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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Structural Safety Specifications Based on Second-Moment Reliability Analysis
Spécifications de la sécurité des structures basées sur ['analyse des moments de deuxiéme ordre

Bauwerkssicherheit mittels einer auf den zweiten Momenten beruhenden Wahrscheinlichkeitsrechnung

C. ALLIN CORNELL
Associate Professor of Civil Engineering
Massachusetts Institute of Technology

Cambridge, Mass., U.S.A.

The primary aim of the symposium and of Themes VI and VII in particular is
to develop theoretically sound safety specification procedures that remain prac-
tical. Semi-probabilistic codes are admittedly only partially successful, be-
cause they lack the dependence on analytical probability theory necessary to
promote consistency and interpretation of the means and the ends of structural
codes. The purpose of this discussion is to demonstrate that a variety of
simple code formats, including some identical to present proposals, can be de-
veloped in a manner rigorously consistent with a probability theory. To be sure,
certain analytical and algebraic approximations are adopted in order to achieve
the desired simplicity of final code form, but the approximations, first, are
believed to be reasonable and, second, are made in a clear way that opens them
to analytical, quantitative study and to informed criticism. Alternatively,
since it is demonstrated what approximations in the theory are necessary to
achieve the simple code forms in use today, these present codes can be evaluated
with respect to these implicit approximations. The resuits presented here
should prove useful in guiding the discussion, interpretation, and selection of
numerical values of factors in presently used and proposed codes, as well as in
pointing towards systematic improvements in codes.

Second-Moment Reliability; The probability theory upon which the develop-
ments here are based is in itself an approximate theory(1 . It is a first-order
theory only; it is based on only the mean values and second moments of random
variables. The latter moment is a first-order measure of uncertainty. In func-
tional relationships among random variables the theory retains only the first-
order or linear terms in the random components, i.e., in the deviations from the
mean.

For example, the force capacity, W, of a tensile bar is uncertain if the
area, A, and yield stress, Y, are both uncertain. In this theory the uncertain-
ty in W would be measured solely through its variance (not its entire probabili-
ty distribution). The mean and variance of W would be found from those of A and
Y using a first-order expansion about their means

W=AY =m m + mA(Y-mY) +.mY(A—mA)
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in which m_denotes the mean and = denotes equality to first-order approximation.
Then applying the expectation and variance operation
1

My = my My (1)
2! 2 2. 2 2
O = My Oy * My og +2my My py oy OyTp (2)

in which 02 denotes variance and p correlation coefficient. The "exact" result
for the mean of W is

my = my (1 + pp v Vo Vy) (3)

in which V denotes the coeffigient Bf vaEiatign Qr og/m. If A and Y are uncorre-
1gted,2the exact result for V& is VA + VA Vys which should be compared to
V& + VG, the result implicit ¥n the equa!ions abgve. Clearly the first-order
aﬁprox¥mations may not be accurate if the coefficients of variation are large.
It is important to note that no assumptions (in particular, no Gaussian assump-

tions) have been made about the distributions of the variables.

The total is a self-consistent, distribution-free theory of uncertainty
that is very easy to apply to practical engineering problems and that provides
accuracy which may be sufficient for many real problems, in particular in norm-
ative (or prescriptive) engineering specifications and codes of practice.

Although the theory does not give a complete description of the uncertainty
in any particular variable, it can be argued that it is as accurate as structur-
al building applications can justify. Statistical data are, and perhaps always
will be, insufficient to determine the distributions of material strengths, di-
mensions, and loads. In any case, the variables in conventional structural prac-
tice represent highly idealized strengths and loads (e.g., homogeneous material
strengths, pseudo-static forces, and uniformly distributed floor loads). Adop-
tion of a first-order probability theory as a basis of structural safety would
perhaps be analogous to the long standing dependence of the profession on linear,
elastic theory to predict forces and deformations in reinforced concrete struc-
tures; in both cases, the results are known to be approximations, but they are
1) simple, yet self-consistent, 2) an improvement upon the state-of-art prior to
their adoption, and 3) capable of being systematically modified or replaced as
the profession accumulates knowledge.

Characterization of Variables; Within this approach to structural safety
and performance specification, a variable, X, is characterized by two numbers,
a best estimate and an uncertainty measure. The former corresponds to an ex-
pected value or mean, m, the latter to a variance, og. standard deviation, oy
or coefficient of variation, Vy. The expected value represents the profession's
best prediction of a variable {e.g., material strength, member deflection, peak
wind force). It is conducive to systematic progress of the profession that this
best estimate, rather than a conservative estimate, be a product of any research
investigation or committee report. The uncertainty value associated with a var-
jable should be a measure of the various sources and kinds of uncertainty sur-
rounding it. These include both "natural", inherent variablity (such as that
observed in wind velocities and material strengths) and the uncertainty associ-
ated with the imperfect tools of the profession (simplifying assumptions, incom-
plete knowledge, human constructors, etc.).

The treatment of the latter sources of uncertainty probabilistically is a
major distinction between this code proposal and most others. This procedure is,
how?¥er, ?onsistent with the most modern and most practical concept of probabil-
ity(2,3,4), and it avoids difficult-to-reconcile distinctions among the ‘inter-
pretations, analyses, and code treatments of the various sources of uncertainty.
For example, should the uncertainty in the initial shape of steel columns be con-
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sidered as natural (or "random") variability and included in determining a nomi-
nal or "characteristic" strength for a member, or should it be accounted for in
a multiplying strength reduction factor designed to account for fabrication var-
1abi12t§es? It is clearly in the latter factor in U.S. codes, whereas European
tests(3) are aimed at placing it in the former value. When this is settled,
what should be done with minor construction errors which cause accidental eccen-
tricities in the applied load? Indeed, what virtually all codes accept as "in-
herent" or "random" variability in the strength of steel can be, on closer in-
spection, ?g?omposed into a variety of identifiable sources which are in part
systematic . Similarly, should that uncertainty in snow loads which is asso-
ciated with its spacial disposition on a roof be considered as "random" or pro-
fessional? Since the profession lacks methods 9 analyzing snow accumulation

on irregular roof shapes, it has been proposed( to collect statistical data as
if the problem were a "random" one. The distinctions in types of uncertainty
are difficult, because they are not "basic" but dependent in part, it seems, on
the data available at the moment and on the level of idealization in the conven-
tional treatment of the phenomenon. In fact, these distinctions are unnecessary
if all are treated as contributions to a total measure of uncertainty, denoted o.

It is useful (but not technically necessary, as will be demonstrated) to
define nominal or "characteristic values" g variables. For a material strength,
the characteristic value in the CEB code{®) is one which a specified (1argeg '
fraction of all standard test results exceed. In a parallel way, in this first-
order theory a characteristic strength, R*, would be

R* = mp - kp op = mp(1 - kg Vp) (4)

in which k, is a specified constant, the same for all materials, members, etc.
A characteBistic load or applied force, $*, is defined in an analogous way, +kS
replacing -kp. Because CEB code specifications present the formula for the
characteristic strength in the same form as Eq. 4, it is important to point out
the differences between the CEB and this proposal.

First, the CEB code (and others 1like it) set the characteristic value at a
specified fractile of the distribution. Thus the factor kp must depend upon the
shape of this distribution (and in some cases on m and ¢ as well). For the lev-
els of probabilities usually specified by present codes (1 to 10%), the value of
kp is not too sensitive to the distribution,but, of course, the distributions of
interest are not well established, and they probably change from place to place
and time to time. This proposed code basis, being only first-order, does not
attempt to distinguish between distribution shapes; kp, not the probability lev-
el, is fixed by the code.

Second, the CE?SSOde would base op solely on standard tests of standard
materials specimens . In the propose5 code, the interest is on strength in
place. Therefore, op should include, in addition to the "inherent" dispersion
observed in standard tests, the uncertainties associated with correlating these
results to in-place strengths {e.g., construction versus laboratory practice,
weather conditions, full-size member versus standard specimen, etc.). In short,
in this proposal op should measure all the uncertainty that the engineer in fact
faces when asked to predict the strength of the material in an actual beam to

be built to his specifications.

Finally, the proposed code differs from the CEB in that it includes char-
acteristic values for the strength of members (or assemblies, perhaps) and the
force applied to members (in addition to the strength of materials and the en-
vironmental Joads). It is member capacity and member force which ultimately
determine safety. They depend, of course, on material strength and environmen-
tal loads, but only in part. The best prediction of and the uncertainty in the
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strength of a member depend upon the dimensions of the member and upon incom-
pletely understood microscopic behavior of the material or materials of which
it is constructed, as well as upon material strength, The first-order probabil-
ity theory makes approximate analysis of these factors feasible.

For example, consider the moment resistance of the cross-section of a sim-
ple, rectangular reinforced concrete beam with width B, depth-to-steel D, con-
crete strength C, and total steel yield force T. Adopting conventicnal struc-
tural theory (nothing more can be justified in a codeg, the (under-reinforced)
yield moment resistance, R, of the cross-section can be written

R=TD(1 - n e ) A (5)
in which n is a constant dependent upon the "theory" used, and A is a random
factor introduced to describe the dispersion about the predicted resistance
that is observed in laboratory test results in which the values of T, D, B, and
C are known by relatively precise measurement; A is the (random) ratio of ob-
served to predicted resistance. For an unbiased prediction formula, my, = 1.
The uncertainty value o? is a measure of the accuracy of the prediction formula,
or, in short, of the prgfessiona1 uncertainty inherent in the use of this theory.

Under fZgﬁt-order probability theory the mean and variance of the resis-
tance become ; mr
mp = My My (1 -n - ) m, (6)

mBmDm
R_1)2 2
) C’Xi \ X ok

in which the X; are T, D, B, C and A, and the term in parentheses denotes the
partial derivative of R with respect to a particular variable X;, evaluated at
the means of the variables. (It has been assumed that the X.'s are uncorrela-
ted.} Note that the uncertainty in each variable contributes to the uncertainty
in R in a manner dependent both upon the uncertainty in that variable and upon
the sensitivity of R to deviations in the variable.

]
3

GR_

The characteristic value of the member resistance is found by substituting
into Eq. 4. Note that it is not simply the value of R obtained by substituting
characteristic values of strengths, T* and C*, for T and C in Eq. 5, as is im-
plicit in present codes.

The Tack of sensitivity of resistance variables to certain factors can be
exploited to simplify significantly the procedure above. It may be sufficient
for most code purposes to assume in the computation of the uncertainty me?sgse
Vg that the relationship between R and the other variables is of the form 1

R=cMFP (8)

in which ¢ is a constant, M is a material variable, F is a fabrication-dependent
member dimension variable, and P is a professional factor. {In the reinforced-
concrete beam exampie above, T, D, and A can be associated with M, F, and P, re-
spectively. The constant ¢ is simply 1 - (n mT)/mB my me .} In this case one
obtains simply s Uy , )
Vg = Vg + VE+ V) (9)

The uncertainty in R is made up of uncertainty in material strength, fabri-
cation, and professional factors. If this simplification is adopted the charac-
teristic resistance is simply

R¥ = mp (1 - kpVp) =mo (1 - ko A+ VEFVE) (10)
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In the reinforced concrete example one obtains

1 "1
R*—[meD(l-nW)mA](1-kR/Vﬁ+V§+V§) (1)

Since the coefficents of variation are probably rather insensitive to beam size
and other factors, the last term might be the same for all beams throughout a
design project, implying that the computation of theoretically consistent char-
acteristic resistances of beams need be no more difficult than present computa-
tion of nominal resistances. Both involve calculation of the value of the first
factor, that in square brackets. Note again, however, that in the proposed code
mean values, not nominal values, are involved in these calculations. An impli-
cation is that a by-product of the calculation is the best professional predic-
tion of the resistance of the cross-section, i.e., the first factor in Eq. 11;
this best estimate is never obtained in present calculation procedures.

Similarly, characteristic loads and applied member forces can be determined

1+ kg Ve) (12)

as

S* = me + k

mg + kg og = mg (
The uncertainty measure in an applied member force should account for both the
customary observed, inherent dispersion in environmental loads and the many pro-
fessional uncertainties such as those involved in translating loads into member
forces (i.e., in the structural analysis used), in approximating dynamic by
static behavior, in idealizing spatial load variations, in predicting future
changes in the loading environment, and in neglected (abnormal and unforeseen)
loading combinations.

Again for many purposes it may be sufficient to assume in uncertainty cal-
culations that the applied member force, S, is

S=¢cTE (13)

in which T is the environmental load or "field strength"(7) and E is a factor,
perhaps with mean 1, reflecting professional engineering uncertainties. (The
constant ¢ is related to the structural analysis which translates l1oad into ap-
plied force.) Then Vg is simply V% + VE, and the characteristic applied force

is simply
S* = me (1 + ko AVZ+VE ) (14)
S T E

V. can be obtained from load environment measureT?ngs and analysis, while VE
must be judged, and/or obtained from calibrationli0) of existing codes (al-
though physical measurements of forces in full-scale structures subjected to
known loads could provide partial information). It should be clear that how the
uncertainty in S is proportioned between T and E will depend in part upon how
the load is idealized (e.g., winds as pseudo-static gusts or as dynamic velo-
city time-histories), but that the net uncertainty in $ may be unchanged. (It
could be Tess, if the particular idealization is more accurate.)

Safety Specification Alternatives; Codes of practice must in some way
cause the engineer to specify a structure which has a (best prediction of the)
resistance sufficiently in excess of the (best prediction of the) applied force
to insure adequate safety and performance without unduly penalizing the cost of
the structure. This requirement can and has been effected in a variety of code
"formats" (e.g., working stress, load factors, semi-probabilistic, etc.) In
theoretical structural safety terms the purpose of the code is usually to pro-
mote a pre-determined level of reliability. In this section it will be demon-
strated that this reliability requirement can be expressed in a variety of con-
venient code formats, all technically equivalent in that they will cause de-
signers to specify the same mean resistance.
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Satisfactory structural safety (or performance) will be achieved if the ve-
sistance, R, exceeds the applied force S, that is, if the safety margin M = R-S
exceeds zero. The mean and variance of M are

My = Mp = Mg (15)
O'ZM = O'ZR +_ozs (16)

The reliability of the structure (or member)} is defined as the probability that
M exceeds zero. In terms of a first-order probability theory reliability is
measwyeqosy the number of standard deviations oy by which the mean exceeds
zero\!s1Y) Call this number B. The larger B, the more reliable the member.
To impose a required reliability a code must require that

The appropriate value for 8 is a matter of serious professional judgement. Va}—
ues of about 4 have been found to be consistent with certain present codes{10,11)
The specified value of B should be related to the consequences of the type of
failure under consideration and to the marginal cost of increasing the resis-
tance. Higher reliability, i.e., a higher value of 8 should be required of
sudden brittle shear failure modes than of ductile yielding, for example. If

the mode of "failure" (or "limit state") under study is simply undesirable (but
not unsafe) cracking or deflection, significantly lower values of B (2 perhaps )
are appropriate. Although it is not possible at higher values of B to associate
even a?gsoximate numerical probabilities to values of g, there is some justifi-
cation for assuming that at these levels an increase of g by 1/2 implies about
an order of magnitude decrease in the complement of the reliability, i.e., the
probability of failure. The (desirable, but impractical) numerical evaluation

of reliabilities discussed in theoretical reliability studies depends on precise
knowledge of the probability distribution of M. This in turn depends on the
distributions of R and S. These will probably never be known accurately, for
they are affected by significant sources of professional uncertainty which are
difficult to model and to measure.

This single technical safety requirement(17)can be expressedin a variety of
alternate ways. It is valuable to display some of these formats and the approx-
imations and assumptions necessary to achieve them. Direct substitution of
Eq. 15 and 16 produces the safety requirement in the "safety margin form"

my > Mg + B/EF—FS' (18)

Rearrangement leads to the "safety factor” form
my 36 Mg (19)

in which & is a function of VR’ VS’ and g,

o= (1+8NZFVI- BT VEVE)/( - 82p?) (20)

It is shown in Figure 1 for g = 4. Substitution of Eq. 10 and Eq. 12 for
nominal values yields the "nominal safety factor" form

R* > g* S* (21)
in which 6* is a function of VR’ VS’ B, kR, and kS:
1 - kg V
0% = _.__._B__E ) (22)
1+ KkeV

S 'S
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It is shown in Figure 2 for
B =4,k 1.28, and k. = 2.05.
Notice tﬁat in the 1attgr case
6* is quite insensitive to V
and Vg over the range of int8r-
est; this is an advantage of
the nominal form. It is impor-
tant to recognize that the val-
ues of ky and kg are, techni-
cally speaking, arbitrary. In-
creasing kp will reduce R* and
reduce 6% %o compensate, leav-
ing the required value of m
unchanged. The values of k, and
kg=1.28 kg can be chosen to satisfy le-
- sl gal problems surrounding quali-
kg=2.05 ty assurance and liability, or
‘to permit simplification of the
o ] (— code as will be discussed below.

The reliability theory
adopted implies that you cannot
obtain high reliability with

Figure 1 highly uncertain resistances.

If VR > 1/B, then it is not possible to obtain the desired level of relia-
bility, since oy (which is greater than or equal to o Vg mp) will grow too
fast with mp to permit my (=mp -mg) to exceed g oy. Et Targer values of mp, Vg
might very well be smaller, of course. On the otﬂer hand, a simplified practi-
cal code might simply overlook this problem by setting 6* equal to an approxi-
mate, linearly increasing value for Vp >-0.1.

A variety of split factor
code formats similar to the ACI
or CEB forms are also possible.
The possibility of decoupling
these fact recognized by
N. C. Lind?ﬁ Yg? who has de-
fined and demonstrated the no-
tion of "practical equivalence"
of code formats. Lind showed
that, with remarkable numerical
accuracy,

VOE + 0§ = o (OR + 05) (23)
in which o is a constant chosen
to fit the experted range of
ratios of e§ to og. A value of

Figure 2 a = 0.7 will give errors of less
than about 5% for op/og in the entire range of 1/3 to 3. With this approxima-
tion Eq. 18 can be wr1%ten in the "split form"

¢ mp > Yg Mg (24)
in which
¢$=1-8aVp and vg = 1+ Ba Vg (25)

Note that these strength reduction and load increase factors depend only on their
corresponding uncertainty measures, Vg and Vg, respectively, (and, of course, on

16. Bg. Schlussbericht



242 VI — STRUCTURAL SAFETY SPECIFICATIONS

the reliability level g). Note that, approximately, 8 = ys/¢. A "nominal split
form" can be written as
o* R* >’YS* S* (26)
in which
' * = (1- Bo VR)/(l- kRVR) and v} = (1+ Ba V )/(1+ kS S) (27)
If combined loads are involved, then S is made up of the sum of two applied
force effects, say, SD + 51, signifying dead and Tive loads. JAssuming they are
uncorrelated and using Eq. 23, o¢ = a{og, *+ og, ). Then, in Eq. 24, Yg Mg can be
D L
replaced by ( ) , ,
Yelle = Me (1+ Ba Vo) =me + Ba o Eme +me + Ba“Ce + Boco
S'S S S S S 5o Sp 5p Sp (28)
= me {1+ Bo? Ve ) + me (1+ 8a? Ve ) = m +m
S St L St SRR

in which a dead load and a Tive load factor are defined, as indicated, in terms
of g and their respective uncertainty factors Vg sp and Vg . This result is due
to M. K. Ravindra of the University of Waterloo.

A "split load factor form" results,
* R& ~ % Q%
o* R* > ¥ S§ + v SF (29)
if characteristic live and dead loads are used and if nominal load factors are

defined as, for example,

This factor will be re]at1ve1y insensitive to Vg,. Combined loads involving two
or more transient loads(7) can be treated in a 51m11ar way provided the proper
model is used. In coordination with the maximum wind load, for example, one
should use the normal or "steady-state" live load moments, not those of the max-
imum (in time) Tive load.

Finally, it is useful to demonstrate that a consistent code format is pos-
sible which bases the characteristic resistances and applied forces on only cer-
tain portions of the total uncertainty. For example, if it is considered desir-
able to adopt a format analogous to the CEB code, the characteristic resistance,
R', will be based on the uncerta1nty in material strength component only, i.e.,

on Vy, R' = (1- kR VM) (31)
and the characteristic applied 1oad on the load environment uncertainty, VT,
only St = mg (1+ kS T) (32)

(Actually, as was discussed above, the CEB defines only characteristic material
strengths, not characteristic member resistances.) Adopting the assumption in
Eq. 9, we can define the "other" unceEta1nt 2 VO, in the resistance as

Vg? = vR (33)
With the parallel assumption for app11ed force Eq 14, the code specification
becomes the "separated form" ' R 5yl S (34)
in which ' = (1- Ba Vg)/(1- kr Vy) and Ys' = (14 Ba Vg)/(1+ kg V7) (35)

If it is assumed that 1-goVp = 1- BaZVO - BaZVM = (1= BuZVO)(1- BaZVM), then
_— 1~ 2y 5o s i : T+ V
o' = (1- sazvo) - E:VM ; and, similarly, Te = (1+su2VE)-%T£%%—— ; (36)

Note that since kﬁ and Vg are techn1ca1]y arbitrary, there is freedom in their
choice. If the choices are kS kp= Ba?, then, simply
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o' ¥ 1- a?Vy and yg = 1+ BaZVE (37)
In addition, one could write, with additional approximation,
¢ = 1= Ba®Vg = 1- Ba’Vp - Ba®Vp = (1- Ba®Vp)(1- Ba’V) = of ¢f (38)

The advantage of making all of these approximations is that it further uncouples
the problem, yielding strength reducing and applied force increasing factors
that depend only on the "less tangible", fabrication and professional uncertain-
ty, Vg, V , and Vg. The "inherent" variation, Vy and V7, influences only the
characteristic values R' and S'. This is very c*osely parallel to the ACI and
CEB codes. The recent alterations to the basic CEB format involve factoring the
strength reduction factor and load factor into several independent factors with
identifiable "causes", similar to ¢' = ¢ ¢p here. The process demonstrated
here for Vg, Vp, and ¢f, ¢ﬁ can, of course, be extended to the finer breakdown
proposed by the CEB.

If there are combined loads, the "separated Toad factor" form is

¢" R' >vpy Sy + v §) (39)
in which, for example, (with kS = Ral),
' vy =1+ ea®Vg (20)
where Vg, is the professional uncertainty in “translating the dead load to ap-
plied fopce. The characteristic dead load effect in this case is

in whjch it is assumed V¥B = Vp® + Vgj, Vp being the uncertainty in the dead
load "environment" itself. ,

Discussion; It is the author's hope that this discussion will aid profes-
sional committees who must choose reasonable and consistent values for the var-
ious factors in a code such as the CEB. The theoretical basis is in axiomatic
probability theory, which does not require that all probabilities be defined as
relative frequencies; this permits all uncertainties to be treated in a parallel
and consistent manner. For example, this theory demonstrates that uncertainties
in member dimensions should not be included in a load factor (yg, of the CEB)
but in a strength reduction factor (¢f of this proposal); if the“designer wants
to obtain a safer structure by increasing the specified dimensions, uncertainty
in the dimensions will influence the reliability actually achieved, a fact
which is not properly reflected if the influence of this uncertainty is incor-
porated in the nominal locad. Also, the factor o® which permits ¢ and y factors
to be less stringent, can be considered to be reflecting the theoretically
small likelihood that one member will be simultaneously poorly fabricated, the
recipient of low strength material, heavily loaded, etc. As another example of
the benefit of the theory, it becomes clear that the influence of seriousness
of failure should be reflected in the choice of the reliability level (here, B)
independently of the uncertainty levels (o or V) in loads, materials, etc; the
reliability value should, however, affect all factors ¢ and vy (here through 8)
and not simply take the form of an additional multiplicative factor (YC in the
CEB). In any case, and at any time, code making is going to require profession-
al judgement in selecting numerical values for the factors involved. Again it
appears that this proposal will be helpful. It has been the author's experience
that the easiest way to ponder the uncertainty in, say, the conventional profes-
sional procedure of translating live load to applied force is to ask oneself,
"If I were given the value of the maximum total live load on the floor tributary
to a column, what is the value € such that in 2/3 of all cases (or with proba-
bility 2/3) I would measure the maximum live load induced force within 1 + ¢
times the value predicted by my procedure (of load idealization, structural
analysis, etc.)?" The value of e that answers this question is, in important
part, an estimate of Vg, and hence gives v'(=1+ ga®Vg, , Eq. 40), once B is
selected. L L L
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In summary, the process of code development envisioned requires that the
relevant professional committee prepare a report that gives the recommended
procedure or formula for obtaining the best prediction of, say, the yield
moment of a simple rectangular R.C. beam. In addition, they should report their
quantitative assessment of the profession's uncertainty associated with the for-
mula, namely, V,. Means and standard deviations of ratios of predicted to ob-
served resistanges are commonly calculated by such committees and should serve
as a basis for their value of V,. In the reinforced concrete example, it may be
of the order of 0.1. Still othgr appropriate committees might study reinforcing
bar strength variability and conclude that, say, Vy = 0.08, while a conmittee on
construction tolerances might estimate (or stipulate?) that Vg = 0.03, based on
measurements or estimates of the depth of the steel in place._ (This value may
be smaller for deeper beams.) The implication is that Vg = NE+Vp =
v0.037 + 0.T% = 0.10. For p=4, «?=0.5, and kg= Ba®=2, one obtains ¢'= 1-80?Vg =
0.8, and R' = mp(1-k VM)= 0.84 mp. Recall when comparing this with present pro-
cedures that the bes% estimate of the resistance, mp, will be significantly
greater than present nominal resistances.

The conclusions of parallel special committees on loads and on structural
analysis and testing would yield predicted loads, load and structure idealiza-
tions, and analysis procedures, plus quantitative estimates or judgements of
the measures of uncertainty in these phenomena and in these procedures. A major
advantage of the code making process envisioned here over the present procedure
{as understood by the author) is that the committees of specialists would have
to judge and report on the uncertainties in their domain of interest. Their es-
timates would be quantitative inputs into a committee charged with selecting
load factors and strength reduction factors. The proposed code basis provides
an unambiguous means of communication and a formal framework within which this
process can work in a rational and consistent manner.

References

(1) Cornell, C.A., "First-Order Uncertainty Analysis with Applications to
Structural Reliability," ASCE-EMD Specialty Conference, Purdue University, lLa-
fayette, Indiana, Nov.,1969.

(2) Hadley, G., Introduction to Probability and Statistical Decision Theory,
Holden-Day, Inc., San Francisco, 1967.

(3) Blake, R.E., "On Predicting Structural Reliability," AIAA Paper No. 66-503,
4th Aerospace Sciences Meeting, Los Angeles, California, June, 1966.

(4) Cornell, C.A., "Bayesian Statistical Decision Theory and Reliability-Based
Design," Proc. of Inter. Conf. on Structural Safety and Reliability of Engineer-
ing Structures, Washington, D.C., April, 1969.

(5? Sfintesco, D., "European Steel Column Research", Conf. Preprint 502, ASCE
Str. Engr. Conf., Seattle, Washington, May 8-12, 1967.

(6) Leclerc, J., "Inventory of the Possible Causes for Variations of the Speci-
fied Characteristics of Finished Steel Products," Preliminary Publication, IABSE
Symposium, London, September, 1969.

(7) Mitchell, G.R., "Loadings on Buildings," Preliminary Publication, IABSE
Symposium on Concepts of Safety of Structures and Methods of Design, London,
September, 1969.

(8) Rowe, R.E., “"Safety Concepts, with Particular Emphasis on Reinforced and
Prestressed Concrete," Preliminary Publication, IABSE Symposium, London, Septem-
ber, 1969.

(9) Benjamin, J.R. and C.A. Cornell, Probability, Statistics and Decision for
Civil Engineers, to be published in 1969 by McGraw-HiTl, Inc., New York.

{10) Cornell, C.A., "A Probability-Based Structural Code," presented at 1968
Fall Convention, ACI, Memphis, Tennessee. To be published in the December,1969,
Journal of the ACI.




C. ALLIN CORNELL 245

(11) Lind, N.C., "Deterministic Formats for the Probabilistic Design of Strwc-
tures,” An Introduction to Structural Optimization, M.Z. Cohn, Editor, S. M,
Study No. T, Solid Mechanics Division, Univ. of Waterloo, Waterloo, Canada, 1969.
(12) Lind, N.C., "Comments on Cornell's Code Format," unpublished memorandum,
Univ. of Waterloo, January 18, 1968.

SUMMARY

The discussion demonstrates that a variety of practical formats
for structural codes, including that of the ACI and CEB, can be de-
veloped directly from probability theory. A simplified, first-order
probability theory based on first and second moments makes the de-
velopment feasible . The theoretical basis for a code insures con-
sistency and promotes objectivity in the discussion and specifica-
tion of safety. A1l sources of uncertainty are treated uniformly,
namely, by axiomatic probability theory, as modern interpretations
of the notion of probability permit.

RESUME

La discussion précédente démontre qu'il y a une variété de
formats, dérivés directement de la théorie des probabilités, qui
peuvent &tre employés en pratique par les normes de calcul, comme
celles de 1'ACI ou du CEB. Une théorie simplifiée du premier ordre
rend cette dérivation possible. En établissant les normes sur une
bage théorique, on garantit des spécifications consistentes et
l'objectivité dans les discussions sur le degré de sécurité. Toutes
les sources d'incertitude sont traitées d'une fagon uniforme, au
moyen des principes de la théorie des probabilités, pour autant
que l'interprétation moderne du concept de probabilité le permette.

ZUSAMMENFASSUNG

Die Diskussion zelgt, dass eine Vielzahl praktisch angewende-—
ter Bauordnungen, unter anderem auch ACI und CEB, direkt aus der
Wahrscheinlichkeitstheorie entwickelt werden kidnnen. Die Entwicklung
wird durch eine vereinfachte Walrscheinlichkeitstheorie ermtglicht,
welche auf den ersten und zweiten Momenten beruht. Diese theoreti-
sche Grundlage fir eine Bauordnung gewihrleistet Folgerichtigkeit
und Objektivitdt bei der Diskussion und Bestimmung der Sicherheit.
Alle Unsicherheitsfaktoren werden gleichwertig behandelt, n8mlich
mittels axiomatischer Wahrscheinlichkeitstheorie, wie es durch die
neuere Auslegung des Wahrscheinlichkeitsbegriffes mtglich wurde.
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