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The probability of failure when the characteristic values are used as a design method
La probabilité de ruine quand la méthode des valeurs caractéristiques est utilisée

Die Versagenswahrscheinlichkeit, wenn die charakteristischen Werte als Bemessungs-
methode verwendet werden

EERO PALOHEIMO
Dr. Ing.
Helsinki

The only method to determine the dimensions of structures
which seems to have a logieal justification, would be a form of cal-
culation giving an equal reliability (or equal probability of fai-
lure) in different parts of the structure.

Another, and purely practical, requirement for this calcu-
lation method is simplicity, as the method should be available for
the average engineer in his everyday work.

It seems possible to determine by computers the probability of
failure for different types of structures. The question is, can we
find a general and relatively simple method of calculatiocn, which
gives automatically a given and similar reliability to the diffe-
rent parts of the structure under consideration? If this is not
possible, what method would best fulfil the previous conditions?

Four different design methods will be studied in the following,
and for simplicity called methods 1,2,3 and 4.

A simplé and rather general model of the reliability can be
presented as follows: |

The condition for failure will be given by

(1) g(x1...xn) =1
where XqeeeXy represent the various quantities of the structural
element or the external forces and moments loading this element.

We assume that the distribution functions of XqeeoX, 8TE
known, and denote the mean-values of these quantities by mye..m,
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and the standard deviations by 61... 6n'

For the probability of failure we have
(2) P(g(x1...xn) £1)

The four different design methods which will be compared are
as follows:

Method 1. We choose the mean values of the r first quanti-
ties XqeeeXy, (the internal properties of the structural element)
and the n-r quantities Xyl e ¥y (the external forces and moments)
so that

g(m1-¢omr’ k.mr'I'T...k.mrl) —4 1
We always use the same "total safety factor" k and try to deter-
mine k so that in some common cases
where we denote the probability of failure considered as suitable
by c.

Method 2. We choose the mean values of the various quantities
so that

g(mT...mr,k-mrH...k-%) =1
and use, depending on the values of Q1 = 61/m1... Qp = 6n/mn
and different functions g, various "total safety factors" k, so
that in all cases

Method 3., We choose the various mean values so that

g(m1 + O<-61---mn j-_OPén) = 1 (+ or - chosen unfavourably)
We always use the same "characteristic coefficient" o~ and try to
determine &« so that in some common cases

Method 4. We choose the mean values so that

g(m1 + - 61...% + o<-6n) = 1 (+ or - chosen ® unfavourably)
and use various "characteristic coefficients" o depending on the

values of Q, (5 and g, so that in all cases
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P(glxq...x) £1) =¢

We see immediately that methods 2 and 4 strive for mathe-
matical exactness and methods 1 and 3 aim at simplicity in every-
day use.

We shall now study and compare these methods in four different
cases.

1. The simplest model of reliability is the case when both the
capacity of the structure X1 and the external load X,y &re normal
and independent with mean values m;, m, and s.d. 611 Boe

The probability of failure is then
X < <
(3) P( 1/X2 F= 1) = P((x1 - X2) =0
As we know, the distribution of (x1 - x2) is also normal with
(4) m = m1 -

G = V +(5 2

and we have

(5)  B(%1/x, 2

- 0TI

i\

)

where

(6) D)

now writing

VFr[ e

<51 = Q1"
Oy = Qo By
and m1/h2 = k

we get

(1) P((F1/xp)

N

Y -8t

which gives the probability of failure when different "total
safety factors" are used.

In the same way we get
2 2 2
(8) k=’+V;'“'% ?);“@2
1 - §)1

to calculate "the total safety factors" corresponding to
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certain @(ﬂ) = a
Using the "characteristic values" we write
x'= m —O(-é
1 1 1
R Py
Xy = m, +0¢0,
Through x,* = x,"we get for k'
- 1 +cx4?2
(10) k’= ‘l/m2 = ————
1 -9y
andﬂ(11)ﬂ -“(61"‘62) —o((Qf" 92)
= , ™= z 2 . — )
JO1°% 6,7 oy v @t 20094 ©,°42¢q) 95(61- @)
to define the dependence between «, Sand ki By k’ we denote "the

total safety factor", which gives as result the same /J‘ as we get
using the corresponding « from (10).

These relations are illustrated in Pig.1 and Fig.2. The
equalities (7), (8), (10) and (11) have been solved for some special
cases of Q1 and Qo which are usual in practice and the results
are given in Table 1.

(n this case:

k =2
X1 4 ¢1=015
ﬁ:OJO \

k{\

f(Xq, X2)

y ~_ N
\

N -
4 ] $=§=015
+ ~¢ -0,=0.10
\\& 1- 2—‘ )
1
The volume
gives $(3)
o< P(C/L=1)
o _—
mo Xo 07 10°% 105 14 103

K=1gec Fig 1 Fig 2
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Table 1 — =

S/m k=2 |465 x= 3,30 x= 4,25

X, X, -5 DB x -8 D5 k' | k/k'| k' | x/k’
1| 0,05/1| 0,05/1 | 8,95M0~ 17 [1,40] 4,60 1,40 1,00
210,10/1| 0,05/1 | 4,85 1,92 | 4,09 1,74 | 1,10
310,15/1| 0,05/1 | 3,29 3,35 | 3,751107° 2,31 | 1,45|3,35| 1,00
410,05/1| 0,101 | 7,07 1,59 | 4,651407%|1,59 | 1,00
50,101 | 0,101 | 4,47 2,07 | 4,43 1,99 1,04
6|0,15/1| 0,101 | 3,16 3,46 | 4,01 2,64 1,31
710,05/1| 0,15/1 |5,55 1,81 4,53 1,79 1,01
8|0,10/1| 0,15/1 | 4,00 2,26 | 4,58 2,23 | 1,01
910,15/11 0,151 |2,98|~10"° |3,62 | 4,17 2,961 1,22

The complete analysis of these results will be given later, but we
can now note that

Method 1 with k=2 gives -8,95 =/4= -2,98, which shows that
the method is mathematically not ;ji.lS't;i:f'ied.(‘!0"1 T« @(p)<0,14-10—2)

Method 2 with cf.~10"'6; B = 4,65 gives 1,40 = k = 3%,62. The
method is mathematically justified but the definition of k is too
complicated

Method 3 with o< = 3,3 gives 4,65 =/4= 3,75, which shows
that the method is mathematically more correct than 1, but a little
more complicated. (0,16 10™2 < @(ﬂ)<0,9.10"4)

Method 4 with c=~10"%; 4= 4,65 gives 3,3 == 4,25. The
method is mathematically justified but the definition ofx is too
complicated.

2. A more developed model for determining the reliability is
when both the capacity of the structural element and the external
load are linear functions

m
ZTai- X (capacity = ¢)
i=

(12){ 4

> a;- X4 (load = L)
i=m+1

Assuming that x; are all independent and normal with m, and
6 we then have the mean and s.d. of C - 1

(13) m::.ﬁ a..m -.£Ta-mi

i=1 i ™1 i=m+ i
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n A}
i=1
As the probability of failure we obtain

n
I . aym -y -a.-m
(14) P(°/m =1) = @ i=m+1 1% i 71

) £ (ay64)°

We assume now that values <? are independent of m, and
write
E a;- m, = gai-mil
(15) i=m+1 i=T
’ 7/
61" = Qi'my
We then have
a. m,
(16) P(C/L <1 _@ (1-k) ]?n—l-n-l-‘l i 12 m
1/1; + & (a3;)
i=m+1
and \
2 2
iy x ] /1 = (1-0,82) (1-0,57)
2
1 - C1'ﬂ
where
&(3161‘/)2 )Zn: (a-
(18) ¢y =~ i=mpl

= . c -

n 2 ! 2 n )

¥ a.-m. s @, . m,
(;=m+1 1 %) (i=m+1 L ?)

We can see that equations (16) and (17) correspond to the
earlier equations (7) and (8) for that special case of (12) which
was treated before.

Using now the "characteristic values" we get

2 8y (m +o<(5 )
(19) k’ = 1_m+1

é%ai(mi'-“'éi’)

end we can calculate the corresponding @B -values from (16). Some
cases with n=3 and m=1 have been treated, and the results are
given in Table 2. The values for‘m{;(51? m2,652, m3,653 have bheen
chosen so that X4 could represent the capacity of an element, while
Xo and x3 could represent dead and live load in a practical case.

The analysis of this case follows later.
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Table 2

S/m k=2 | 7%5| o= 2,80 ox= 3,60

X, X5 Xz -4 k k'’ | k/k’| k' |k/k’
10,1 /1,0 0,02/0,4| 0,06/0,6| 4,77} 1,95| 1,70 | 1,15
20,1 11,0 0,02/0,4| 0,09/0,6| 4,38 | 2,04 1,82 | 1,12
3|0,1 /1,0|0,02/0,4| 0,12/0,6 | 4,27} 2,15| 1,93 | 1,12

4|/0,1 /1,0 0,04/0,8]| 0,02/0,2| 4,88 1,91 | 1,63 | 1,17| 1,91/ 1,00
5|0,1 /1,0{0,04/0,8{ 0,03/0,2| 4,85| 1,92 | 1,66 | 1,16
6| 0,1 /1,0]0,04/0,8| 0,04/0,2| 4,81 | 1,94 1,70 | 1,14
7|0,05/1,0(0,02/0,4| 0,06/0,6| 8,45 | 1,44 | 1,42 | 1,02
8|0,05/1,0 0,02/0,4} 0,09/0,6 | 7,35| 1,56 | 1,52 | 1,03
9|0,05/1,0|0,02/0,4| 0,12/0,6 | 6,35| 1,69 | 1,62 | 1,04
10 0,05/1,0 | 0,04/0,8| 0,02/0,2| 9,15| 1,38 1,36 | 1,02
11 | 0,05/1,0 | 0,04/0,8| 0,03/0,2| 8,95| 1,40{ 1,39 | 1,01
12 0,05/1,0| 0,04/0,8| 0,04/0,2| 8,581 1,421 1,42 | 1,00

What has been said earlier of case 1 holds good here.

In addition

it can be seen that thecx-values giving 4 =-4,65 are considerably
smaller than in case 1. In case 1 we had 3,3 == 4,25 and here

2,8 == 3,60,

This will be explained. Prom (16) and (19) we obtain
20 2 & )
e ap6,02 + (o By)°
A== 1l=m+
e e B w0
k') a.-0O," + a; Oy
i=f = % i=m+1 &
Replacing the variables we have
\/Z: ﬁl)
(21) X= -8 ———

%:% uy
At least two conclusions can be made from (21):
- ¢ decreases with increasing n and constant
~ cXdecreases with u, values of the same size and increases
with uy values of variable sizes.

It can also be seen from Fig. 1 and Table 2 that both these
conclusions hold good.

Case 2 is the most general case which the author has been able
to treat in an exact mathematical form. More complicated cases,
such as cases 3 and 4, have been treated approximately by computer.
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5. As the third example we shall study the breakage of a rec-
“tangular prestressed or reinforced concrete element, when the sec-
tion is partly cracked and the tension of the reinforcement has
reached the yield-limit. The section is loaded with a moment.

The condition of failure is, on the basis of elementary
statics:

(22) 1 - S1g.* S’f{’ — =0
% (x, ”56‘3?1—;?‘
4°75 73
where S1 = the external moment caused by the invariable load.
S1 = the external moment caused by the extremal value of
the variable load.
Xy = the tensile-load of the reinforcement, when the tension
has reached the yield-limit.
X, = the distance of the reinforcement from the compressed
edge of the element.
x3 = the fullness of the compressed section of the element,
(usually called @ ) :
X, = the ultimate compressive strength of the concrete.
X5 = the breadth of the compressed zone.
Xg = the distance of the centre of gravity of the compressed

zone from the compressed edge in relation to the height
of the compressed zone.

All distributions are assumed to be normal. The means and
standard deviations are given in Table 3. The values of k corres-
sponding to the probability of failure 10~ have been calculated by
computer and the values k’ have been found with (23) using x= 1,90.

S* + 8¥ m + m
(25) k= —& 2, & Ip
X %3 By Bz

) 05 - mpwwE) ety ey
It can be seen that the greatest «~value among these cases
(giving k/k’= 1,0 in case 10) is 2,20.
The analysis of the results follows later.

4. As the last example we again study a similar reinforced
concrete section, but the section is now loaded with a moment and a
normal force. We get the condition of failure [9]

S,+ S,(x, - ¢)
X6 X175 )
Xy X3 X Xg

£0

x2(x1+32) (1 -



EERO PALOHEIMO

255

The loads and forces are dependent in the following ways:

Cases 1 and 2: S1g = 0,5 g S1p = 0,08 Py + 0,12 P
S2g =1,0 S1g S2p = 0,10 p, + 0,20 P,
Cases 3 and 4: S1g = 0,2 g S1p = 0,20 Py + 0,30 Py
S2g = 1,5 S1g S2p = 0,40 Py + 0,10 P,

g = the invariable load
Pys Pos p3 = different independent variable loads

Xy Xpy Xgy X, x5, Xg = as in example 3.

All distributions are assumed to be normal.

The number N,

which gives the relation between the life time of the construction
and the interval used to define the d.f. of the wvariable loads, is

here

10.

The means and s.d.: s are

given in Table 4.

The values

of k and k'corresponding to o< = 1,8 have been calculated as before.

Table 3
antity' S
1 S X x X X
= - b 11 0T0 1i 00,0 i1 0 10,1 j1 4
1T10,02570,5 10,171,00,02/ 5 B 0,75
2 10,05 /1,0 0,1/1,0| 0,02/1.0 | 0,1/5,0 | 0,08/1,0 | 0,15/1.0
3 10,25 /5,01 0,1/1,0| 0,02/1,0 1 0,1/5,0 | 0,08/1,0 | 0,15/1,0
4 10,025/0,5 | 0,271,0] 0,05/1,0 | 0,25/5,0 | 0,08/1,0 | 0,15/1,0
5 0,05 /1,0 0,2/1,0| 0,05/1,0|0,25/5.0 | 0,08/1,0 | 0,15/1.0
6 10,25/5,0 | 0,2/1,0] 0,05/1,0 0,23/5,0 0,08/1,0 | 0,15/1.0
7 10,025/0,5 | 0,1/1,0| 0,02/1,0 | 0,4/20.0 | 0,08/1,0 | 0,15/1,0
8 (0,05 /1,0 | 0,1/1,0| 0,02/1,0 | 0,4/20.0 | 0,08/1,0 | 0,15/1.0
9 0,25 75,0 0,1/1,0! 0,02/1,0 | 0,4/20,0 | 0,08/1,0 | 0,15/1.0
10 [0,025/0,5 | 0,2/1,0 | 0,05/1,0 | 1,0/20,0 | 0,08/1,0 | 0,15/1,0
11 10,05 /1,0 0.,2/1,0| 0,05/1,0 | 1,0/20,0 | 0,08/1,0 | 0,15/1,0
12 (0,25 /5.0 | 0.2/1.0| 0,05/1.0 | 1,0/20,0 | 0,08/1.0 | 0,15/1,0
antlty xe xg K K’ X /%’ Analysis of the
Case (107°) | < 190 results.
T T0,0/T,0 [ 0,08/T,0] 1.76 1 1,61 | 1,00
> |0,07/1,0 | 0,08/1.0| 1.75| 1,59 | 1,10 From the preced-
3 o,o;1,o 0,0851,0 1,70| 1,55 | 1,10 | ing examples we can
4 |0,0/1,0|0,08/1,0]| 2,18 8 . ‘
5  |0,0/1,0 | 0,08/1,0| 2,09} 1,95 | 1,07 | 8¢ that it is possib-
6 0,0;1,0 0,0B;?,O 1,92 1,80 },85 le to define the total
7 |olos1,0 |0.08/1,0| 1,38 1,32 5 )
8 10.0/1.0 |0,08/1,0| 1,32 | 1,30 | 1,02 | Safety factors, which
9 0,0;1,0 0,0B;ﬁ,O 1,27 1,27 1,00 | correspond to some
10 |o.0/1,0 |0,0871,0( 1,90 | 1,57 | 1,21 . _
11 |0,0/1,0 | 0,08/1,0| 1,76 | 1,51 | 1,17 | Probabilily of fallure
12 |0,0/1.0 | 0,08/1,0] 1,56 | 1,40] 1,11 | here ~107°. We have

also seen that even in the simplest cases this
complicated and leads to a number of different

definition is rather

values. Method 1
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Table 4
antlity
CasSe € Py P> Pz X4 Xo
T 0,05/1,00,10/17,0|0,10/1,00,10/1T,0[0,05/1,0[0,05/7,0
2 0,05/1,0 0,10/1,0 | 0,10/1,0 | 0,10/1,0 | 0,02/1,0(0,02/1,0
3 0,05/1,0| 0,10/1,0 | 0,10/1,0 0,05/1,0(0,05/1,0
4 0,05/1,0{ 0,10/1,00,10/1,0 0,02/1,0/0,02/1,0
antity : , ,
Case Xz X X5 *6 k| K| ¥k
1 0,08/1,0}{ 0,50/5,0 | 0,00/1,0 | 0,04/0,55/ 1,39| 1,41 | 0,99
2 0,08/1,0| 1,5/10 0,00/1,0| 0,04/0,55/ 1,40 | 1,22 | 1,15
3 |0,08/1,04 0,50/5,0 | 0,00/1,0 0,04/0,55 1,55 1,45 | 1,07
4 0,08/1,01} 1,5/10 0,00/1,0]0,04/0,55 1,47 1,24] 1,18

seems to have no mathematical justification and Method 2 seems to
be much too complicated for practical purposes.

We are now going to compare methods 3 and 4. From (21) it can
be seen that, assuming the various Uy values to be equal, we get
for - A= 4,65 the relation in Table 5 between < and n. The relation
holds good with the conditions given in example 2. If the u,; -
values are not equal, theevalue tries to increase.

Tables 3
and 4 show that
method 3 gives
quite satisfac-

Table 5

n 1 2 3 4 2 6 T 8
> 14,65 | 3,29 12,692,333 2,08(1,90| 1,76 1,65

tory results even when the conditions of example 2 do not hold good.
However, we can see that with increasing n we get smaller o< -values,
and also that with very different standard devigtions for some
essential quantities)the e< -values corresponding to,B = -4,65 begin
to increase.

It does not seem mathematically justified, to use always
the same o(-values, independent of the structure and other circum-
stances. It is also impossible to define the < -values separately
for all cases.

A compromiss between methods 3 and 4 could perhaps lead to
results satisfying the conditions given at the beginning of this
paper. Using a computer we could find different &¢ -values for
different types of structures, corresponding to e.g.,

-~ a timber column with normal force

-~ a prestressed rectangular beam with moment

- a steel column with normal force and moment.



FERO PALOHEIMO 257

The o -values should be given in standards, and would form a

basis for the design of structures. The standard deviations of

different factors should also be given in the standards,
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SUMMARY

Four different design methods are compared, two based on the
usge of a "total safety factor" and two on the use of "characte-
ristic valueg". Four examples are treated and it is seen that in
these cases the method using "characteristic values" is more rea-
sonable than the other. Some conclusions on the way of determin-
ing the characteristic values have also been made,

RESUME

Quatre méthodes d'étude différentes sont comparées, deux
méthodes se basent sur 1l'emploi d'un "facteur total de sécurité"
et les deux autres sur 1l'emploi des "valeurs caractéristiques".
Quatre exemples sont traités et l'on y voit que dans ces cas la
méthode qui emploie les "valeurs caractéristiques™ est plus rai-
sonnable que l'autre. On a tiré aussi quelques conclusions de la
fagon déterminée des valeurs caractéristiques.

ZUSAMMENFASSUNG

Vier verschiedene Bemessungsmethoden sind verglichen worden,
zwel von ihnen griunden sich auf die Verwendung von einem "totalen
Sicherheitsfaktor" und zwei auf die Verwendung von '"charakteristi-
scken Werten". Vier Beispiele sind behandelt worder und als Er-
gebnis hat man festgestellt, dass die Methode mit dern "charakte-
ristischen Werten" in diesen Fillen zweckmissiger als die anderen
sind. Auch einige Schlussfolgerungen iiber die Art dieser Werte
sind gemacht worden.
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