Zeitschrift:	IABSE reports of the working commissions = Rapports des commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen							
Band:	4 (1969)							
Artikel:	A design method and limit states for pedestrian steel overpasses							
Autor:	Maeda, Yukio							
DOI:	https://doi.org/10.5169/seals-5953							

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 20.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A Design Method and Limit States for Pedestrian Steel Overpasses

YUKIO MAEDA Dr.-Eng. Professor of Civil Engineering Osaka University Osaka, Japan

Since the loading conditions for pedestrian steel everpasses is relatively simple and clear, the load-factor approach could be applied, which is practically simple and adequate for providing a safety concept and introducing probability into the design in a rational form.

On the other hand, the design criteria for main structures will be the limit of structural usefulness. If stocky sections are used for structural members, their plastic strength combined with stability limit may be the limit of usefulness, taking account of deflection and stress limits at the normal service loads or at the time of earthquake.

Here, design examples and their some results will be shown. The load factors for three different load combinations adopted at the Standard Rules for Plastic Design in Steel, Japan Welding Engineering Society, 1967, are as follows: (1) U = 1.2 D + 2.1 L or 1.4 (D + L), (2) U = 1.2 D + 1.7 L + 1.7 W, (3) U = D + L + 1.5 E, where U is ultimate strength, D is dead load, L is live load, W is wind load or snow load, and E is earthquake force or collision load. These values of the load factor were determined by a semi-probabilistic method.

Fig. 1 illustrate typical three types of pedestrian steel overpasses in Japan, and classifications of the types result in 44 different design cases, by span length which is 17.5 m or 22.0 m, by floor slab which is either reinforced concrete slab or steel deck, and by section of main structural members which is welded built-up or H-shaped rolled, and either uniform or non-uniform.

In proportioning the structural members for each case, the simple plastic theory was applied to the mechanism collapse as shown in Fig. 2. Also, secondary effects such as shear force, axial force, bucklings were considered, and the design of each case was done automatically by a computer. Particularly, in order to get a minimum weight of the members, the linearized relations between full-plastic moment and weight were applied to the calculation. Furthermore, an alternating collapse and an incremental collapse, and stress and deflection limits at the normal service load or at the time of earthquake, were investigated.

One example of the results is indicated in Table 1, which is for C Type, Portal Rigid Frames with variable sections of the members. The table shows that an increase of plastic moment due to the incremental collapse is about 10% for symmetrical form and 7% for anti-symmetrical one, and that an effect due to alternating plasticity can be neglected, but the design criteria is governed by the specified working stress at the normal service loads. If the live load is larger, the deflection may be the governing limit state.

Throughout the overall results, it is shown that the design criteria are the plastic strength due to mechanism collapse, or the incremental collapse, or the working stress or deflection which is to be specified at a rule or code, and that a priority among them depends upon the ratio of live load to total load, and upon the spanratio of the frame. If the values of load factors are changed, there will be different results of design criteria.

Finally, it may be said that load factors and limit states should be combined more rationally and in detail.

Fig. 1

1

Fig. 2

Table 1

Gage					CVB CVB2 CVB2					CVBA		CVRA		CV	B 4	
Itom Gase I D SI L A FT.			330 263 75 0.9		330 263 75 0.8		330 263 75 0.8		500 263 75 0.9		500 263 75 0.8		500 263 75 0.9			
Location of variable section																
Ind	tial M _p ratio	K. K.	K	1.0 1.4	1.0	1.0 2.2	2.2 9.4	1.0 2.0	1.0 9.3	1.0	1.0 0.4	1.0 2.2	2.2 0.5	1.0 1.5	1.0 0.3	
Fir	al M _p rotio	K, K,	K. K.	1.0 1.0	1.0	1.0 1.0	1.0	1.0 1. 22	1.0 0.24	1.0	1.0 0.54	1.0 1.0	1.0 0.31	1.0	1.0	
	aMy bMy bMylaMy aMy cMylcMy	1Mg (t-m) 1Mg (t-m) 6β/aMg 1Mg (t-m) 6β/cMg (g/cMg		21.77 24.59 1.13 10.87 0.50		35.92 30.53 1.07 14.50 0.41		33.80 38.42 1.13 16.02 0.53		23.61 25.05 1.10 10.27 0.44		42.55 45.09 1.06 15.20 0.36		32.32 35.32 1.09 14.41 0.45		
Section	section 1 (I-shaped)			200 × 12 376 × 8		200 × 12 536 × 8		200 × 12 526 × 8		200 × 12 376 × 8		200 × 12 576 × 8		200 × 12 476 × 8		
	section 2 (I+ shaped)			200 × 12 376 × 8		200 × 8 536 × 8		200 × 12 526 × 8		200 × 12 376 × 8		200 × 12 576 × 8		200 × 12 476 × 8		
	section 3 (I	section 3 (I-shaped)			200 × 12 176 × 8		200 × 8 526 × 8		200 × 16 51.0 × .8		200 × 16 360 × 8		200 × 12 576 × 8		200 × 19 462 × 8	
	section 4 (b	section 4 (box shaped)			200 × 8 184 × 8		200 × 8 184 × 8		200 × 8 184 × 8		200 × 9 232 × 8		200 × 9 232 × 8		200 × 16 318 × 9	
Floor beam spacing (m)			1.50		1.40		1.40		1.50		1.40		1.40			
at section 1 at section 2 at section 2 at section 3 at section 4 Deflection 4/L			1 135 1 135 1 613 1 975 1/409 609.64		725 1 330 1 665 2 153 1/625 609.6 ¢		1 234 1 234 1 727 3 346 1/415 609.6 4		1 262 1 262 1 650 2 160 1/449 609.64		734 1443 1671 2 374 1/536 609.6 \$		1 451 1 451 1 815 1 581 1/443 609.6 #			
															Column t=9.5	

2