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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Prediction of Behavior of Steel Columns Under Load
Le comportement des poteaux en acier soumis & la compression
Das Verhalten von belasteten Stahlstiitzen

LAMBERT TALL GORAN A. ALPSTEN
U.S.A. Sweden

INTRODUCTION

The prediction of the behavior of compression members under load
depends on a knowledge of material properties and geometry. There may be
considerable scatter in both~-in particular, residual stresses and out-of-
straightness are predominant factors. Residual stresses are the initial stress-
es existing in a member before the application of external load. Out-of-
straightness is used here to refer to all deviations which result in an eccen-
trically loaded column, that is, initial curvature, eccentric application of
load, and unsymmetrical residual stress distribution.

This paper summarizes some aspects of a continuing general study of
the stability of plates and columns underway at Lehigh University for the past
two decades. The initial work, concerned mainly with small to medium-size
rolled steel shapes, formed the basis for design recommendations subsequently
incorporated into the U.S. specifications. Later investigations have included
welded column shapes also. Current column research at Lehigh University deals
with welded shapes built up from flame-cut plates and with very heavy shapes,
rolled as well as welded members, of sizes up to 11221b/ft.

Although studies at Lehigh University have considered simple columns,
beam-columns, and framed columns, this paper includes only the simple columns,
since a large number of variables have been considered in its study, and
since it is, essentially, the basic column, to which the strength of other
columns may be referred.

BASIC COLUMN STRENGTH

The strength of a simple column may be typified by its maximum (or
ultimate) load. For any particular column cross section and material, the
maximum load depends both on the magnitude and distribution of residual stresses
within the cross section, and on the initial out-of-straightness. For the
hypothetical case of zero initial out-of-straightness, the column remains
straight under increasing load until the tangent modulus load is reached. The
level of the tangent modulus load is greatly affected by the residual stresses.
At the tangent modulus load, the column bifurcates and then continues deflect-
ing under increasing load, reaching the maximum load, after which it starts
unloading. See Fig. 1.

[
While laboratory testing techniques may simulate closely the behavior
of a perfectly straight column (See Fig. 2), practical columns show an initial
out~of-straightness which will cause the column to deflect immediately upon
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loading. The deflection will increase gradually under increasing load up to
the maximum load, as shown in Fig. 1. The maximum load of the column with
initial out-of-straightness is reduced as compared to the perfectly straight
column with other conditions the same. The maximum load and the shape of the
load-deflection curve are affected by residual stresses and out-of-straight-
ness. The unloading characteristics may be important when considering the
framed column member in a structure--it is normally desirable that the column
can sustain loads at or close to the maximum for relatively large deflections.

EFFECT OF VARIATIONS IN RESIDUAL STRESSES AND CUT-OF-STRAIGHTNESS

As noted above, the mechanical and geometrical properties of the
column, including in particular residual stresses existing in the member and
initial out-of-straightness, are of the utmost importance in their effect on
column strength. These properties can vary considerably between different
members, as well as between different elements of same fabrication conditions
and cross-sectional geometry, and alsc within the member itself. This varia-
tion or scatter has been studied extensively, and some results of the varia-
tion in yield strength and residual stresses have been summarized in Ref. 1.

The formation of residual stresses is dependent on the manufacturing
and fabrication processes used, as well as on the size and geometry of a par-
ticular member. [2] Thus, it may be expected that the fabrication and geo-
metry are important factors in determining the strength of steel columns. The
variations in manufacturing and fabrication processes, and in the member size
and geometry, all lead to a scatter in the residual stresses, which when com-
bined with the variation of material properties, will lead to a scatter in
column strength both in the behavior under load, and in the maximum load.
Similarly, the out-of-straightness characteristics are a result of the manu-
facture and fabrication which will introduce scatter in column strength. In-
deed, a summary of all column test results obtained shows a tremendous varia-
tion, even when compared on the basis of equal yield strength as shown in
Fig. 3. It should be noted that the testing method used for most of the col-
umn tests included in Fig. 3 involves a special alignment procedure, [3] de-
signed so that the effect of out-of-straightness is minimized. Thus, it may
be expected that the consideration of full variations in out-of-straightness
would lead to additional scatter in the column test results of Fig. 3.

Most of the variation in column results, however, can be attributed
to predictable variations in the residual stresses or other factors such as
out-of-straightness, which could be controlled in the design or fabrication
process. The strength of columns, and the consideration of the scatter in
material properties, may be considered in elther of two basic ways: (1) a sta-
tistical study of strength irrespective of causes, or (2) a theoretical
study of mathematical models where all the variables may be considered either
independently or together. The former is experimental, and the latter is theore-
tical with experimental correlation.

The Lehigh University studies of column strength have followed the
second consideration--typical and possible variations in the influencing factors
were considered and it was investigated theoretically whether these made signi-
ficant variations in structural behavior. The verifying experiments were de-
terministic, rather than probabilistic, in nature. This approach was chosen
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mainly for reasons of economy and time, and for the fact that the influence
of each variable could be considered separately in order to understand funda-
mental behavior. The variables considered were residual stress, out-of-
straightness, yield strength, manufacturing and fabrication processes (for
instance, hot-rolled or welded) and details (for instance, weld method and
heat input), and size and geometry of the cross section. The mathematical
models used considered the simultaneous elastic and plastic regions at all
stages during the loading process. Some effects, such as residual stresses,
predominate in these column studies, and efforts were made to find ways of
changing the residual stress distribution into a more favorable one. It is
not believed that purely statistical studies would lead to methods of improv-
ing strength.

PREDICTION OF COLUMN STRENGTH

Two methods for the forecasting of the structural behavior of a
simple column will be considered here. These methods are based upcon the tan-
gent modulus load concept ("T.M. prediction") and the maximum load of the
column ("M.S. prediction'"), respectively. The tangent modulus prediction, as
generalized to include the effect of residual stresses, [4,5], considers a
fictitious, perfectly-straight column with centric load application and sym-
metrical residual stresses. (See also Fig. 1.) It may be shown that the tan-
gent modulus prediction under certain assumptions applicable to members of
structural carbon steel is a function of the moment of inertia of the elas-
tic part of the cross section, [5] or

Py ™ E g
= 1 (1)

A (L/m)2

where PT is the tangent modulus load, A is the cross-sectional area, E is
the elas%ic modulus, Io is the moment of inertia of the elastic part of the
cross section, I is the total moment of inertia about the axis considered, L
is the effective length of the column, and r is the radius of gyration of the
cross section. The extension of the elastic areas of the cross section is
dependent on the residual stresses and the applied strain. Typical column
curves from tangent modulus predictions are shown in Fig. Uu. (Pcr is the
eritical load, in this case the tangent modulus load.)

The maximum strength prediction is somewhat more complex to calcu-
late. The basic concepts, however, are very simple--the theory is based upon
equilibrium conditions for the deflected position of the column. The theory
may be applied to the prediction of the post-buckling strength of the initially
straight centrally loaded column as well as to the more practical case with
initial out-of-straightness. The maximum load marks the position where, under
increasing deflection, the rate of the resisting internal moment in the column
is equal to the rate of the externally applied moment. Several studies have
considered methods to calculate the maximum load, including the effect of
residual stresses and initial-out-straightness, [6 through 11] An example of
a maximum strength curve is given in Fig. 5, and compared with the correspond-
ing tangent modulus curve. [12] In this particular case, the maximum strength
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curve, based upon predicted residual stresses in a hot-rolled 14WF73C "jumbo"

shape with an initial deflected curve of & __/L=0.001, falls slightly below
max

the tangent modulus curve.

For a general investigation of the column strength as affected by
accurate residual stress distributions and out-of-straightness, the numerical
computations will become quite cumbersome and tedious, necessitating the use
of an electronic computer. General programs have been developed for tangent
modulus as well as maximum strength predictions. However, simplifying assump-
tions of various degree can be made, which may reduce the amount of necessary
numerical operations to such a level that these methods may be used without
the computer for practical estimates or for design. Thus, for small and
medium-size rolled H-shapes it may be shown [13] that the following equation
approximates the tangent modulus load

P n2 E Et
™ I

for major-axis bending

A (L/r)2
and
2 rEy?
P nm E _—)
™ _ E . . .
= 5 for minor-axis bending.
A (L/r)

where E_ is the tangent modulus of the complete cross section. Figure 6 gives
the computational procedure schematically. '

For maximum strength predictions, the approximate method discussed
in Refs. 8 and 10 may be sufficiently accurate and useful for many practical
purposes. The method is based upon the assumption that the initial deflected
curve and the curvature under load may be described by half-sine waves. The
mid-height section of the column is considered only. By differentiating the
deflected curve function twice, it is possible to obtain a simple relation-
ship between the deflection at mid-height of the column (Gmh) and the curva-
ture at the same point (Gmh)

2

= I
gmh - L2 6mh

After choosing arbitrarily a value of 6mh’ the corresponding curvature @_

is obtained directly from the equation above. The axial strain whic
produces equilibrium in the cross section can be found by an iterative pro-
cedure. The iteration is continued until an equilibrium equation for the mid-
height section of the column, that is,

P (S, .

init + smh)‘: o

is satisfied. P is the axial load, 6init the initial mid-height deflection
and M the internal moment corresponding to the stress distribution in the
mid-height section.
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Since methods are now available for a more rational column design
procedure, there is no longer any need for complicated formulas using various
correction factors for estimated fictitious eccentricities or initial deflec-
tions--in the past, such factors had been determined to take into account the
transition in the column curve from the Euler curve to the yield strength
load for short columns. It seems more logical to base an accurate column
analysis upon the actual conditions, including measured or estimated residual
stresses, out-of-straightness,. and mechanical properties.

SOME TEST RESULTS: COMPARISONS WITH THEORY

Figures 7 through 12 illustrate the effect- of various parameters
on the column strength. The diagrams are included here to illustrate a few
important points related to the effect of variations in residual stresses due
to different manufacturing and fabrication conditions of steel columns.

A comparison between column test results for rolled wide-flange
shapes and welded shapes of H and box section, built up from universal-mill
plates, is shown in Fig. 7. [14] It is apparent from the diagram that there
is a substantial variation between the results obtained for these four kinds
of columns. The data of the rolled shapes, all of small to medium-sized cross
section, fall reasonably close to the CRC Basic Column curve, suggested by
the Column Research Council to describe the strength of columns, [15] and
adopted as the design curve by the American Institute of Steel Construction.
On the other hand, all the data points for welded shapes are below this
curve, for some cases by as much as 30 per cent.

The effect of the column bending axis on column strength is shown
in Fig. 8 for rolled wide~flange shapes. [16] Normally, such shapes will
have compressive residual stresses at the flange tips, [5,12,13,16] which will
reduce the column strength comparatively more for buckling about the minor
axis.

Figure 9 shows the effect of the geometrical size of the cross sec-
tion. Theoretical studies had indicated that the size of a hot-rolled mem-
ber is an important variable in the formation of residual stresses--the
stresses tend to increase with increasing size of a rolled member. [12] This
would lead to reduced column strength for heavy rolled coclumns. The curves
in Fig. 9 are tangent modulus predictions based upon the residual stresses
predicted in a heavy rolled "jumbo" section 14WF730 and a smaller rolled H-
shape.[11,17] It should be noted that the situation probably will be the
opposite for welded shapes, because of the fact that welding residual stresses
will decrease with increasing size of the structural member. [2]

An important factor which will affect the strength of welded H-
columns is the manufacture of the component plates prior to welding. Several
tests have shown that flame-cut plates show a more favorable residual stress
distribution, which leads to improved strength of H-columns fabricated from
such plates, as compared to similar columns built up from universal-mill
plates. [10] See Fig. 10. The diagram in Fig. 10 also shows that the tangent
modulus prediction estimates the column strength of the flame-cut welded shapes



184 V — PREDICTION OF BEHAVIOR OF STEEL COLUMNS UNDER LOAD

fairly well. This means that the post-buckling reserve above the tangent
modulus load of a fictitious perfectly straight column is of approximately

the same magnitude as the reduction in strength due to unintentional out-of-
straightness of a practical column. Thus, the tangent modulus concept may be
used for the design of such members, including the effect of residual stresses.
For the shapes of universal-mill plates in Fig. 10, the post-buckling reserve
is considerable and an accurate maximum strength analysis is necessary to ob-
tain close correlation with data.

Figure 11 illustrates the effect of the yield strength level on col-
umn strength. [18] Generally speaking, the higher the yield strength, the
greater is the column strength, also when compared on a non-dimensional basis
as in Fig. 11. The effect may be attributed to the fact that the magnitude
of residual stresses often is relatively independent of the yield strength of
the steel. [18] Thus, the residual stress to yield strength ratio will be
lower for high-strength steels, leading to improved column strength. This
trend is accentuated further for quenched and tempered steels, such as A5lk4
steel, which have comparatively small magnitudes of residual stress due to
the heat treatment.

Figure 12 shows the column strength of shapes which have been
specially treated after manufacture-~-by an annealing that removes the major
portion of residual stresses, and by a reinforcement accomplished merely by
laying a weld bead along the flange tips. [19] The improved strength in the
reinforced columns is achieved through the reversal of residual stresses at
the flange edges.

CONCLUSIONS

Methods for forecasting the structural behavior of steel columns
based upon variations in different relevant parameters, in particular resi-
dual stresses, have been discussed in this paper. Examples were given for
the influence of various parameters on column strength. The results indicate
that the strength and behavior of columns under load can be predicted, and
that the various influencing factors may be included in the prediction. While
a summary of all column tests shows a tremendous scatter, most of this varia-
tion can be attributed to parameters which may be controlled in the design
and fabrication. Thus, methods and extensive data are available for the
raticnal design of centrally loaded steel columns.

The large scatter in results, and the consideration that this varia-
tion is caused largely by controllable factors, makes clear that the use of
one design curve for all columns penalizes certain groups of columns, whereas
other types of columns having a comparatively low strength will be designed
to a lower real factor of safety. It appears logical that the specificaticns
for the design of columns should be reconsidered in this light.
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SUMMARY

The discussion summarizes some results obtained in a study
of residual stresses and column strength of rolled and welded
steel shapes. Methods for forecasting the structural behavior
and maximum strength of steel columne based upon variations in
different relevant parameters, in particular residual stresses,
are reviewed. Examples are givern for the influence on column
strength of various parameters, including manufacturing and fa-
brication procedures, bending axis, geometry of cross section,
yield strength, and strengthening operations.

RESUME

Les résultats obtenus lors d'une étude sur les ccntraintes
rémanentes et la résistance des poteaux laminés ou reconstitués
sont discutés. Quelques méthodes pour déterminer le ccmporte-
ment de la charge ultime des poteaux en acier, selon différent
parametres pertinents, en particulier celui des contraintes ré-
manentes sont revues. Plusieurs exemples montrent 1'influence
des parametres sur-la résistance des poteaux. Les paramdtres
étudiés sont les procédés de fabrication, l'axe d'inertie, la
géométrie de la section droite, la limite d'élasticité et les
opérations de redressage.

ZUSAMMENFASSUNG

Dieser Beitrag fasst jene Ergebnisse zusammen, die durch
Untersuchungen Uber die Eigenspannungen und iiber das Tragver-
halten an gewalzten und geschweissten Stahlprofilen erhalten
wurden. Es werden Berechnungsmethodern fiir die Voraussage des
Tragverhaltens und der Traglast aufgrund der Veridnderung wichti-
ger Parameter, insbesondere der Eigenspannungen, behandelt.
Beispiele zeigen den Einfluss der verschiedenern Parameter-—
einschliesslich Bearbeitungs- und Herstellprozess, Knickachse,
Geometrie des Querschnittes, Streckgrenze und Reckungen- auf die
Stiutzenspannung.



Flexural and Torsional Failure Modes of Continuous Thin Walled Beams

Les différents cas de ruine des poutres continues a parois minces soumises
a la ftexion et a 1a torsion ‘

Biege- und Drillbrucharten durchlaufender dinnwandiger Stabe

M.M. BLACK, D.A. NEWTON and H.M. SEMPLE
Structural Mechanics Research Group
University of Sussex, England

Introduction

The work described in this contribution has been undertaken as a follow up
to an investigation into the stress systems obtaining in continuous thin walled
structural systems subjected to combined bending and torsion. Although the
project is in its early stages it was felt that the results already noted gave
some indication of the complexity of the problem and if published, might en-
courage further research in other centres.

It is well known that cold formed thin walled sections are, by reason of
their cross-sectional form, subjected to both bending and torsion in any pract-
ical application, This kind of lcoading produces localised high stress values
which if used for an elastic design procedure can give rise to rather conserv-
ative section sizes. One approach to overcoming this difficulty is by bracing
the member in such a way as to reduce the longitudinal torsional stresses. &
Such techniques will of course lead to higher construction costs. It 1s poss-
ible that given a better understanding of the localised high stresses and the
resulting flange buckling, a design procedure analogous to the collapse
approach used in plastic design of conventional hot rolled sections, could be
developed. In this way more economic use could be made of thin walled sections
and their field of application increased.

It is immediately obvious that the concept of the 'plastic hinge' used in
the collapse method of analysis cannot apply directly to thin walled sections,
However, as will be seen from the tests described later, the overall mechanism
of collapse of a thin walled continuous beam is of the same form as that.
occurring when a conventional hot rolled section is used. In the case of a
thin walled element the plastic hinge would appear to be replaced by gross
cross-sectional deformation arising from local flange buckling combined with
the initiation of some plastic flaw in the material.

At the present time the emphasis of the research programme is on the experi-
mental work and this is reflected by the contents of this contribution.
Theoretical analysis is of course being developed and a brief indication of
this part of the programme is alsc included in the closing summary.
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Experimental Programme

A series of tests to failure were carried out on 120 inch lengths of 2 inch
by 1 inch cold formed mild steel channel sections. Two thicknesses of material
were used; 0.025 inches and 0.035 inches. The beams were supported in four
disphragms each 39 inches apart. This gave rise to a three span continuous
beam configuration as shown in Fig, 1. The diaphragms prevented vertical and
horizontal deflection and twist in the plane of the section,

Loads were applied at the centre of the middle span by means of a disc or
plate clamped to the web of the beam. Using a disc with its centre arranged to
coincide with the shear centre of the section pure torque about this point was
applied.

For bending, loads were suspended from a plate clamped to the web of the
section with the weight hanger in the vertical plane containing the shear centre.
By carying the lateral position of this weight hanger it was possible to produce
the third loading condition, that of combined bending and torsion., Recordings -
of vertical deflection and angle of twist at the centre of the middle span were
taken at each movement of load. In addition strain gauge readings at eight
critical flange positions for each load increment, were taken during the 'pure!
bending tests. The strain gauges used were of the 'foil yield' type and can
measure strains ranging from 10% to 20%.

Experimental Results

i) Pure Bending

As already noted the loading for this form of test was in the plane of the
shear centre, It is however appreciated that the reaction forces at the dia-
phragm supports would not be in this same plane. This would lead to some small
increments of torque and resulting twist being present during the tests. In
fact as can be seen from Fig. 2 (a) the angle of twist at the centre of the
middle span during one of the 'pure' bending tests was approximately 0.016
radians at 220 1bf and 0.1 at 400 1bf. This particular beam finally collapsed
at a load of 435 1bf.

In all the 'pure' bending tests the mechanism of collapse was the same.
Thus a collapse 'hinge' formed first at the centre of the middle span and then
complete failure occurred when two such 'hinges' formed close to the two
internal supports. A beam after failure is shown in Fig. 4. (b)

This form of collapse mechanism is similar to that assumed for this case
in standard 1limit analysis theory. The collapse hinges, however, appeared to
be the result of gross geometric deformations of the cross-section which result
in a reduction of the bending stiffness together with the development of
plasticity in the material.

The effect of local bending in the flanges which finally produces local
flange buckling is clearly seen from the strain gauge results shown in Fig. 3.
At the centre of the middle span local bending of the compression flange
commences at the first load inecrement and increases rapidly with locad. 1In the
results shown the underside of the top flange (Gauge 4) had actually gone into
tension at half the collapse load (approximately 220 1bf) On offloading from
this position the beam returned to its initial state indicating the elastic
nature of this local deformation at this stage.
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FIG. 4 (a) PURE TORSION COLLAPSE.

Fic. 4 (b) PURE BENDING COLLAPSE.
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As would be expected the effect is much less pronounced in the tension
Tlange (Gauges 6 and 6) and also in the compression flange near the internal
supports (Gauges 1, 2, 7 and 8).

The vertical deflection at the local position (Fig. 2 (b)) increased
almost linearly until collapse occurred at which stage it increased too rapidly
to be recorded. However at s load of L00 1bf, only 35 1Inf less than the coll-
apse load, the deflection was as little as 0.18 inches, that is approximately
1/220 of the 3pan,

ii) Pure Torsion

In this series of tests the effect of loecal buckling was also very pro-
nounced. A typical torque/angle of twist equilibrium path at the centre of the
middle span is shown in Fig. 5. Initially a local buckle formed adjacent %o
the loading disc of a relatively low value of applied torque (24 in 1bf).
Further increases in torque gave rise to a linear torque/angle of twist re-
lationship until the initial stages of the failure mechanism became apparent
(180 in 1bf), Thereafter the angle of twist increased rapidly until failure
occurred (204 in 1bf). At failure the deformations took the form of a very
distinct pattern of web buckling. The lines formed by the buckles divided the
web of the middle span into a uniform series of triangular areas as shown in

Fig. 4ia).

The failure mode was again considered to be a combination of gross geo-
metric deformation of the cross~section and the development of zones of plastic
material,

iii) Combined Bending and Torsion

As would be expected the collapsed form of the beams when subjected to
combined bending and torsion indicated the same gross geometric cross~sectional
deformations and development of plasticity in the material. Theoretically,
longitudinal warping stresses due to torsion initiate local flange yielding at
lower values of load than in the corresponding 'pure'! bending case. However
the final collapse loads were not significantly different when the load to pro-
duce the combined effects was acting in the vertical plane containing the
centroid of the section. This form of loading is perhaps closest to that ob-
taining in any practical situation using such sections.

Summary and Conclusions

The test results have indicated clearly that final collapse for all three
forms of load action resulted from a combination of elastic instability, in-
plane cross-sectional deformation and some plastic flow. It was obvious that
the standard 'plastic hinge' concept was not directly applicable in this case.

As would be expected local flange bending and buckling play a prominent
part in the collapse at any section. At critical positions of maximum bending
moment and torsional bi-moment, local bending effects are initiated at very
small loads. They are not visible at this stage but are easily observed from
the strain gauge readings. Such effects become visible at higher loads in the
form of a pronounced local buckle. At this stage the magnitude of the local
flange deflection is many times greater than the material thickness.

Some typical results from the tests are given in the following table, The
first group correspond to 'pure bending' loads and the second to combined bend-
ing and small torsion, that is, the loads acting in the vertical plane contgin-
ing the centroid. The two figures in the last column are the values of load
for each group required to develop the yield stress at the centre of the middle
span. The values are calculated from linear-elastic analysis and the lower
load for the combined actions arises from taking into account the longitudinal
warping stresses due to torsion.



198 V — FLEXURAL AND TORSIONAL FAILURE MODES

Group First Buckle Collapse Theoretical First

Load Load Yield Load
110 200

1 131 197 226
141 219
19 226

2 121 192 N
131 197

TABLE 1 (All loads given in 1bf)

From this table it can be seen that (i) as already noted there is no signif-
icant difference in collapse loads for the two different forms of loading and
(1i) although theoretically the warping stresses produce local yielding at lower
loads this does not significantly affect the load required for developing the
first buckle,

In relation to this latter comment it must be noted that longitudinal warp-
ing stress distribution round the cross-section gives a maximum value at the
free edge of the flange and reduces rapidly towards the web to flange Jjunction
at which point it will have changed sign. A detailed analysis of such stress in
thin walled continuous beams subjected to bending and torsion has been presented
elsewhere (2,3). However as these effects are highly localised they will tend
to give rise to conservative safe loads if used in standard elastic design
procedures.,

It is possible that by adopting a design procedure based on collapse more
economic use can be made of thin walled sections. The obvious difficulty is the
prediction of the collapse loads for such sections. The stress distributions
for combined bending and torsion are highly non-uniform which makes the evalu-
ation of critical compressive stresses in the flanges very complex. In addition
gross cross-sectional deformations which occur locally in flanges prior to
collapse are, as already noted, many times greater, than the material thickness.
This implies that the flange, considered as a plate element, is in the non-
linear behavioural range. Thus, the value of collapse loads are unlikely to be
predicted by any method which is based on a linear theory. Local imperfections
will also influence the behaviour particularly in the nén-linear range.

However the results of tests so far have shown reasonable repeatability of
both collapse forms and ultimate loads. They have also indicated a considerable
post local buckling load carrying capacity. It does not seem unreasonable
therefore that design criteria, which allow for elastic instability, post crit-
ical load carrying capacity and some measure of plastic flow, can be developed.
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SUMMARY

This contribution concerns an investigation into the mechanism
of collapse of thin walled continuous beams. Three forms of load
action are considered; pure bending, pure torsion and combined
bending and tersion. All tests were continued until collapse
occurred, this condition being defined as the state at which no
further load could be carried. Details are given of deflections,
angles of twist and strain gauge readings, observed during the
tests. The experimental results illustrate the complexity of the
failure modes. As a result some indication is given of the factors
to be considered in the development of adequate design criteria.

RESUME

Le présent article étudie les modes de ruine des poutres
continues & parois minces. On ccnsidére trois sortes de scollicita-~
tions: flexion simple, torsion et combinaison des deux cas. Tous
" les essails ont été effectuéds jusqu'd 1'état de ruine, défini par
le point ol la poutre ne supportait plus une augmentation de charge.
On indique en détail les fléches, les angles de torsion et les
lectures sur les "strain gauges" durant les essais. Les résultats
expérimentaux illustrent la complexité des cas de ruine. En con-
clusion, on étudie les facteurs importants pour le développement
des criteres de construction.

ZUSAMMENFASSUNG

Dieser Beitrag schildert die Untersuchungen iber die Mecha-
nismen der plastischen Gelenke bei diinnwandigen, durchlaufenden
Balken. Drei Lastf&lle sind betrachtet worden: Reine Biegung,
reine Drillung und die Kombination derselben. Alle Priifungen sind
bis zum Kollaps (Zusammenbruch) durchgefiihrt worden, der fir jenen
Zustand definiert wurde, da keine weitere Last mehr angebracht
werden kann. Durchbiegungen, Drehwinkel und Dehnungsmesstinde
wéhrend des Priifverlaufs werden angegeben. Die experimentellen
Ergebnisse verdeutlichen die vielfidltigen Zusammenhinge der Bruch-
arten., Als Ergebnis werden einige Punkte aufgezeigt, die beim
angemessenen Entwurf berilicksichtigt werden sollten.
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Computer Experiments Concerning Random Nonlinear Structural Behaviour
Expériences sur ordinateur concernant le comportement aléatoire non-linéaire des structures

Rechnerexperimente fur zufalliges, nichtlineares Bauwerkverhalten

JULIO FERRY BORGES DONALD J. BUTLER
) Associate Director Professor of Civil Engineering
Laboratorio Nacional de Engenharia Civil Rutgers University
Lisbon, Portugal New Brunswick, New Jersey, U.S.A.

1 — INTRODUCTION

While rational probabilistic approaches to questions of structural safe
ty and reliability have received considerable attention in recent years, the
actual application of such concepts in practical structural design has been
quite limited. Certainly part of the reluctance to employ probabilistic con-
cepts in practice is explained by the inadequate state of our knowledge con
cerning the statistical character of structural loading and structural beha
viour. While the stochastic character of the loads acting on structures must
presumably be deduced from field observations, it is not likely that statis-
tically meaningful information on structural behaviour, for structures of any
complexity, can be obtained from field or laboratory tests because of prac
tical limitations on the size of the statistical samples available.

These considerations suggest that it would be of value to develop ana
lytical methods which would enable one to predict stochastic structural res
ponse characteristics from the knowledge of variability in the properties of
structural materials. At present such a statistical theory of structures
exists only for the study of brittle behaviour. It was established by Weibull
(1). For other types of material behaviour, some particular results have been
obtained (2).

The present paper employs a previously suggested numerical approach
(3) to study randomness in the nonlinear behaviour of plane skeletal struc-
tures. A computer program developed to analyse framed structures posses
sing rather arbitrary nonlinear moment-curvature relations (4)is utilised
to study the flexural behaviour of samples of randomly formed, nominally
identical structures. The randomness considered derives from the uncertain
nature of the mechanical properties of the materials, as reflected in the
moment-curvature diagrams of the unit elements used to form the structu-
res; structure geometry as well as conditions of loading and support are
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considered to be deterministic. The intent is thus to examine the manner
in which the stochastic character of structural behaviour is influenced by
the probabilistic nature of material properties.

In the examples presented, the element moment-curvature diagrams
were assumed to belong to a prescribed statistical populations and prismatic
beams were formed by combining elements chosen at random from this po-
pulation. The tri-linear diagrams employed closely represent the nonlinear
behaviour to be expected in conventionally reinforced concrete beams(5),The
distribution of M for a given curvature was assumed to be Gaussian with
a coefficient of variation of 10%. Load-deflection curves were determined for
a sample of twenty beams, each containing forty elements, under several
conditions of loading and support. '

While the examples considered are relatively simple, it is felt that
they offer some insight into the little understood subject of random nonli-
near behaviour. The proposed method of ccmputer simulated numerical ex-
periments may be readily extended to include more general structures and
statistical distributions.

2 — RANDOMNESS OF MOMENT-CURVATURE RELATIONS
AND OF STRUCTURAL BEHAVIOUR

If several nominally identical flexural elements are tested in pure bend
ing in the same manner, different moment-curvature relations M(B) will be
obtained, Fig. la, and a probabilistic distribution may then be defined for

the set of relations. In what
e follows, it is assumed as a
- working hypothesis that the dis
M i I TR tribution of M for a given va
lue of B 1is normal, with a
mean value M and a coeffi-
cient of variation ¢_ which
s independent of 6. YThus a
sarticular diagram M;(6;) is
related to the mean diagram
M (8) by Mj = M(9;) {L+a c_)
——————— where a measures (in standard
| | deviations) the distance of the
{ | considered diagram from the
! } mean diagram. Since the dia-
| I
| |

x|

grams, in the regions of prac
d d tical interest, are monotonic,
b) it follows that

P (M<M,[8)=P (8>0,|M,)

Fig. 1 — Randomness of mechanical pro- It should be noted that the dis
perties and of structural behaviour tribution of 8 for a given

value of M is not normal, sin

ce this occurs only if the dia-

grams are straight and parallel. It is also clear from Fig. 1 that the dis-
tribution of 8 is not symmetrical but is skewed toward the larger values
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of B. The dispersion and skewness increase with increasing M .
Mechanical and statistical considerations suggest that the hypothesis of
normality for the distribution Pr(M<M |9 ) is a reasonable one. Since the
! bending moment M is merely
the integral, taken over the
cross section, of the stresses
developed at elementary areas
/ multiplied by corresponding dis
tances to the neutral line, for
a given state of deformation
(curvature) the central limit
0.8 p===== \ theorem implies an approxima
- tely normal probabilistic distri
//é ///d_—‘ bution of M for the popula-
My =30tm tion of unit elements.
p:258 If random combinations of
T these unit elements are used
{ EJL) o to form a sample of nominall
l—~L25cm : % P y
identical structures, the beha-
ou= 18 viour of these structures under
§ YT T & 1.00 gieterministic_: prop.ortional load
8y ing may be investigated nume-
rically and the results obtained
represented by a family of for
ce-displacement diagrams, as
» Fig. 2 — Trilinear moment-curvature shown in Fig. 1b.  Statistical
diagrams. methods may then be used to
study the relation between ran
domness of mechanical properties and randomness of structural behaviour
and to investigate questions of structural safety.

The particular M (8) diagrams employed in the examples were of the
tri-linear type shown in Fig. 2. The graph shown in heavy outline repre-
sents the mean behaviour M (B), while the other diagrams represent a nor-
mal population. The coefficient of variation was assumed to be 10 %,

M
My

Jey=0.

7
1.0 {
AN
\

3 — FORMATION OF BEAMS BY RANDOM SAMPLING

A sample of twenty beams was constructed for the study. To accom-
modate the available computer program (4), each of the twenty beams was
formed by combining 39 whole-length unit elements with two half-length ele
ments, one at each end. The length of the elements was thus 1/40 of the
total beam length.

Fifteen different element types, corresponding to fifteen different M(8)
diagrams (or fifteen values of Mu), were used to form the beams. The dia
grams were spaced at intervals of .05 M ; i.e., at intervals of one half of
the standard deviation. Each sample beam consisted of a set of 41 elements
chosen at random from this population. The selection of the elements was
performed with the aid of tables of Random Normal Deviates (6), and the
frequency distribution of element types is given in Table 1.
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TABLE 1 — ELEMENT TYPES

i Normal
Element Mu Corresponding Range of Frequency of
Type M o Random Normal Deviate Occurrence
: %

| 0.65 -39 - ® to - 3.25 0.06
2 0.70 - 3.0 - 3.25to - 2.75 0.24
3 0.75 - 2.5 - 2,75 to - 2,25 0.92
4 0. 80 - 2.0 - 2.25t0 - 1.75 2a 49
5 0. 85 - 1.5 - 1.75 16 ~ 1.25 6.55
6 0.90 - 1.0 -1.25to - 0.75 12.10
7 0.95 - 0.5 - 0.75 to - 0.25 17.47
8 1.00 0 -0.25to0 0.25 19.74
9 1.05 + 0.5 0.25to 0.75 17. 47
10 1.10 + 1.0 0.75 to  1.25 12,10
11 1.15 + 1.5 1.25 to  1.75 6.55
12 1.20 + 2.0 1.75 to  2.25 2:79
13 1.25 + 2.5 2,25 to  2.75 0.92
14 1.30 + 3.0 2,75 WM 325 0.24
15 1.35 + 3.5 3.25to + o 0.06

4 — TEST STRUCTURES AND NUMERICAL EXPERIMENTS

Numerical experiments on the twenty beams were performed for four
different conditions of loading and support as indicated in Table 2 which al-

TABLE 2 — TEST STRUCTURES

Ref. Span Depth Ult. Moment
Nursber Structure M
: 1 h u
) F
il % 172 ‘ 7 10 m 50 cm T 30 tm
LT 10
9 4 2 + tm
414 l4|2 10 m 50 cm - 30 tm
& F
3 A = 10 m 50 cm + 30 tm
R 5
4 A 2 10 m 50 cm + 30 tm
so gives the dimensions, mean ultimate moments, and ultimate curva-

ture values used in the computations. Note that the ratio of positive to ne-
gative ultimate moments for the hyperstatic structures, 1 and 2, is based
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upon elastic design requirements.

Deflections at regular increments of increasing load were determined
using two computer programs developed at LNEC for the nonlinear analysis
of either isostatic or hyperstatic plane framed structures. Each permits the
introduction of numerous arbitrary M (B8) data defining the nonlinear flexu
ral behaviour of the various element types that make up the structure. For
isostatic cases, deflections are obtained by a simple numerical integration
of the beam differential equation, y" = 6, satisfying the appropriate bounda
ry conditions. For hyperstatic cases, an iterative procedure based on the
stiffness method is used to determine displacements, moments and shears
for each level of loading. This program is described in considerable detail
in a previous paper (4).

S5 — RESULTS OF SIMULATED TESTS

The load-deflection data obtained for the four structures arepresented
graphically in Figs. 3, 4, 5 and 6. In addition to the twenty graphs for the
b sample beams, the figures
N S R =" show, in heavier outline, the
Y __ == diagrams obtained for a "stan
dard" beam which possesses
uniform mechanical properties
throughout its length corres-
ponding to the mean diagram
M(6) .

The results, with respect
to ultimate strength of the test
structures, are summarized in
f Table 3., Two different limit
5 S — states were considered in de-

______ = ¥t d . s " . "
fining structural "failure” — a
moment (rotation capacity) cri
terion and a deflection crite -
o 1 2 3 ok d(cm? rion. The former considers
failure to occur when the bend
ing moment M reaches the
random ultimate value M
F(v 1 anywhere in the beam; i.e.,
i when © reaches the limiting
sl ; ~ value O _anywhere. Failure
Fu £ loads according to this crite
= - >~ rion are indicated by heavy
" | 1 dots on the load-deflection
o | graphs. Failure, according to
the latter criterion, occurs
— when a prescribed limiting de
flection, is attained. This
critical deﬂectlon was taken
5 do be the midspan deflection
d(em) of the standard beam when the
moment capacity limit state is
reached.For the standard beam
therefore, the ultimate load by
either criterion is the same.

M

20

15

10

—

Fig. 3 — Load-deflection diagrams
for structures 1.

u

N

0 1

Fig. 4 — l.oad-deflection diagrams
for structures 2.
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6 — DISCUSSION OF TEST
Fit) ! RESULTS

For all four structures it
is obvious from the load-deflec
tion diagrams that the mean de
flection of the random beams
exceeds that of the standard
beam. This result is not diffi-
! cult to understand in light of

{ the skewness of the distribu

t { | i i tion Pr (979.|Mi) previously

‘ ; | ! ; | | discussed. The bias toward
0 2 4 6 dy 8 o 12 1 large values of 8 is simply

d(cm) carried over, through the nu-
Fig. 5 — Load-deflection diagrams merical integration, as a bias

for structures 3. toward large values of deflec-
tion. This aspect of the struc
tural response is reflected in
Table 3 by the fact that the
mean ultimate strength of all
structure samples, when judged
by a deflection limit state, is
lower than the strength of the
nominal standard beam.It is al
so seen that the coefficients of
variation of ultimate load va -
lues (3.2% - 5.3%) are signifi
cantly less than that (10%) of
the original Mu values; i.e.,
the load-deflection diagrams ex
hibit considerably less disper-
sion than the original M(8) dia
grams. From Table 3 it is al
so apparent that the reduction
in mean strength, as well as the variability of strength values, is greater
for the moment capacity limit state than for the deflection criterion.

The significant difference in ultimate load probability distributions, de
pending on the choice of limit state, is explained by the fact that while struc
tural deflection is influenced by material variability throughout the entire
structure, moment-induced failure depends, essentially, on local material
properties at a limited number of critical sections. More specifically, for
the moment capacity criterion, structural strength is influenced by the fol-
lowing factors: the number of critical sections, thé moment gradient in the
vicinity of these sections, and, in the case of hyperstatic structures, the na
ture of the moment redistribution in the inelastic range. )

The influence of these factors on mean strength may be readily dis -
cerned in the examples considered. Fig. 7 shows the bending moment dis -
tribution involved in the four test structures (based on elastic analysis for
the hyperstatic cases). For isostatic structures, where moment redistribu-
tion is not a factor, the ultimate moment failure criterion corresponds es-
sentially to a Weibull type "weakest link" theory under a prescribed stress

10

F(t)

Fu

10

Fig. 6 — Load-deflection diagrams
for structures 4.
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TABLE 3 — SUMMARY OF ULTIMATE LOAD DATA

Moment Criterion Deflection Crifterion
o Ult. Load 7 | s o 7 Sed
" Mean A otd. ean 2 td.
ture Stdl',, Beam, | iy, Reduc| Dev., “v | UL. Redue; Dev., v
u Load,} tion Load,| tion
t t t % t t %
1 24 22,2 7.5 1.27] 5.7| 23.1} 3.8| 0.75]| 3.2
2 14.7 13.8 6.1 1.16] 8.4} 14.2] 3.4 0.50]| 3.5
3 12 11.1 7.5} 0.90| 8.1] 11.6] 3.3| 0.61] 5.3
4 12 9.5 20.81 0.74} 7.8 -— - - -

distribution. Regions of high uniform stress enhance failure probability,and
it follows that Structure 4, with an extended region subjected to maximum
bending moment (zero moment gradient), shows the most significant reduc-
tion in mean strength, 20. 8%.

In comparing results for
Structures 1 and 3, two oppo-
) sing factors must be consi-
dered. While Structure 1 has
three critical sections, against
) only one for Structure 3, this
unfavorable factor is apparen
4 tly balanced by its more favo
rable moment gradient, which
) is twice that of Structure 3.As
Mmax a result, both structures show
S S 7 S the same mean strength reduc
tion, 7.5%. It should be noted
that moment redistribution is
not a significant factor in Struc
ture 1. In fact, for the stan-
dard beam,the elastic moment
ratio, M /M___ =1, is maintained through the inelastic range and the
randomlymi%%mecin Bams displayed only small variations in this ratio.

Although Structure 2 has an apparent extended critical region between
the load points, moment redistribution is a significant factor in this case.
For an elastically designed beam (M_ = 3 M""), redistribution in the inelas
tic range results in M_ > 3 Mt Y so that only the two support sections
are critical. This strdffiffe also BE< the steepest moment gradient in the
critical regions and, consequently, it shows the smallest reduction in mean
strength, 6.1%.

While these simple examples give some insight into random nonlinear
behaviour, particularly with respect to mean response and general variabili
ty, the sample size is not large enough to deduce the precise nature of the
response probability distribution. To obtain more significant information con
cerning the small failure probabilities associated with the practical range of

Mmax

Fig. 7 — Moment gradients in test
structures.
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structural safety, the method can, of course, be employed with samples of .
larger size. Continually increasing computer capacity and speed make such
an extension perfectly feasible.

7 — CONCLUSIONS

A computer simulation method has been presented which offers consi
derable promise for obtaining knowledge of the stochastic response charac-
teristics of plane skeletal structures from a knowledge of variability in the
properties of structural materials. From the results of the examples con-
sidered, the following general remarks may be made:

1. The mean strength of a population of structures is significantly
less than that of a structure possessing the mean mechanical properties
throughout.

2. The amount of this strength reduction depends on the moment gra-
dient and, for statically indeterminate cases, on the nature of the moment
redistribution.

3. The reduction in strength is less pronounced when failure is based
on a deflection rather than a moment capacity limit state.

4. The dispersion of structural response is significantly less thanthat
of the material properties.

The proposed method is perfectly general and may be extended to in-
clude larger samples, alternate input distributions, and more complex
structures.
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SUMMARY

The randomness of structural behaviour as influenced by the
probabilistic nature of material properties is studied on basis
of numerical experiments.

The numerical experiments consisted in the statistical ana-
lysis of force-displacement diagrams obtained for several simply
supported and perfectly built-in beams under one or two forces.
Each beam was formed by combining elements chosen at random. The-
se elements are defined by moment-curvature diagrams belonging
to a prescribed statistical population.

The examples presented give some insight on the way the
statistical distributions of deflection and rupture vary in
function of the types and dimensions of the structures and of
the statistical distribution of the mechanical properties.

RESUME

On étudie le caractére aléatoire du comportement des struc-
tures en tant qu'influencé par la nature probabilistique des
propriétés des matériaux, prenant pour base des expériences numé-
rigues.

Les expériences numériques ont consisté dans 1'analyse sta-
tistique de diagrammes forces-déplacements pour différents types
de poutres, simplement appuyées et parfaitemert encastrées, sou-
mises & une ou & deux forces concentrées. Chague poutre a été
formée en combinant des éléments choisis au hasard et définis par
des diagrammes moments-courbures appartenant & une population
statistique.

Les exemples présentés permettent de comprendre la varia-
tion des distributions statistiques des fleéches et de la rupture
en fonction des types et des dimensions des structures et de la
distribution statistique des propriétés mécaniques.

ZUSAMMENFASSUNG

Die Zufalligkeit des durch die Wahrscheinlichkeitsnatur der
Materialeigenschaften beeinflussten Bauwerkverhaltens ist auf-
grund numerischer Experimente untersucht worden.

Die numerischen Experimente bestanden in der statistischen
Auswertung der Kraft-Verschiebungs-Bilder verschiedener einfach
aufgelegter und starr eingespannter Triger unter ein oder zwel
Kréften. Jeder Balken war aus zu kombinierenden Elementen zu-
fdllig zusammengesetzt worder.. Diesen Elementen entsprechen
Moment-Krimmungs-Bilder, die zu einer bestimmten Grundgesamtheit
gehdren.

Die Beispiele geben einigen Einblick wie die statistische
Verteilung der Durchbiegung und des Bruches in Abhingigkeit der
Form, der Abmessungen und der Verteilungsfunktion der mechani-
schen Eigenschaften &ndert.
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I Description of the Problem

The feasibility of developing the mathematical tools to investigate the
reliability of structural systems under probabilistic and stochastic loading is
studied. The following cases are considered: 1)} The reliability of systems
when the probability density function of the resistance to loading is fully
known, but the mean of the load distribution is a random variable governed by a
probability distribution. 2) Reliability of systems subjected to narrowband,
Gaussian loading when the resistance is given by a known density function.

3) The reliability of systems with constant (with respect to time), but proba-
bilistic loads, where the resistance distribution is dependent on the load level
and time.

II Reliability of Systems with One Distribution Partially Known, the Other
Fully Known

Often, it is not possible to assume that the parameters of the resistance
or load distribution are fully known. In general, sampling is done in batches,
i.e., a set of parameter values is obtained for each sample batch. Large dif-
ferences between the various means, for example, make point estimates inaccu-
rate. Hence, it is necessary to considexr the parameters as random variables
with their own density functions. 1In this paper only the mean will be consid-
ered as a random variable; all other parameters are assumed to be known.

Consider the case where the mean of the load is a random variable and all
other parameters are known. Let

fr(ro) ~ p.d.f. of the resistance

fz(zo) ~ p.d.f. of the load with unknown mean

ful(pio) ~ p.d.f. of the mean of the load
fr,l(ro’lo) ~ joint p.d.f. of load and resistance

Then,
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p/ul P(r > E/ul)

ofuy = [ dry [T AL E (1) = gy (1)

o} 9] o}

where p is the reliability. The above defines the relationship between p and
by - It is now possible to use the change of variable procedure, yielding

; £ (p) = (ul)] (2)
‘3“1 l

This result will now be applied to the particular case where all distribu-
tions are Gaussian and r,l are independent, i.e.,

2
fr(ro) ~ N(ur,cr)
2
2
£ o(ry ) ~N(u o )
] lo S ]

~ 3 B
M fr,l/ul(ro’lo/ul) ~ NG - Bl Ty

Using eqn. 1 and 2, it can be shown that the distribution of reliability is

given by, —— -1 2]
A/Urﬁﬂi 2 s (o tojlerf "(20-1) }-u“l)
f (p) = ——= exp |[[erf (2p-1)] - (3)
0 "o o, o 2
1 U‘]_ J

Applying equation 3 to a given problem is complicated, since it requires
obtaining the inverse of an error function. It is simpler to use a numerical
approach. The method recommended is perfectly general and can easily be applied
to distributions other than normal. The same procedure was programmed for the
computer for the case where

1 1 1
£.(r) ~ N4, 75) 5 fl/ul(“l) ~ N, » 77) s ful(p,l) ~ N(1.5, 55)

Figure 1 shows probability distribution function for p. It can be seen that
f (po) is skewed to the left. Furthermore, the density function approaches zero

asymptotically on both sides (see Figure 1).

The sensitivity of the distribution was tested by running the computer pro-
gram for various values of the parameters: 1) In Figure 2 the distribution sen-
sitivity for uu is shown. Note that, as uu becomes smaller, the mean of the

1 1
reliability distribution approaches 1.0 and the spread of fp(po) decreases.
Thus, one can conclude that the standard deviation of fp(po) is quite sensitive
to the mean of the by probability density function. 2) Figure 3 shows the

distribution sensitivity for 0“1' The mean of fp(po) is not strongly influ-
enced by small changes in g . As expected, the spread of fp(po) decreases as
ou gets smaller. 3) The diitribution sensitivity for o

4} It can be seen that g

is shown in Figure

1

1 influences both the mean of fp(po), up, and the
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; 2 L. . .
variance op. 4)Similarly, influence of . and b, on fp(po) was investigated.
The effect of o_on fp(po) is similar to the effect of o, - A smaller value of

ko is associated with a smaller Mp and a greater spread of‘fp(po).

ITII Reliability of a Stochastically Loaded System with Probabilistic Resistance

Since the resistance is generally not known accurately, it should be con-
sidered as a random variable. Let the loading be described in the following
form. L(t) = LO + £(t) where'LO = constant and £(t) = stochastic loading. Let

2(t) be narrowband, stationary, Gaussian loading with zero mean and known vari-
ance. The distribution of peaks above level o is Rayleigh (ref. 2). By defini-
tion of conditional probability

P{reliable} = P{reliable load is above &} . P{load is above o) 4

where o is any load level or
P{r > 2} = P(r > /4 > a}P{s > o} 5
Let P, = P{r > 2/4 = o] 6

which will be called g(&). ,Note that Py is a limiting value of @, since { can-
not be exactly «. Whenever { is larger than ¢, p will be smaller than po.

Using equations 4, 5 and 6 and Rayleigh distribution for peaks, the probability
distribution for reliability is given by the following equation (see ref. 1).

-1 N i1 r ] '
4 (L,-g “(p,) Lo (po)]; 0, dlg""(p)]) %
f (p) = p sexp ——— | = expt———J|1 - 7
e de g0 26> B 35c 98 |
y ¥ i y J
-1
dlg” (o)}
Since finding ———EE————— is complicated for most probability distributions a
o

numerical approach is presented here as an example. Consider an example with
the following parameters
1
L =20 G, e
o Ty N7
The probability density function, fp(po), is shown in Figure 5. Note that

£ (r) ~ N(4,1)

fp(po) approaches a limit of P, = 0.999968 asymptotically. Since the Rayleigh

distribution is only defined for positive values of «, the reliability associ-
ated with the smallest ¢ must be the maximum 0,2 i.e., for the numerical values

given above (po)max = 0.999968. The sensitivity of the distribution was tested

by running a computer program for various values of the parameters: 1) It was
observed that fp(po) is hardly influenced by small changes of cy. 2) Figure 6

shows the distribution sensitivity for LO. For increasing mean load level, Lo’

the reliability distribution shifts to the left. Furthermore, the maximum Py

4

becomes smaller, e.g., for LO = 0.0, (po)max = 0.999968; Lo = 0.5, (po)max

0.999730; LO =1.0, (po)max = (0.998462. 3) The distribution sensitivity for o

is shown in Figure 7. It seems that the reliability distribution is quite

; i . ith:
strongly influenced by changes in o Furthermore, (po)max changes wi .Gr,

e.g., for o _=0.75, (po)ma = 0.99999988; o = 1.00, (po)max = 0.999968;

X



214 V — RELIABILITY UNDER UNCERTAIN PARAMETERS, STOCHASTIC LOADS AND RESISTANCES

o_=1.25, (p) = 0.999233. 4) The influence of p_on £ {(p ) is shown in
r o’ max r p "o

Figure 8. As expected (po)max is affected by Woo €8s P = 3.50, (po)max =

0.999730; K = 4.00, (po)max = 0.999968.

IV Reliability of Systems with Stochastic, Load Dependent Resistance

Structural systems subjected to loads will generally experience a deterio-
ration of strength with time due to such physical phenomena as creep, metal
fatigue, etc. The rate of loss of strength often depends on the load level,
e.g., a reinforced concrete beam will usually experience a greater rate of
creep if it is subjected to a larger load than if it is subjected to a smaller
load. " Consider a model whose behavior is: a) Loads are random, but not time
varying. b) The only parameter of the resistance distribution, which is load
and time dependent, is the mean, ur(r t,4). <¢) A family of functions exists

completely defining the change of the mean B with respect to time and load.
Condition (c) stated above is shown in Figure 9. Given a load 11 and time tl’

it is possible to find the mean of the resistance which in turn defines the
probability density function of the resistance. Let fz(lo) ~ p.d.f of the load,

ur = g(4,t), fr/pr(ro/ur) ~ p.d.f of the resistance given the mean. Consider a

particular time, to. The random variable My at time, to is only a function of

the random variable £. Tt is possible to find fu by using the change of vari-

1 r
ag(ur)
Y

Following the same procedure discussed in previous section one obtains

-1
able procedure. fM (ur) = f£{g 0}

r

_ 3 -1
£ oo/ ) = T35 £, t8 ()] 8

Bur

co r
where p/gr = g(ur) = jo drO fo dzofr,ﬁ(ro,zo).
This result will now be applied to the particular case where both the
resistance and load distributions are normal and the mean is related to the load
and time by a linear function, i.e.,

D £,(4) ~N(u,0) 2 po= - (mh+ D)t + e = g(4,0) .
H £, (r /b)) ~N(u_,0)
r -
2
(x-Cu_-p,) }
1 co r 4
Then, p = P(r>£/p ) = P(r-£>0/p ) = = f exp |- == dx
r T o
VQ"Vbr+cz | 246r+cz
Following similar procedure as mentioned in previous sections, it can be
shown that
’Vdr + Gf,
. fp/t(po/t) “Tmt .o,
—cn, L - 10

2

1 {u£‘0r+o£[erf—l(2p~l)]- c + t[b-mpl]}

. exp|lertt(20-13)% -
' Z(szt)
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This equation cannot be used directly, since it involves the inverse of the
error function. Hence, it is necessary to develop a numerical method. Consider
the following numerical example

fz(zo) ~N(5.1) , p_=-0.5.t-.4+10.0, fr/uf(ro/p,r) ~ N _,1) (11

The results of the computation are shown in Figure 10. At T = 0 the reli-
ability distribution is asymptotic to p = 1 with half of the probability mass
concentrated between p = 0.99999921 and p = 1.0. At T = 2 the reliability func-
tion is symmetric about ¢ = 0.5 and asymptotic to both zero and one. At T = 4
there is a probability of 0.5 that p will lie between 0.0 and 0.000005413.

Thus, it can be seen that the probability mass shifts from a reliability close
to 1.0 to a reliability close to 0.0 with the passage of time. Since p is a
function of time, fp(po) is also time dependent. In Figure 11 fp(po) vs. time

is shown. Prior to t = 1 most of the probability mass is concentrated between
g =0.99 and p = 1.00. Close to time period 1 the probability mass moves
through the point p = 0.99. During the subsequent time periods the probability
of p being 0.99 decreases. The sensitivity of the distributions was tested by
running a computer program for various values of the parameters and three dif-
ferent time periods (t = 0.0, t = 1.5, t = 3.0; circled numbers on subsequent
graphs indicate the corresponding reliability distributien). 1) In Figure 12
the distribution sensitivity for Ky is shown. As u£ becomes larger, the proba-

bility mass shifts from a high to a low reliability more rapidly. Furthermore,
for larger values of by the asymptote p = 1.0 is approached faster. 2) Figure

13 shows the distribution sensitivity for 0, Except for higher peaks corre-

sponding to lower values of GZ (Figure 13) small changes of this parameter do
not influence fp(po) significantly. 3) The distribution sensitivity for o
is shown in Figure 14. Similarly to oﬂ, o hardly influences the reliability

distribution. Note that in this case the peaks are higher for larger values of
oL 4) The influence of the slope, m, on the reliability distribution is shown

in Figure 15. Small changes in m cause fairly large changes in fp(po)' As the

slope decreases, the shifting of probability mass from a high reliability to a
low reliability takes place more rapidly, i.e. a system has a greater probabil-
ity of survival over time if the slope is large. 5) The influence of the inter-
cept, ¢, shown in Figure 16 is quite pronounced. For large values of c the
shifting of probability mass takes place at a later time period.

V Conclusions

As was shown, the derivations of the reliability distributions is fairly
simple for the case where only one parameter is a random variable. However,
even in this case it is not possible to find a usable, analytical solution for
the distributions chosen. Further work needs to be done in trying to develop
simple closed form solutions = possibly using approximations or investigating
various distributions., It would be interesting to see this idea expanded to the
case where not only the mean, but also the variance is random.
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