,0} + \delta_{22,0} + \delta_{22,b} + \delta_{22,b} + \delta_{22,5},$$
(3)

Für eine zusätzliche Verkürzung des Seiles 1 erhält man die Verformung d_{1z} und für eine Verkürzung des Seiles 2 d_{2z} . Die Klaffungen infolge Schwinden als Funktion von φ bzw. t werden erhalten zu $d_{10} = \frac{\overline{q_0}}{q_0} (\delta_{10,0} + \gamma_0 \delta_{10,0}) + \frac{\overline{q_0}}{q_0} (\delta_{10,0} + \gamma_0 \delta_{10,0})$

$$\delta_{23} = \frac{\overline{\varphi_{0}}}{\varphi_{\infty}} (\delta_{23,0} + 7.\delta_{23,0}) + \frac{\overline{\varphi_{0}}}{\varphi_{\infty}} (\delta_{23,0} + 7.\delta_{23,0})$$
(4)

F. BAUER 167

oder
$$\delta_{13} = \frac{\overline{q}_{b}}{q_{\infty}} [k_{a} \cdot \delta_{13,a} + 3 \cdot k_{a} \cdot \delta_{13,a} + \delta_{10,b} + 3 \cdot \delta_{13,b}]$$

$$\delta_{23} = \frac{\overline{q}_{b}}{q_{\infty}} [k_{a} \cdot \delta_{23,a} + 3 \cdot k_{a} \cdot \delta_{23,a} + \delta_{23,b} + 3 \cdot \delta_{23,b}]$$

Allgemein erhält man für ein n-fach statisch unbestimmtes System mit ${}_b\delta_{ig}$ und ${}_b\delta_{iz}$ als Belastungsglieder aus den Belastungen des zuletzt angefügten Abschnittes b die n Bedingungsgleichungen:

$$\sum_{k=1}^{\infty} X_k \cdot \delta_{ik} + {}_{b}\delta_{iq} + {}_{b}\delta_{iz} = 0$$
 (5)

aus welchen die Größen $_{b}X_{1}$,0, $_{b}X_{2}$,0 ----- $_{b}X_{n}$,0 bestimmt werden. Die se Werte sind den Werten X_{i} , tka (i=1,2....), welche am vorhergehenden System ermittelt wurden, hinzuzufügen. Diese Summe bildet dann die Anfangswerte zur Zeit t_{b} =0 und diese Größen werden weiterhin X_{1} ,0, X_{2} ,0 ------ X_{n} ,0 genannt.

Schreibt man die gegenseitigen Verschiebungen an den Schnittstellen i = 1 und 2 für ein 2-fach statisch unbestimmtes System (n=2) an, so erhält man nun für die Gesamtbelastung am Grundsystem als Funktion der Zeit bzw. von \mathbb{R}

$$\begin{split} & \bar{\delta}_{1,q+s+z} = \delta_{1q,a}(1+k_{\alpha}\bar{q}_{b}) + \delta_{1q,d}(1+r_{b}k_{\alpha}\bar{q}_{b}) + \delta_{1q,b}(1+\bar{q}_{b}) + \delta_{1q,b}(1+r_{b}\bar{q}_{b}) + \delta_{1z} + \frac{\bar{q}_{b}}{q_{0}} \left[k_{\alpha} \cdot \delta_{1s,\alpha} + \frac{\bar{q}_{\alpha}}{q_{0}} \left[k_{\alpha} \cdot \delta_{1s,\alpha} + \frac{\bar{q}_{\alpha}}{q_{0}} \left[k_{\alpha} \cdot \delta_{1s,\alpha} + \frac{\bar{q}_{\alpha}}{q_{0}} \left[k$$

Differenziert man nach dt_b , so ergibt dies und Null gesetzt: $\frac{d\delta_1}{dt} = [k_a(\delta_{10}a + 7\delta_{10}a) + \delta_{10}b + r\delta_{10}b] + \frac{d\sqrt{2}}{dt} + \frac{1}{\sqrt{2}} [k_a(\delta_{10}a + 7\delta_{10}a) + \delta_{10}b + r\delta_{10}b] + \frac{d\sqrt{2}}{dt} \delta_{11} + \frac{1}{\sqrt{2}} [k_a(\delta_{10}a + 7\delta_{10}a) + \delta_{10}b + r\delta_{10}b] + \frac{d\sqrt{2}}{dt} \delta_{12} + X_2[k_a(\delta_{10}a + 7\delta_{12}a) + \delta_{12}b + r\delta_{12}b] = 0$ Führt man folgende Bezeichnungen, nun für ein n-fach statisch unbestimmtes System erweitert, ein

$$\int_{0}^{\frac{\pi}{4}} = k_{\alpha}(\delta_{i}g_{,\alpha} + \tau.\delta_{i}g_{,\alpha}) + k_{b}(\delta_{i}g_{,b} + \tau.\delta_{i}g_{,b}) + \dots - \delta_{i}g_{,t} + \tau.\delta_{i}g_{,t}$$

$$\int_{0}^{\frac{\pi}{4}} = k_{\alpha}(\delta_{i}g_{,\alpha} + \tau.\delta_{i}g_{,\alpha}) + k_{b}(\delta_{i}g_{,b} + \tau.\delta_{i}g_{,b}) + \dots - \delta_{i}g_{,t} + \tau.\delta_{i}g_{,t}$$

$$\int_{0}^{\frac{\pi}{4}} = k_{\alpha}(\delta_{i}k_{,\alpha} + \tau.\delta_{i}k_{,\alpha}) + k_{b}(\delta_{i}k_{,b} + \tau.\delta_{i}k_{,b}) + \dots - \delta_{i}k_{,t} + \tau.\delta_{i}k_{,t}$$
(6)

so erhält man die n Diff.-Gleichungen

$$\sum_{\kappa=1}^{n_{\kappa}} \left(\frac{dX_{\kappa}}{d\varphi_{b}} \cdot \delta_{i\kappa} + X_{\kappa} \cdot \delta_{i\kappa}^{*} \right) + \delta_{ig}^{*} + \delta_{is}^{*} = 0$$
 (7)

Der homogene Teil dieses Gleichungssystems wird erfüllt mit dem Ansatz $X_i = C_{im}e^{-\lambda_m \cdot \overline{\gamma_i}}; \frac{dX_i}{d\overline{\gamma_i}} = -\lambda_m \cdot C_{im} \cdot e^{\lambda_m \cdot \overline{\gamma_i}}$ (8)

Dies in die vorhergehende Gleichung eingesetzt ergibt für den homogenen Teil die Gleichungsgruppe: $\sum_{k=1}^{\infty} C_{k,m}(-\lambda_m \delta_{ik} + S_{ik}^*) = 0$ (9)

Von Null verschiedenen Lösungen für C_{km} bestehen, wenn die Koeffizientendeterminante zu Null wird, mit

$$\Delta^* = \begin{bmatrix} \delta_1^* & \delta_{12}^* & & & \\ \delta_{21}^* & \delta_{22}^* & & & \\ \delta_{21}^* & \delta_{22}^* & & & \\ \vdots & & & & \\ \delta_{n1}^* & \delta_{n2}^* & & & \\ \delta_{n2}^* & \delta_{n2}^* & & \\ \delta_{n1}^* & \delta_{n2}^* & & \\ \delta_{n2}^* & \delta_{n2}^* & & \\ \delta_{n1}^* & \delta_{n2}^* & & \\ \delta_{n2}^* & \delta_{n2}^* & &$$

Aus dem Nullsetzen der Determinante folgen die n Eigenwerte لمر المراجعة المراجع Verhältnisse der Koeffizienten zueinander Ckm.

Dieses Verhältnis kann auch als Quotient von Minoren der Matrix des homogenen Gleichungssystems berechnet werden. Es ist

 $\frac{C_{km}}{C_{im}} = \frac{M_{kk}}{M_{ik}} = \frac{M_{ki}}{M_{ik}} \quad \text{,wobei } M_{ik} \quad \text{der zum Element-} \lambda_m \delta_{ik} + \delta_{ik} * \text{ gehörende}$ $\text{Minor der Matrix-} \lambda_m \Delta + \Delta * \text{ ist. Eine partikuläre Lösung der Diff.-}$ $\text{Gleichungen ist } X_i = D_i \quad \text{(zeitunabhängig),} \frac{dD_i}{dQ} = O \quad \text{Die Größen } D_i$ müssen die Gleichungen erfüllen $\sum_{k=1}^{\infty} D_k \cdot S_{ik}^* + S_{ik}^* + S_{ik}^* = 0$ (10)

und werden aus ihnen gewonnen.

Nun müssen noch die Konstanten C_{im} bestimmt werden, denn erst dann kann eine statisch überzählige Größe ermittelt werden.

$$X_{i} = C_{i1} \bar{e}^{\lambda_{1} \bar{q}_{b}^{*}} + C_{i2} \bar{e}^{\lambda_{2} \bar{q}_{b}^{*}} + \dots - C_{in}^{-\lambda_{n} \bar{q}_{b}^{*}} + D_{i}$$

$$(11)$$

 $X_i = C_{i1}e^{-C_{i2}e^{-C_{i2}e^{-C_{i2}e^{-C_{i1}e^$ Bedingungsgleichungen Xio - ŽCim + Di

aus welchen im Verein mit den schon bekannten Verhältnissen C_{im}/C_{km} alle C_{im} berechnet werden können.

Fragt man nun wieder nach einem Zustand, für welchen die Schnittgrößen durch Kriecherscheinungen nicht verändert werden, so müßte nach (11) jeweils $c_{i1}e^{-\lambda_1 \overline{\phi_b}}$ $+c_{i2}e^{-\lambda_2 \overline{\phi_b}}$ + $----c_{in}e^{-\lambda_n \overline{\phi_b}}$ =0 sein. Diese Bedingung ist für alle t-Werte nur erfüllt, wenn die Konstanten $C_{im}=0$ sind. Das heißt jedoch, daß dann nach (12) $\overline{X}_{i=0}$ =D, sein müßte. Da dies von vornherein aus dem Aufsummieren der einzelnen Bauzustände nicht der Fall sein wird, müssen zu den zur Zeit tj=0 vorhandenen Größen Xi,0 noch Zwangskräfte (Vorspannkräfte durch Seilverkürzungen Tiz, o hinzugefügt werden, $\overline{X}_{iz,0}=D_i-X_{i,0}$ damit die Bedingung $\overline{X}_{i,0}=D_i$ erfüllt ist. Diese Korrektur muß jedesmal beim Anfügen eines neuen Abschnittes vorgenommen werden und zwar so, daß die statisch unbestimmten Größen (Seilkräfte) die Werte D, amnehmen, die sich dann bis zum Hinzufügen des nächsten Abschnittes nicht ändern.

Betrachtet man den Sonderfall, daß zwischen den Bauabschnitten keine Zeitdifferenz besteht urd nimmt man weiters an, daß der Pylon das gleiche Kriechvermögen wie der Balken aufweist, dann

F. BAUER 169

erhält man δ_{ik} *= δ_{ik} , Beton und δ_{ig} *= δ_{ig} , Beton am ganzen System. Da in den Bedingungsgleichungen (10) die Verformungswerte der Abspannseile nicht aufscheinen, entsprechen die δ_{ik} , Beton und δ_{ig} , Beton Werte den Verformungsgrößen bei starren Seilen und Herstellung der Betonteile in einem Guß (Lehrgerüstzustand ohne Zeitdifferenz der einzelnen Teile). Die D_i sind dann die statisch überzähligen Seilkräfte bei starren Seilen. Durch Zwangskräfte (Vorspannkräfte) kann dieser Zustand X_i =D_i erreicht werden, wenn X_{i} -O $^{\sharp}$ D_i ist.

Berücksichtigt man in diesem Sonderfall nur die Verformungen aus den Momenten, dann werden die lotrechten Komponenten der Seil-kräfte $S_{i,L}=D_{i}$ infolge der ständigen Lasten den Auflagerkräften eines in den Aufhängepunkten der Seile starr gestützten Durchlaufbalkens gleich.

Bei den vorliegenden Untersuchungen wurde angenommen, daß der Elastizitätsmodul des Betons konstant bleibt. K. Sattler und G. Nitsiotas haben einen Weg gewiesen, wie ein Anstieg des E-Moduls berücksichtigt werden kann. Der Weg der Berechnung bleibt grundsätzlich gleich wie hier gezeigt, doch muß ein anderer Ansatz zur Lösung der ähnlich gebauten Differentialgleichungen gewählt werden. Zu sehr brauchbaren Näherungswerten kommt man, wenn man die Differentialgleichungen mit folgenden Ansätzen umgeht, aus welchen sich sehr einfach die zusätzlichen zeitlichen Änderungen der Überzähligen über bestimmte Zeiträume ermitteln lassen.

Auch hieraus sieht man, daß ein Zustand erreicht wird, dessen Schnittkräfte unverändert bleiben, wenn die Gleichungen $\underbrace{\xi_{ig}^* + \frac{\xi_{is}^*}{\Psi_{oo}}}_{1} + \underbrace{\xi_{ik}^*}_{1} \times_{Ko} \underbrace{\xi_{ik}^*}_{ik} = 0 \quad \text{erfüllt sind. (Siehe Gleichung (10)).}$

X_{i,t} bedeutet hier, abweichend von den früheren Untersuchungen, nur die zeitliche Veränderung von X_i, nicht den Gesamtwert.
Noch bessere Werte erhält man nach K. Sattler mit dem Ansatz

$$\delta_{iq}^{*} \bar{\varphi} + \frac{\delta_{ix}^{*}}{\varphi_{\infty}} \bar{\varphi} + \sum_{k=1}^{\infty} X_{k,0} \delta_{ik}^{*} \bar{\varphi} + \sum_{k=1}^{\infty} X_{kt} (\delta_{ik}^{*} + \bar{\varphi} + \delta_{ik}) = 0$$
mit
$$\psi = \frac{\bar{\varphi} - (1 - \bar{e}^{\bar{\varphi}})}{\bar{\varphi}_{i}} \approx 0.5 + 0.08\bar{\varphi}$$

Literatur: B. Baule: Die Mathematik des Naturforschers und Ingenieurs, 3. Auflage Hirzel, Leipzig 1944 R. Zurmühl: Praktische Mathematik für Ingenieure und

Physiker, 3. Auflage, Springer Berlin 1961 K.Sattler: Theorie der Verbundkonstruktionen, Wilhlem

Ernst und Sohn, Berlin 1959 H. Schmitz und R.Jetter: Planung und Bauausführung der Schiffahrtsöffnungen der Maracaibo Brücke in Venezuela, Der Bauingenieur 1963, Seite 283

F. Bauer: Zeitliche Änderungen der Schnittkräfte infolge Kriecherscheinungen bei Herstellung eines Bauwerkes in Abschnitten, Der Bauingenieur 1966, Seite 133

G. Nitsiotas: Kriechen und Schwinden bei statisch unbestimmten Betonkonstruktionen mit Tragteilen aus Stahl, Ingenieur Archiv 1954, Seite 323 E.Dimel: Schrägseilbrücken aus Beton als Sonderfall

vorgespannter Betonkonstruktionen, IV.FIP-Kongreß, Kongreßbericht, Bd. 1. Thema II. Paper 20, Seite 400

Zusammenfassung

Es wurde gezeigt, wie die Einflüsse von Schwinden und Kriechen des Betons auf die Beanspruchung eines mit Schrägseilen abgespannten Stahlbeton- oder Spannbetonbalkens ermittelt werden können. Weiters wurde ermittelt, wie die Schrägseile zu spannen sind, um Spannungszustände im Betonbalken zu erhalten, welche durch die Schwind- und Kriecherscheinungen nicht verändert werden.

Summary

It was shown how to determine the effects of concrete shrinkage and creep on the stress exerted on reinforced or prestressed concrete beams suspended from inclined cables. It was further examined how the inclined cables must be tensioned to obtain states of stress in the concrete beam which are not changed by the shrinkage and creep phenomena.

Résumé

Il a été montré de quelle manière on peut déterminer les influences du retrait et du fluage du béton sur les efforts exercés dans les poutres en béton armé et en béton précontraint, suspendues par des câbles inclinés. En outre, il a été étudié de quelle manière les câbles inclinés doivent être tendus afin d'obtenir dans la poutre en béton, des états de tension, qui restent constants malgré les phénomènes de retrait et de fluage.