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STRUCTURAL SAFETY AND OPTIMUM PROOF LOAD
Sécurité des constructions et charge d’essais optimale

Bauwerksicherheit und optimale Priflast

MASANOBU SHINOZUKA
Professor of Civil Engineering
Columbia University
New York, N.Y.
USA.

1. Introduction

In a recent paperl dealing primarily with aerospace structures,
the author pointed out the importance of proof-load test in conjunc-
tion with the optimum structural design based on reliability concept.
In fact, Ref. 1 developed an approach to an optimum design (either
minimum weight design or minimum expected cost design) introducing
the proof load as an additional design parameter and demonstrated
the advantage of the use of proof load in terms of weight saving
(under constraint of expected cost). From the view point of prob-
abilistic safety analysis, it was also pointed out, the advantage
of performing the proof-locad test was two fold; it could improve
not only the reliability value itself but also the statistical con-
fidence in such a reliability estimate since the proof-load test
eliminates structures with strength less than the proof-load. 1In
other words, the structure which passes the proof-load test belongs
to a subset, having the strength higher than the proof load, of the
original population. The fact that the proof-load test truncates
the distribution function of strength at the proof load alleviates
the analytical difficulty of verifying the validity of a fitted
distribution function at the lower tail portion where data are
usually non-existent. Evidently the difficulty still remains in
the selection of a distribution function for the load., However,
the statistical confidence in the reliability estimation now de-
pends mainly on the accuracy of the load prediction. The question
of how to deal with the statistical confidence of the load distri-
bution was also discussed in Ref. 1,

Consider now civil engineering structures such as bridges,
transmission towers and buildings., Because of their characteris-
tic construction processes, these structures usually undergo tacit
processes of proof-load test during the construction., If a
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structure does not fail duri ng and upon completion of construction,
it implies that all of its structural components and therefore the
structure itself have sufficient strength to withstand at least the
dead load. This is the information that must be taken into consid-
eration as the lower bound of the strength distribution for the re-
liability estimation of an existing structure, although the lower
bound thus established may in some cases be too small to be of any
practical significance. Furthermore, if a structure under construc-
tion survives a live load due to severe wind or earthquake accelera-
tion, which are referred to as secondary live load in many design
codes but of primary importance for safety consideration of existing
structures, the combined action of such a live load and of the dead
load (existing at the time of occurrence of the live load) can be
interpreted as a proof-load test. The fact that the partially com-
pleted structure has survived such a proof-load test should be taken
into consideration in the reliability analysis since this fact
‘usually makes it possible to establish a better lower bound of the
strength of each of structural components {(existing in the partially
completed structure).

Although the subject of such implicit processes of proof load-
ing appears to be an interesting item for future study, the present
paper places an emphasis on the explicit proof-load test for civil
engineering structures to be performed before the structures are
placed into service, and examines the conditions under which the
explicit proof-load test is economically advantageous.

An important implication of the above argument is that sep-
arate considerations are given to the safety of a structure during
and after completion of its construction. This seems quite reason-
able since the cost of detection possibly by means of proof-load
test and the cost of the replacement of that part of the structure
which failed because of a member or members with insufficient
strength may be absorbed as the construction cost or otherwise,
whereas any failue after the structure is placed into service by
the client would produce much more serious contractual and socio-
economic problems, possibly involving human lives.

2, Expected Cost and Optimum Proof Load

The present discussion deals with a structure designed under
a conventional design code with a specified design load Sd' The
structure is supposed to withstand a system of proportional loads
with a reference value S which is statistical, This system of
loads is hereafter referred to as the load 8, and the design
load is meant by the same system of loads with a particular refer-

ence value Sd' Furthermore, it is assumed that the proof load to

be applied is also the same system of loads with a reference
value de, in which a positive number m indicates the magnitude
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of the proof load in terms of the design load, For example, when a
bridge is designed for a design uniform load w, the proof load is
the uniform load with intensity mw. This assumption is made essen-
tially for simplicity of discussion and does not imply the limita-
tion of the proocf load approach presented here., An obvious example
in which the proof and the design loads cannot be of the same type
is a tower structure designed for wind pressure. In such a case,
how to specify a system of (proportional) loads as well as its mag-
nitude that should most effectively (in some sense) be used as a
proof load, is not a trivial problem. BEvidently, it is possible

to proof~test structural components individually before they are
assembled (an approach discussed in Ref, 1). This approach, how-
ever, appears to be too expensive to be applied to civil engineer-
ing structures.

Under these circumstances, it seems reasonable, for the pur-
pose of presenting the essential idea of optimum proof load, to
assume the following form of expected cost EC of a structure,

EC = qoco + pfcf or EC* = qov + P (1)

where EC* = EC/'Cf = the relative expected cost, v = Co/cf’ q,=

the expected number of the (candidate) structures that fail under
the proof load before the one that can sustain it is obtained,
Co = the cost of a proof load test including the cost of loss of a

(candidate) structure (during the proof load test), b, = the prob-

ability of structural failure (that might occur after the structure

is placed into service) and Cf = the cost of structural failure

(that might occur after the structure is placed into service) such
as cost of the structure, loss of prestige, etc. It is noted that
Eg. 1 takes only the costs of failure and of proof-load test into
account, although more elaborate forms are obviously possible and
may even be desirable depending on the specific problem at hand.,

Since the proof load is applied to the {(entire) structure,
not to its components individually as in Ref. 1, there is a prob-
ability P, that it will produce a failure of the entire struc-

ture unless a method is devised to replace the component that ex-
hibits an initiation of failure at a magnitude of proof load less
than the prescribed value before the structural failure developes.
If the proof load can produce only component failures because of
such a device or otherwise, it seems reasonable to consider that
the ratio +y 1is as small as 10°% or even smaller, If, however,
the proof load can lead only to structural failures, the ratio
does not seem to be so small, 1In the present discussion, it is
assumed that the proof load may produce only structural failures
and that the ratio <y ranges from 10-¢ to 1031,

4. Bg. Schlussbericht
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The expected number q, of candidate structures that will

fail under the proof load can be shown to be

d, = po/(l—po) (2)

in which the probability Po {defined previously) is given by
p_= I £, (x)dx = F_ (mS,) (3)

with fR {-} and FR (-} Dbeing respectively the density and the

]
distribution functions of the resistance R of the structure on

(-]

which the proof-load test has not been performed yet.

The probability of failure, Pg> of the structure which has

passed the proof-load test can be written in the following well-
known form:

Pe = J Fo(x) £ (x)dx (4)
o
where FR(-) is the distribution function of the resistance R of
-the structure which has passed the proof-locad test and fS(-) is

the density function of the load 8.

Under further simplifying assumptions, as used in most of
previous papers including Ref, 2, that the pertinent resisting
strengths (such as yield strength) of the individual structural
members and therefore the resistances (load carrying capacities)
of the same members are statistically independent of each other as

well as of the load S, the distribution functions F_ (-) and
;i R
FR(-) can be written as °
n ,
FRO(X) =1 - ki [l - Foﬂ:cix/ai>] (5)
i=1
— _n _ k!
FR(x) =1 ijl [l Fi (cix/ai/i (6)

where n 1is the number of members constituting the structure. Egs.
5 and 6 are to be used respectively in Egs. 3 and 4. 1In Eg. 5,
Foi(') is the distribution function of the ("parent”) resisting
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strength Toi of the i-th member of the structure which has not
been subjected to the proof-load yet. Also, Fi(') in Egq, 6 indi-
cates the distribution function of the resisting strength Ty of

the i-th member of the structure which has passed the proof-load
test, Quantities c, and a, are such that the load Si acting

in the i-th member can be obtained from the load S as

S, = ciS (7)

R. = a,T, (8)

For example, Ti and ai are respectively the yield strength and

the cross-sectional area of the i-th member if a truss structure is
cons idered,

As was discussed in detail in Ref. 2, the following points are
to be noted in deriving Egs. 4, 5 and 6; (1) the definition of
structural failure is in accordance with the weakest link hypothesis,
that is, the failure will take place if at least one of the compo-
nents fails, (2) the assumption that the member strengths are sta-
tistically independent to each other is a conservative one, (3) P

in Eg. 4 indicates the probability of structural failure due to a
single application of the load S. Also, in deriving Eq, 7, the
effect of the dead load is neglected for simplicity. Any method of
structural analysis can be employed to obtain Eg. 7 including the
finite element method.

By applying the proof load mS each member is subjected to

d)
a force cimsd' Therefore, if the structure (and therefore all the
members) survives the proof load, a lower bound cim.Sd is established

for the resistance of the i-th member. Because the force and the
stress are related by Eg. 8, this in turn establishes a lower bound

Tog = cimsd/a,l (9)
for the parent resisting strength Toi of the i-th member, Then,
the distribution function Fi(°) of the {"truncated") resisting
strength Ti of the same member of the structure having passed the

proof-load test can be shown to be
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F .(x) -F (1t .)
a iy

o
1 -F . (1 .)
oi' mi

Fi(x) H(x - Tmi) (10)

where H(+) is the Heaviside unit step function,

Eg. 10 indicates that the distribution function of the (trun-
cated) resisting strength of the structure which passed the proof
load test is obtained from that of the parent strength by "“trun-
cating" it at the lower bound established by the proof load (and
normalizing it).

The standard design requires that the nominal resistance

_ i i S _:
aiTai be equal to the nominal applied load c.84

. . o= C, a,.Tt . , = C, 11
a.T c.8 or i pl/“l ;84 (11)
where Tai = the allowable stress, Tpi = the specified minimum
resisting strength and v = the safety factor of the i-th member

(these quantities are functions not only of the material but also
of the mode of failure, e.g. in bending, in tension, in stability,
etec.).

From Eq. 11, it follows that

ci/ai = Tpi/(“isd) (12)

The right hand side of Eg. 12 consists of quantities specified
in the design code. Therefore, Eq. 12 makes it possible to replace
ci/ai in Egs. 5, 6 and 9 by known quantities.

Egs. 2 and 4 (together with Egs. 3, 5, 6, 9, 10 and 12) can
now be used in Eg. 1 to compute the relative expected cost if
Foi(-) and fS(-) are known. The optimum intensity of the proof

load 1s then obtained as that value of m which minimizes the
relative expected cost EC*,

3. Example

In the following, the assumptions are made that (1) the allow-
able stresses (or both the specified minimum strengths and the
safety factors) and (2) the distribution functions Foi(x) of the

parent strengths are identical for all the members; Toi = T, and
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Foi(x) = Fo(x). These assumptions are made purely for simplicity.

The analysis presented in the preceding section can easily accom-
modate the situations in which this is not the case; e,g. consider
different allowable stresses specified for tension and compression
members and also consider the fact that in reality, different dis-
tribution functions of the parent strengths are needed for tension
and compression members,

The immediate consequences of these assumptions are that (1)
ci/ai in Eg. 12 and hence Tmi in Eq. 9 become independent of the

subscript 1i; ci/ai = Tp/(de) and T = mTP/v, and (2) the trun-

cated strength distribution Fi(x) also becomes independent of 1i;
F,(x) = F_(x).

In the present paper, the parent strength distribution is
assumed to be distributed according tc the Weibull distribution:

Fo(x) =1 - exp[—(x/Tc)b1 (13)

where Tq is the characteristic strength and b is a positive

constant.

From Egs. 10 and 13, it follows that

0 s (- en[- G- 0w

with

B =e Zp % (15)
}cPl:(\)Tc .J

Therefore, Egs. 5 and 6 can be respectively written as

X
FRo(x) =1 - exp[— (chF] x >0 (16)
n X ™
FR(x) =1-B exp[— CRC/F] X > mS, (17)
and from Eq. 2,
n
qo =B = i1 (18)

1 . T
where Rc = hsd/n /b with h = VTC/TP is the characteristic
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resistance of the structure which has not proof-load-tested yet,.

The parameter b is a measure of dispersion of the distributions
of T, and R,; the coefficients of variation in terms of their
characteristic values are 0,46, 0.33, 0.25 and 0,21 respectively

for b = 2, 3, 4 and 5.

For the distribution function FS(X) of the load S, the

first asymptotic distribution function of largest values is
assumed. However, since only the upper tail portion of the dis-
tribution is significant, the following exponential form is used
as an approximation for larger values of the load;

1l - Fs(x) = r exp[-a (x-ksd>1 X > kSd . (19)

~

where "a" 1is a positive constant and de(O <k <« 1) is the lower

bound above which such an approximation is valid and r is such that
the probability that S will be larger than de is r.

The final expression for the probability of failure is
P n X N1 ¥ e
= -— - — —_ : - ]d 20
Py = Ta | {1 B exp[ (RCZFJ} exp[ a (x ksd/] x (20)
de

Although this integral cannot be evaluated in closed form un-
less b = 1 or 2, an asymptotic approximation can be obtained by ex-
panding the first term of the integrand and integrating term by
term as long as 4 »» 1 where 3 = shAﬂﬁ> with s = (1-k)"'4n(x/qg).
The result is

p, & Ar expl-s(m-k)] (21)
with
A= (2ms + 2) /2> (b=2)  (22a)
A = {3(ms)2 + 6(ms) + 6}/k3 (b=3) (22b)
A= {4(ms)3 + 12(ms)° + 24(ms) + 24}/x4 (b=4)  (22¢)
A= {s5ms)* + 20(ms)’ + 60(ms)? + 120(ms) + 120}/2°
(b=5)  (22d)
where ms should be smaller than ) and g is the probability

that the load S will be larger than Sd' The result does not

contain the parameter "a" (Eq. 19) explicitly. It however,
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appears in the preceding equations implicitly since a = s/Sd.

The validity of such asymptotic approximations is checked by
comparing the result using Eq. 21 with that of the exact integra-
tion for b = 2, The agreement is more than satisfactory.

A number of sets of parameters are considered for numerical
examples. Among these, the result for the case where the structure
consists of 7 members (n=7), b =4, g= 0.02, r = 0.1, k = 0.6(thus
s = 4,03) and y = 1,67, is presented. The specified minimum strength
Tp is defined so that the probability of the parent strength T,

being less than Tp is p. Therefore, from Eg. 13, TC/TP = [=4n

(1-p)~14], For the present example, p = 0.1 1is used (hence h =
5.15). The assumption that g = 0.02 implies that the design load
with a return period of 50 years is considered if the distribution
Fs(x) is that of the annual largest load.

The result is illustrated in Fig. 1 where the relative expected
cost EC* 1is shown as a function of | = m/h, The value u indi-
cates a magnitude of the proof load relative to hS at which the

d
loads (the stresses) acting within the individual members are equiv-
alent to their characteristic values a,T (TC). Since the optimum
&

proof-load is the one at which EC* becomes minimum, Fig, 1 indi-

cates that the proof-load becomes optimum when y = 0,2, 0,38, 0,55
and 0.67 (or m = 1,03, 1.95, 2.83 and 3.45) respectively for v =

101, 10-2%, 10°% and 10°%. The locus of those points at which EC*
assumes minimum values (Curve 1) is also plotted as a function of

L in Fig. 1, Since b = 4, the coefficient of variation with re-
spect to the characteristic value of the parent strength T is

0.25, Therefore, these optimum proof locads truncate the strength
distribution at 3.2, 2.5g, 1.8 and 1.35 below its charac-
teristic value respectively for « = 101, 1072, 10°® and 1074,
Also plotted in Fig. 1 is the probability of failure as a function
of . The probability decreases monotonically as | increases;
the reliability increases as a larger proof load is applied.

The above result indicates that, for this particular example,
performing the proof-load test may not be justified if v 1is of
the order of 10°! because (1) the optimum proof stress is more
than 35 away from the characteristic strength and therefore not
much improvement in statistical confidence in reliability estima-
tion is expected and (2) if one increases the magnitude of the
proof load beyond the optimum value to achieve such improvement,
the prohibitive cost is likely to be incurred due to possible loss
of the (candidate) structure(s) which is rather expensive (larger
value of ). However, if v 1is of the order of 1072 or less,
performing the proof-load test appears justified from the point of
view of improving (1) the statistical confidence in the reliability
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estimation (since the points of truncation are at most 2,55 away
from the characteristic value) and (2) the reliability itself. How-

ever, the optimum magnitude of the proof-load increases considerably

as v decreases,
proof-load test.

This may present some difficulty in performing the

8

: 16% y=0' Jo? fo? .

Since the preced- sl . Y1072
. . . \~ 4 - B
ing observation is s 20
based on (1) the com- |+ XCurve 1 G ] 1 .
putation associated % \\ L -~ ,@
with a particular set W ,| P4~ < w 4_’1=3 i/
of parameters, (2) the "f;o2 \ 105 b=4\ /7 \
particular formof the Gl R\ \ :['“7 // b*
expected cost and (3) 8- ] AN mona .
the specific form of 0.1 03 05 07 oo 03 0s 07 09

Fig., 1 — Fig, 2 p—

strength and load dis-~-
tributions, and sensi-
tivity of these items on the result will be an interesting subject
of future study. For example, Fig, 2 shows the loci of the optimum
points (such as Curve 1 in Fig, 1) for b = 3, 4 and 5 plotted on
the same diagram, indicating the effect of b and vy on the opti-
mum proof-load.
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SUMMARY

The interrelationship among the probability of structural
failure, the expected cost of structure and the proof-load testing
is established and used for a general reliability analysis. The
optimum proof-load is defined for structures designed under a con-
ventional design code and conditions are examined under which the
proof-load testing is advantageous economically as well as from the
viewpoint of improving both the reliability itself and the statis-
tical confidence in such a reliability estimate.
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RESUME

On examine la relstion ertre la probabilité de ruine, le
prix évalué de la construction et les essais de charge. La charge
d'essai optimale est définie pour les structures congues d'apreés
les normes converntionnelles. Puis on examine les conditiong sous
lesquelles les essais de charge sont aussi bien avantageux écono-
miguement gqu'utiles pour la sécurité et pour la certitude de la
sécurité évaluéde.

ZUSAMMENFASSUNG

Aufgezeigt wird die Beziehung zwlschen der Bruchwahrschein-
lichkeit, dem Erwartungswert der Kosten sowie der Priiflast und fiir
die Zuverlédssigkeitsrechnung verwendet. Die optimale Priflast wird
fir nach alten Vorschriften entworfene Bauwerke definiert. Sodann
werden die Bedingungen untersucht, flir welche das Priiflastverfahren
sowohl wirtschaftlich als auch im Hinblick auf die Zuverlissigkeit
selbst und das Vertrauen in eine solche Zuverlissigkeiltsschitzung
vorteilhaft ist.
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