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DISCUSSION PREPAREE / VORBEREITETE DISKUSSION / PREPARED DISCUSSION

Safety in Large Panel Construction

La sécurité dans la construction par grands panneaux

Sicherheit in der GroRtafelbauweise

JACK RODIN CHARLES CHANON
England England

Modern Engineering and the Safety Concept.

It has long been recognised by the engineering profession that absolute
safety against all possible conditions and hazards can never be achieved.
The problem is one of reducing risk, rarely, if ever, its total elimination.
Indeed, one fundamental responsibility of the engineer is to achieve

acceptable safety at acceptable cost.

Safety is related to both the risk and structural consequence of
particular events relevant to the satisfactory behaviour of the structure.
In general, past experience has shown that this combination has been
adequately dealt with since few serious failures have occurred. To a.
large extent this has been fortuitous since the older forms of construction
had an inherent strength which could cope with conditions not allowed for

in design.

Modern developments in design, analysis, building material and
techniques have resulted in the refinement of our structures to suit more
precisely the loading and environmental conditions assumed in design.

The accuracy and adequacy of these design assumptions have therefore
assumed much greater importance since a precisely designed structure
may be sensitive to a greater or different loading condition and the reserve
strength previously available may be absent. At the same time the size

of buildings has increased considerably, particularly with regard to height.

1. Bg. Schlussbericht
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The statistical risk of any particular event occurring has probably
changed but little: the structural consequences, however, may have changed
radically. It is clearly no longer sufficient to assume that a structure
designed for normal conditions will react satisfactorily for the abnormal
or accidental condition. If we are to design our structures with both pre-
cision and safety we must make a conscious assessment of all conditions
and hazards that might arise, however remote a possibility they may

represent.

This does not mean that we must design against all hazards. It simply
means that we should consider the combination of risk and consequence of
. the hazard so that appropriate‘action, if any, can be determined to achieve

an acceptable and uniform standard of safety.

Definition of a Required Standard of Safety.

In defining a required standard of safety, two main aspects need to

be considered: cost and risk to life.

Cost
Given the statistical risk of a particular cause of failure and how
this risk may be varied with added or reduced cost, the cost consequence
of the failure, the prevailing rate of interest and the proposed building
life, it is possible to arrive at a design which represents minimum overall
cost. Providing the relevant data are available this could be applied to
any important building or structure. It could also be beneficially applied

to less important or parts of structures.

Risk to Life.

This aspect is more difficult since emotional and political issues are
raised, particularly in relation to housing, since people understandably
expect to be 100% safe in their own homes. However, some comparison
can be made with those risks which already exist as part of our modern

way of life.
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For example the risk of a person being killed on the roads is approx-
imately 0. 7%: the risk for a person flying 10 hours each year over a period
of 70 years is also appreximately 0. 7%, while the risk for a person doing,

say, 300 railway journeys for each of his 70 years life is about 0. 2%.

It is not for engineers to decide what risk to life is acceptable as a
basis for structural design. This is a matter for the politicians and other
representatives of the community at large. The engineer, however, can
and should advise on the cost and other implications associated with any
desired standard of safety. Above all, the engineer should ensure that any

given expenditure is used to greatest advantage.

Design Against Progressive Collapse.

Progressive collapse is defined as collapse originating and spreading
from an area of local failure. BSuch collapse may be above, below or to the

sides of the area of initial damage.

There are three ways of designing against progressive collapse: -

(2) eliminate the hazards which may lead to local failure, or
reduce the risk to an acceptable value.

(b) design so that the hazard, if it occurs, does not cause any
local failure.

(c) allow the local failure to take place, but design the structure

so that progressive collapse does not occur.
Methods (b) and (c) above involve a quantitative assessment of the
hazard, part of which is to be allowed for in design. Anything in excess

of this must then represent an acceptable risk.

Possible sources of hazards in Buildingg_.

The first step is to consider, in terms of both the statistical risk

of their occurrence and their structural consequence, the possible hazards
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which might lead to local failure. Many such hazards exist. In the first
instance, all should be considered, however remote a possibility they may

represent, as follows:-

(i) Explosions - internal and external.

(ii) Fire.

(iii) Faulty design, materials or workmanship.

(iv) Differential settlement or local foundation failure.
(v) Wind.

(vi) External impact.

(vii)  Local overload.

There may be other hazards depending upon the location of the building
and its intended use. For example, in some areas of the world even sabotage
may need to be considered and, at the very least, the saboteur's job should

not be made too easy.
In this paper, only internal explosions will be considered in depth to
illustrate the intended design philosophy. Similar reasoning could be

readily applied to other hazards.

Internal Explosions

The explosion risk itself falls into three parts: -

(i) the risk of any explosion occurring.

(ii) the intensity of pressure which may be reached and the
period over which it will act.

(iii) the area upon which the explosion pressure will be

effective.

Taking all domestic explosions into account, a total of 1889 occurred
in the United Kingdom during the period 1957-1966, and very approximately,

the risk of an explosion occurring from any source including domestic town
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gas is 12 per million dwellings in any one year. This risk is less in flats

where some sources of explosion do not exist.

With regard to the intensity of pressure reached in these explosions,
very little information indeed is available but some guidance can be obtained
from the extent of da1;nage which occurred. For example it is known that
the damage resulting from 50% of these explosions was confined to windows
or doors and of the remainder only 40% caused cracking or movement of the
walls, floors or ceiling joists. Only in very few cases indeed did severe

explosion damage extend into the neighbouring dwellings.

Bearing in mind that most of the dwellings involved must have been
simple brick terraced housing with timber floors, the equivalent static
pressure (for brick walls but not necessarily for other types of construction)

would appear to be, conservatively, as follows:-

0-1p.s.i. - 50%
1-21/2p.s.i. - 30%
21/2 - 5 p.s.i. - 15%

5 - 25 p. s.i. <L 5%

These figures are only the roughest of guides and are included here
to illustrate principle only. An extreme pressure of 25 p. s.i. for town gas
seems a reasonable extrapolation from information and test results related
to propane explosions allowing for the venting likely to occur in domestic
dwellings. A variation in explosion pressure is most likely since the
probability is remote that ignition would occur precisely at the moment of
worst concentration and volume of explosive mixture. Obviously these
figures would need to be checked by research which should include the more
careful recording and assessment, by a structural engineer, of the damage

actually incurred during a number of domestic explosions.
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The period of the explosion has an important bearing on the reaction of
any structural component resisting the pressure, since the loading is of very
short duration. The inertia of the structural member and the deflection it
can sustain before failure will have an important influence on its resistance.
For example a long span prestressed beam would be heavy and would also
deflect a considerable distance before it failed. The time required to produce
this movement may be much greater than the period of the explosion,
particularly if venting can occur. In this case, a comparison between the
explosion period and the period of vibration in the elastic range only would
be, in the authors' opinion, erroneous and misleading. On the other hand,
some structural elements can suffer only very small movement before failure
and the effective pressure would then be near the peak. Load bearing brick-
work would be in this category and therefore the pressure frequency referred
to above probably represents an even more conservative assumption for

most other types of structural elements of equivalent mass.

The area over which the explosion pressure acts is another variable
about which little is known Considering domestic dwellings supplied with
town gas, the extreme case would be an explosion occurring in the whole
dwelling. At the other end of the scale, the explosion would be confined to
the room containing the gas appliance. In the absence of any suitable infor-
mation, an arbitrary assumption regarding this has to be made taking into
account that all explosions must involve at least one room and that very few,
if any, involve a complete dwelling. A gradation from 1in 1 to say lin 10
may be reasonable to allow for the proportion of the dwelling affected by

the explosion.

Using the above reasoning and assumed pressure frequency figures, it
w ould be possible to relate a chosen design pressure with the remaining risk
of an explosion occurring giving a greater pressure. The design pressure is
the basis for determining the extent of local failure for bridging purposes, or
for designing to prevent local failure and if it is exceeded progressive col-

lapse may occur.
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If, in the event of progressive collapse one life is lost for each storey
that collapses, it is possible to estimate the remaining risk to the inhabi-
tants for any given design pressure. It will be seen from the accompanying
diagram, that there is a very substantial reduction of risk as the design
pressure is increased. If all the above assumptions are correct, and they
will need to be proved by tests or other evidence, then for a 20 storey
block designed to resist a pressure of 5 p.s.i. or designed to bridge over the
damage resulting from a 5 p. s.i. pressure, the risk is reduced to something
less, and probably much less, than 0.1%. If the risk is to be maintined at
a constant figure, so that people are equally safe wherever they live, then
the design pressure should be varied with the height of the building. For
example, in a 5 storey building, the design pressure could be reduced to
21/2 p- s.i. while in a 30 storey building the pressure should be increased

to 7 p.s.i. to maintain the same level of risk.
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Having, on the above basis, decided the design pressure, we must also
decide the area over which it acts. The same diagram can be used for
determining the pressure/area relationship to maintain a constant level of
acceptable risk, For the purposes of illustration, let us assume that the
probability of the explosion occurring in a combination of rooms in a four

roomed flat, is as follows: -

1 room affected 100% ) rooms would be defined as

2 roomsaffected 70% ) bounded by substantial walls
3 rooms affected 30% ) or floors, having a certain
4 rooms affected 10% ) minimum mass.

If we consider a 20 storey block, a constant level of risk would be

obtained if pressures are adopted as follows: -

1 room affected 5 p.s. 1.
2 rooms affected 4 p. s. i.
3 rooms affected 2.5 p. s. 1.
4 rooms affected 1 p.s.i.

All the above relates to domestic dwellings containing town gas. The
incidence of explosions in other types of building, the resulting pressures and
their structural effects will all vary with the type of building, itsuse, and the
size of rooms or spaces in which the explosion might occur. Other influencing
factors will be the venting which might occur through the light and weak ele-
ments bounding the space and whether or not forced ventilation is provided.
With adequate research and other investigations, it should be possible to allow
for all these factors so that explosion ratings could be provided for use in
design, as they are for fire. Such ratings should be-based upon a statistical
assessment of both the risk and consequence, with the objective of achieving

a uniform and acceptable level of s»afety.
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Reverting to the three ways of reducing the risk of progressive collapse
to an acceptable value, as described earlier, (a) could be dealt with by con-
sideration of venting, ventilation, or the removal of some of the sources of
explosion, or a combination of the three, so that the hazard itself becomes
an acceptable risk. Methods (b) and (c) could be dealt with by choosing an

appropriate design pressure as already discussed.

Other Hazards.

In principle these could all be dealt with statistically using a design
philosophy similar to that described anove. Of greatest importance is the
assessment of the sensitivity of any particular structure or part of the
structure to the particular hazard being considered. This needs to be done
not only for the accidental conditions but also for what would be considered

as a normal loading condition.

In some cases, consideration of the hazard will involve a bridging
ability, or alternative path, for the loss of a single structural element. In

other cases, a combination of such elements may have to be allowed for.

Application of the Philosophy to Lame Panel Structures.

Large panel structures are sensitive to the explosion hazard because the
vertical load bearing elements present large areas on which the explosion
pressure may act. On the other hand large panel structures can be designed
and built to give massive overall strength so that overall stability is retained

in spite of even severe local damage.

Before the application of the philosophy of design described, it is prefer-
able to adopt a plan form which will realise the potential strength of this form
of construction so that the structure is not sensitive to the loss of an individual

structural Inember or a combination of such members.

Having chosen a suitable plan, the described design philosophy can be
applied to determine which elements or combination of elements are damaged

by the particular hazard.
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Three particular points are worth noting: -

Local Damage.

' The resistance of the wall elements is increased by a vertical arching

action, which can be considerable if the load of a large portion of the

structure can be gathered over the wall subjected to the pressure,

IMPORTANCE OF SOME VERTICAL TENSILE CONTINUITY

K EXPLOSION AREA

RAREXERITIX'

3

ARCHING ACTION FOR
RESISTING EXPLOSION FORCES.

Bridging Action.

If the floors and walls are properly interconnected then beams of at
least one storey in height can'be obtained. Where openings exist, inter-
action between the wall and the floors at top and bottom is required.
Cantilever or beam action can be developed by these composite struc-
tures. Since the floor at the level of the explosion may be damaged, it
may be necessary to make provision for each wall to hang from the

structure above.
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Bending ond
shear Forces
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It is also very helpful in assessing the building strength to take into

account the three dimensional characteristics of the structure: -

openings 1o be allowed For:

Three Dimensional Resisfonce fo Collapse.

Lood on woll above damage con be resisfed by

R +(T+T+ly+Tgefc) providing ABCD con act

as @ monolithic plale and is adequalely joinfed
fo woll ADEF. Qpenings in floor must be
aliowed For ond oll joinls checked For
required confinuily.

3 Prevention of Progressive Collapse Downwards.

If local failure is permitted as in method (c) and progressive collapse
downwards is to be prevented, the building must be able to withstand the
impact loads from debris and other disturbances arising from the explo-
sion area. Of primary importance is, first, the prevention of shear or
bearing failure due to impact load, so that a maximum amount of the kin-
etic energy of the falling parts is absorbed in bending, and second, the

structural interaction of components to limit the number of falling parts.

A building designed and constructed on the basis already described would
almost certainly cater for any of the other hazards. Many buildings would
require little or no special action. Others may require very special attention
and extra cost to achieve the required level of safety. Nonetheless, in our
opinion, an assessment of the hazards and their structural consequence should

be made.
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SUMMARY

The paper presents a design philosophy based on the assess-
ment of the hazards and thelr consequential effects on the be-
haviour of structures. Internal explosions in buildings are
taken as an example to illustrate the principles which can also
be applied to other exceptional loads.

As a particular case, progressive c¢ollapse in large panel
censtruction is treated in terms of the philosophy.

RESUME

Une philosophie de conception basée sur les probabilités
de charges exceptionnelles et de leurs effets sur le comporte-
ment des structures est présentée. Le probléme des explosions
2 l'intérieur des bAtiments est pris comme exemple pour illu-
strer leg principes de base.

L'article traite en particulier, le cas de 1l'effondrement
progressif dans les structures & grands panneaux préfabriqués.

ZUSAMMENFASSUNG

Dieser Beitrag zeigt ein Entwurfsverfahren unter Ein-
schétzung des Zufalles und dessen Folgewirkung auf das Verhalten
der Bauten. Um das Verfahren zu veranschaulicher, wurde als Bei-
splel elne innere Explosion angenommer; es kdnnen aber auch ande-
re Ausnahmelasten bericksichtigt werdern.

Als ein besonderer Fall wurde der fortschreitende Einsturz
von Grosstafelbauten behandelt.



Probability Considerations in Design and Formulation of Safety Factors

Considérations des probabilités dans ia conception des projets et dans la
formulation des facteurs de sécurité

Wahrscheinlichkeitsbetrachtungen beim Entwurf und bei der Ableitung
von Sicherheitsbeiwerten

ALFREDO H.-S. ANG
Ph.D., Professor of Civil Engineering
University of lllinois
Urbana, Illinois USA

The analysis of structural safety requires a two-sided activity. On one
side is the description of the loading environment and the analysis of load
effects; on the other side, we have the description of material properties
and the prediction of structural capacity. These may be referred to, respec-
tively, as '"'stress analysis' and "strength analysis''. Results of these
analyses then form the basis for design. |t is in the consideration of safety
and serviceability that the results of stress and strength analyses become
meaningful.

Except for the simplest cases, however, the analysis of the loading and
its associated load effects, and the analysis of structural capacity neces-
sarily entails a number of factors whose influences on the accuracy of the
design calculations are difficult, if not impossible, to assess. Such factors
as the unknown inaccuracies arising from the idealization of the loading
function and structural system, the assumptions underlying all analyses and
failure prediction formulas, and the unknown variances of construction and
fabrication, are indeed difficult to evaluate. These difficulties are com-
pounded by the fact that loads and material properties are generally statis-
tical variables; moreover, available data are invariably limited such that
estimates of the required statistical parameters are approximate at best.
Thus, even if statistical information can be modeled with probability con-
cepts, the difficulties associated with the unknown uncertainties cited above
and the general lack of data to properly evaluate the necessary parameters,
still remain. That is, the use of statistical and probability models cannot
circumvent the above difficulties. These uncertainties can only be treated
subjectively through the exercise of engineering judgments, which may be in the
form of multiplicative or additive factors. Alternatively, such judgments may
be expressed in the form of judgmental probabilities; this serves to express
the unknown uncertainties in terms of subjective probabilities, which are,
however, unfamiliar and thus confusing in general to engineers at this time.
Nevertheless, in appropriate situations, such judgmental probabilities may
be a suitable alternative to the conventional form of expressing engineering
judgment .
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P(R < Rp)

]
©

]
0

P(S > Sq)

The basic requirement for safety against a specified limit state is then
expressed in terms of the characteristic values as,

R =+v S (1)

where R_ is the required structural capacity, and Y is the overall safety
factor.” In more general terms, Yy is composed of several components vy , Y 3 y
called the'partial safety factors" [1]. The safety factor y > 1.0 "

(or its constituent partial safety factors) is necessary to take account of the
unknown uncertainties and other considerations, as well as the influence of
statistical variabilities (e.g., for steel Yo 1.15 whereas for concrete

Y_ = 1.50 are the recommended values of CEB On the grounds that concrete has a
wider statistical dispersion of strengths than steel).

It might be observed that using the probability-based nominal values R
and S , the major influences of statistical variabilities have already been
accoufited for through Eq. (1); on this basis, the calculated design resistance
will increase with the degree of statistical dispersion even if the same value
of v were used. The use of larger values for y in situations where large
dispersions are expected must, therefore, be to take care of the eventualities
of encountering R < R, and/or S > S . These eventualities can and ought to be
treated in the context of probability; i.e., the influence of statistical
variabilities on v can be evaluated objectively.

Classical Reliability Theory

Much has been written on the classical reliability theory, beginning with
the early papers of Freudenthal [4], Pugsley [5], and Prot and Levi [6].
However, it should be emphasized that relative to structural safety, the
classical reliability theory is predicated on the tacit assumption that the
statistical distributions of the loading and structural resistance are known
precisely, and that there are no other imponderables and uncertainties in the
analysis of structural safety. In the premise of the classical theory,
structural safety becomes solely a problem of determining the risk associated
with the statistical variabilities of the load and strength. The safety of a
structure is then measured by the “probabnllty of survival!'' or reliability,
and conversely the ''probability of failure' is the calculated risk against
an unsatisfactory performance or collapse. That is, if the random load (or
load effect) is S, and the structural resistance is R, then assuming no other
effects, failure can be defined as the occurrence of the event (R < §);
accordingly, in general terms, its probability is

[=a1
pe = P(R<S) = j FR(s)fs(s) ds (2)
0
where F, and f_. are, respectively, the distribution and density functions of

R and S, This can be calculated simply if R and S are both normal random
variables; i.e.,
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Other considerations in design must include the importance and projected
use of a structure, and the possible consequences in case of damage or collapse.
Also, when treating combined loadings, consideration must be given to the
reduced likelihood of encountering two or more extreme loads at the same time.

MODERN BASES OF STRUCTURAL SAFETY

The basic concepts underlying two modern approaches to structurail safety
are reviewed briefly below: these are namely, the limit-state approach [1]°
which is the basis of the turopean Concrete Committee recommendations for
safety [2], and the classical reliability theory [3]. The classical reliability
theory offers the correct rationale for the treatment of statistical variables
in structural safety consideration, whereas the limit-state format offers the
necessary flexibility to account for unknown uncertainties and the simplicity
required for conventional design implementation. These features can be com-
bined in a consistent and logical manner to yield a formulation which retains
a basic simplicity necessary for practical implementation. This review is
presented, therefore, to identify the technical advantages and shortcomings of
these methods, for the purpose of showing that capitalizing on the best features
of each of these two methods, a third method emerges which is tantamount con-
ceptually to a generalization of the reliability theory incorporating the
basic format and intent of the limit-state approach.

Limit-State Approach

Loads and structural material properties are often statistical variables,
such that there is no single load nor structural capacity that can be used
in design without some risk of encountering some unfavorable state of perfor-
mance, including collapse, because the no-risk load would be excessively too
high whereas the no-risk capacity may require an absurdly massive structure.
For purposes of design, it is therefore sensible to specify nominal values of
loads and structural capacities on the hasis of finite probability levels. In
this regard, the consideration of safety would dictate that the nominal value
for resistance must be on the low side, whereas the corresponding value of the
load must be on the high side of the respective ranges of possible values.
This observation naturaliy leads to the conclusion that the most appropriate
nominal values are the '"'characteristic strength' and ''characteristic load' as
defined in the limit-state approach.

In general, the characteristic resistance and characteristic load are R
and Sq which, for normal variates, are P

R(1 - k.6

R
p pR)

S

S(1 + k. 6
q q

s)

and S are the mean resistance and mean load (or load effect),

and 65 are the coefficients of variation of R and §,

R

is the number of standard deviation US between Sq and

In more general terms, R, and S, are values corresponding to specified prob-
ability levels, and can be defined as follows:

* Number in brackets corresponds to reference cited.

R

Sp _
kp is the number of standard deviation o, between Rp and R,
k S.
q
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2
! ) 2 (2)
p, = — Jv__ e dx 2
LI R-S
2 2
VGR T g

which is easily evaluated using tables of normal probabilities. The proba-
bility of survival, or reliability, then is simply

Ps = k= Pe

For specified probability distributions, the probability of failure p. is
related to the safety factor vy, as defined in Eq. (1). For example, if R and
S are normal variates, it is clear from Eq. (2) that,

el el

+
O 7 O

= o =
=0 (1 -pg) = kot

where ¢-](I - p.) is the value of the standard normal function at a cumulative
probability of f] - pf). From this equation, we obtain,

2 .2
l-kpfés

R

1 - k6
P 7 7 2 2.2 Tk g
L%J6R+%-kﬁ%%

and the safety factor, therefore, is

2 2
v - l-kEfGS (I - kpéR
1 + k8
2 2 2 2.2 q S
l-kpf,J bp + 8 - kpf5R65
. s 2 2 = 2w
where kpf is the number of standard deviation ,/ 6R + 8. that (R - S) is above
zero, such that the failure probability is equal to p_..
Clearly, therefore, k is a function of p_.; for example from tables of

normal probabilities, the ' fvalues of kpf for specific values of pg are given

in the second column of Table 1, from which we obtain the safety factors given
in the third and fourth columns of the same table.
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TABLE VALUES OF v WITH p = 0.10, q = 0.01
pe " _ v for_ _ v for_

pF 647015, §c=.20 6.=.20, §5=.20
1073 3.090 1.206 1.467
1074 3.719 1.466 2.152
107°  4.265 1.788 3.656
1078 4.753 2.215 10.509

17

The safety factors formulated using other distribution functions for R and S
1, the safety factor y varies
widely for a given Pe depending on the assumeddistribution function.

can be similarly evaluated;

as shown in Fig.
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FIG. 2 {NFLUENCE OF DISTRIBUTION FUNCTIONS
ON PROBABILITIES OF FAILURE

There are other formidable difficuities and limitations associated with the
classical reliability theory relative to its practical design implementation;
practical design situations are invariably shrouded with many uncertainties and

unknowns, not all of which are necessarily statistical or probabilistic.

These

difficulties have been emphasized by Freudenthal [7], which we quote as follows:
l. Ythe existence of non-random phenomena affecting structural safety

which cannot be

included in a probabilistic approach,’

2. 'the impossibility of observing the relevant random phenomena within
the ranges that are significant for safety analysis, and the resulting neces-
sity of extrapolation far beyond the range of actual observation,'!

3. ''the assessment and justification of a numerical value for the

lacceptable risk’

of failure, and"

4. ''the codification of the results of the rather complex probabilistic
safety analysis in a simple enough form to be usable in actual design."

it should be emphasized that the first three difficulties quoted above are

especially significant becausi
be considered acceptable (10~

to 10'

in the range of failure probabilities that may
or less) the calculated probabilities of

failure are extremely sensitive to the underlying distribution functions of R

and S,

as illustrated in fig. 2.

ficult to ascertain because of the general
sensitivity is reflected also on the design obtained from a specified failure

probability [8], as well as on the safety factor, as shown in Figs. 1 and 3.

2. Bg. Schiussbericht

As expected,

These distributions, however, are most dif=-
lack of data.

this
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In summary, the classical reliability concept is an idealized theory based
on assumptions and requirements that are not tenable in practice. Nevertheless,
it is a sound and necessary formalism for any rational analysis of structural
safety.

EXTENDED RELIABILITY CONCEPT

Basic Principles

From the above review, we recognize that it is desirable to have a method
that can overcome the shortcomings but that would retain the rationality of the
reliability concept, and possesses the
practical flexibility of the limit-state

;=épsqh=J&q=b| ot N approach. Such a method also should not
- 8;:0.20 . be too sensitive to the distribution
ol a functions of the statistical variables
but should reflect the influences of the
" EX3/EX2 1 major statistical variabilities through
s Tmmeesenss - ] certain key quantities such as the means
and variances (or coefficients of vari-
Y r . ation) without necessarily knowing the
o S _“_ B precise underlying distribu?ions. A
N TR Jayes =] - method developed on the basis of the
AN — . lextended reliability concept! [8]
i B comes close to fuifilling all of these
requirements.
oo Ll Following the basic format of the
4] 0.05 0.0 015 0.20 0.25

limit-state approach, the unknown uncer-
tainties are covered by a nominal

FIG. 3 VARIATION OF 7 WI;I'H B BASED ON CLASSICAL requirement in terms of characteristic
RELIABILITY ; p, = (O values,

R =+ 8 (3)

where v is a "judgment factor,' and is necessarily greater than 1.0 to take
account of the unknown uncertainties. The factor v must be determined using
engineering judgment in much the same way that the y-factor is chosen in the
limit-state approach. However, in contrast to the factor vy, the factor v
does not include the influence of known statistical variabilities.

Since v is in reality an ignorance factor, (R < vS) must represent a state
of unsatisfactory performance or unsafety; therefore, by requiring Eq. (3)
alone, the safety of a structure may still be jeopardized if R < vS, which will
occur primarily when R< R _or S >S5S . The logical measure of the occurrence
of such eventualities is P the probgbility P(R < vS), which can be called the
'probability of unsafety', and is clearly a generalization of the classical
failure probability. Hence, an additional requirement for structural safety
must be,

P(R<VS) <« (4)

where o is a smail probability necessary to insure that the occurrence of
R < VS is sufficiently rare.

In other words, Eq. (3) is a nominal requirement for safety; however, with
this nominal requirement imposed, the remaining question is: "in view of
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statistical variabilities, what is the reliability of this nominal design against
these latter eventualities?! This reliability is measured by P(R < vS), and Eq.
{(4) accordingly serves to assure a required level of this reliability. Clearly,
if R and S are both deterministic, then Eq. (3) is sufficient; whereas, known
statistical variabilities should be treated with probabilistic models and Eq. (4)
is the appropriate model for this purpose consistent with Eq. (3).

Significantly, it turns out that if the nominal requirement, Eq. (3), is
imposed, the risk or probability of unsafety is bounded [8] as follows:¥*

pqg < P(R<VS) < {p + q - pq) (5)

It might be emphasized again that (R < vS) will occur primarily when R < R_ or
S >Sg; but the first part of Eg. (5) says that the probability of such an
occurrence is greater than pq. Hence, if Eq. (3) is required, there is no
point in specifying the acceptable probability v to be less than pq.

In view of the minimum possibte value of the probability of unsafety indi-
cated in Eq. (5), the two requirements for structural safety, i.e. Eqs. (3) and
{4), can both be satisfied by the following single requirement:

PR < vS) = a; with @ € pg (6)

Thus, Eq. (6) is the desired basis for design, and the evaluation of safety
factors in design. It can be observed that Eq. (6) is similar to the safety
requirement of the classical reliability approach. |In fact, the probability of
unsafety reduces to the classical failure probability if v = 1.0. |In this case
it is significant to observe that Eq. (5), which remains valid, means that if

p = Sq is nominally required the associated probability of failure is also
boundeg as pg > pq.

Formulation of Safety Factors

Through Eq. (8), specific design formulas can then be derived for given
distribution functions of R and $ [8]. For example, if R and S are normal
variates, Eq. (6) yields

2.2
ko= RS I - k.8
p R
Rp=\) (l+k6>sq
2 2 2.2.3 a®s
1 ka\/5R+6S - ka(SRGS

I-kiég 1 - kbp
Y= ( ) (7)
-k, 6%+ 82 - Kleks2 Pl
T R S a R°S
where k= ¢-](I-a). It might be emphasized that § _ is the overall measure of

variatidn of the appropriate resistance, which may consist of the variations of
several factors or components; e.g., dispersions in material properties and
geometrics of structural members, which may be funct ions of workmanship quality.
For example, in the formulas for bending capacity of an under-reinforced
*Eq. (5) really refers to a conditional probability; i.e., the probability of

(R < v8) given Rp = \)Sq, or P(R < \)SlRp = \)Sq)-
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concrete beam, M, = fyASJd, SR is the coefficient of variation of Mu’ which is
a function of the variations in fy, As’ and d. Similarly, 63 may also consist

of the variations from severa! contributory factors or components.

3 1 Formulas for the safety factor vy

o corresponding to other probabiliity
distributions for R and S can be simi~
2 7 larly derived on the basis of Eq. (6).
i N S NN . The expressions obtained for these
EXB/EX| oo nTo = mm e =Taaas other distribution functions will be
i LN/LN . different from that of Eq. (7); however,
1 the calculated values of v for the same
oLy L v and coefficients of variation will not
% 0.05 010 015 G20 525 differ much. In other words, v obtained
3 on the basis of Eq. (6) will not be too
FIG4 VARIATION OF y/u WITH 3 BASED ON sensitive to the distribution functions
EXTENDED RELIABILITY of R and S, as can be seen from the
results presented in Fig. 4, which should

T ¥ '[ 1
y = lgp/Sq; p=.0,q=.0
34+ 020

be contrasted with those of Fig. 3

The formulation typified by Eq. (7) clearly distinguishes the unknown un-
certainties from the known statistical variabilities; the unknown uncertainties
are handled through a subjective factor v, whereas observed statistical vari-
abitities are handlied by the remaining factor which is a function of the co-
efficients of variation. This distinction is important. On this basis, it
emphas izes that statistical information should not be confused with ignorance
and should be handled objectively through appropriate probability models. The
vagueness that is unavoidable in the exercise of judgment, which is necessary
in the consideration of subjective factors, is however unnecessary when treating
information with measured statistical dispersions.

The part of the safety factor necessary to account for unknown uncertain~
ties, i.e. v, should theoretically remain constant unless the state of ignorance
changes; in any event, this part should not change with the measured variability
of the observed statistical information. The overall safety factor Yy, of course,
may change with the degree of statistical dispersion, but this can be done
objectively and more consistently with the form suggested by the extended reli-
ability approach.

We observe from Fig. 4 that the variation of the factor y/v with § {or és)
depends on the distribution functions of R and S. For certain distributions,
this factor may even decrease with 65 (and 65) as shown in both Figs. 3 and 4;
this is because v is described in terms of R_ and S_ which are also functions
of &g and 6., respectively. However, it shoﬁld be gmphasized that in spite of
this, the resulting designs will always increase with 6R and és.

For the normal distribution, however, v/v is monotonically increasing with.
&R, which is perhaps a desirable property from the standpoint of consistency
with conventional thinking. Since the extended reliability approach is some-
what independent of the distribution functions, the normal function therefore
may be adopted for general design applications. However, if information or
data suggests that other distributions are more appropriate, such distributions
can always be used to obtain more precise designs at the expense of more
involved computational efforts.

Design Codification

One of the purposes of the proposed extended reliability concept is for
the formulation and evaluation of safety factors to be used in a design code.
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For this purpose, values of v must be given for appropriate situations; these
values require subjective analysis and may be obtained in much the same way

that the partial safety factors are currently obtained, and may similarly be
decomposed into several sources of uncertainties; e.g., v = v v_, in which

v_ is the judgmental correction necessary to take account of the unknowns in

the prediction of resistance; and v_ is the corresponding factor to include the
possible inaccuracies in the ana1ys%s of the load and load effects, and the
unlikely occurrence of two or more extreme loads at the same time. These factors
may each be further broken down into components if necessary to facilitate
analysis, as suggested in the limit-state approach [1].

The influences of measured or known statistical variabilities should not be
included in the subjective analysis of v, since these are evaluated through the
formula given in Eq. (7).

In its initial implementation, the value of v may be evaluated on the basis
of current designs; ie., assuming typical values of certain parameters, its
value should be such that the same safety factor is obtained as currently used.
For example, suppose that based on the recommendations of the CEB, the overall
safety factor is v = YmYsYe = 1.80, in which the characteristic values are

assumed to be based on p = .05 and q = 0.02, whereas GR = 0.20 and 8¢ = 0.25;

then in order to obtain the same design for this typical case, the judgment
factor v, according to Eq. (7), must be

B /0.132\(1.512) )
v = 1.80 \57400/\0.670) = '-34

For subsequent designs of the same or similar types of structures under similar
conditions, this value of v must be held constant, whereas depending on the
quality of material and variability of the loadings, the value of the safety
factor y would vary in accordance with Eq. (7).

Other considerations, such as the importance and projected use of a struc-
ture, may be taken into account through the specification of the nominal design
load Sq; the $ for an important structure intended for human occupany should

correspond to a smaller q than a structure of lesser importance.

SUMMARY AND CONCLUS IONS

Uncertainties in design can be identified to be of two types; namely,
unknown uncertainties arising from the lack of perfect knowledge and information,
and measured statistical variabilities. The unknown uncertainties can be
treated only subjectively through the use of engineering judgments, whereas
known statistical information can and should be treated objectively using prob-
ability concepts.

The probability-based characteristic load and resistance are suitable
nominal design values. |In terms of these characteristic values, the unknown
uncertainties can be accounted for through a '"'judgment factor' {or factors)
expressed nominally in a conventional format; in these terms, statistical vari-
abilities are also largely accounted for. The remaining concern is then primar-
ily the risk against having a resistance less than the characteristic value or
encountering a load greater than the specified characteristic load. However,
in view of the nominal requirement, this risk is theoretically limited by a
lower bound. Thus, the acceptable risk need not be smaller than the indicated

minimum.
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The essence of the proposed extended reliability concept can be summarized
as follows:

i, R =S 3
P 9 (3)
then P(R < vS) >pq (5)
for all values of v, including v = 1.0. Hence, pq is an acceptable risk when
Eq. {3) is nominally required, and the appropriate basis for safe design is,
P(R<VS) = (6)

with o { pq. On this basis, reliability-based design procedures (in conventional
form) can be developed that are not too sensitive to the assumed distribution
functions, thus permitting the adoption of the normal distribution for most
practical purposes. However, the approach also allows the use of other distri-
butions if necessary and warranted.

In the context of the above extended reliability concept, a design safety
factor derived from Eq. (6) consists of two parts--a subjective part represented
by v, and an objective part for evaluating the influence of statistical infor-
mation. In this way, the variation of the safety factor with statistical dis-
persions can be evaluated systematically and objectively.
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SUMMARY

Unknown uncertainties in designh are formulated in terms of a
nominal requirement through a subjective Jjudgment factor. In view
of this nominal requirement, the risk against unfavorable per-
formance dve to statistical variabilities is theoretically limited.
Hence, a minimum acceptable risk is available to permit the for-
mulation of an extended reliability basis for safe design and
evalutation of safety factors.

RESUME

Les variables aléatoires inconnues, dans la conception des
projets, sont exprimées sous forme d'une exigence nominale gréce
4 un facteur subjectif de jugement. Considérant ce facteur arbi-
traire, la détermination du risque d'un comportement insatis-
faisant créé par les variations statistigues, est théorétiquement
limitée. Ainsi, un risgque minimal acceptable est utile afin de
permettre la formulation de bases sérieuses pour une conception
slire et pour 1l'évaluation des coefficients de sécurité.

ZUSAMMENFASSUNG

Mit Hilfe eines subjektiven Beurteilungswertes werden die
unbekannter: Unsicherheiten beim Entwurf in Gliedern einer Nenn-—
anforderung ausgedriickt. Im Hinblick auf diese Nennforderung
ist das Risiko gegen unerwinschtes, aus statistischer Streuung
hervorgerufenes Verhalten theoretisch begrenzt. Dadurch wird ein
kleinstes, annehmbares Rigiko nutzbar fir die Formulierung eines
sicheren Entwurfes sowie der Sicherheitsbeiwerte aufgrund eines
erweiterten Zuverlissigkeitsbereiches.
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1. INTRODUCTION

In modern theories of structural safety it is customary to assign
a certain "probability of failure" (Pf) to a structure. This Ps can be
derived from the probability distribution of the strength and the
probability distribution of the loads. Fallure is thought to occur if
the loads exceed the strength.

The intention is, to choose Ps so small, that an econcmic optimum
is reached, where the sum of building costs, maintenance and risk
(possibly alsc remainder value after the end of the fixed lifetime) is
made a8 small as possible,

Many authors have studied the possibilities of assigning & certain
value to P if the variations of lcads and strength are known [1].
Practical application is still difficult, because there is not sufficient
knowledge of the probability of extreme loads and extreme material
properties. Nevertheless it seems probable that the results of this
theory are not completely realistic, because in the theory it is assumed
that the structure as a whole - although with an unfavorable combination
of material properties - must be able to sustain the normal types of
loads (like floor loads and wind), without being damaged appreciabdbly,
not even when the loads have an exceptional magnitude, Very little
attention has been paid to what happens to e structure that has been
damaged locally by an overload or materials defect. For complicated
structures, comprising many structural elements this is not satisfactory.
Furthermore the theory as usually applied does not allow for abnormsal
types of load, differing considerably from the standard loads given in
the building codes (like explosions, collisions and fire) and of
abnormal material properties caused by building errors, chemical attack
or fire.

In this paper the author will try to point out some factors that in
reality have a great influence on the probability of failure of a
structure. For this end he will use on one hand simple statistical
coneiderations, and on the other hand data obtained from building fail-
ures.
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2, BLEMENTARY STATISTICAL CONSIDERATIONS

For a simple structural element the difference between the strength
of the critical cross section and the load can be calculated. This is
compared with some quantity (like the standard deviation) that repre-
sents the scatter in this difference. The probability that failure will
occur depends from the type of frequency distribution and from the
ratio between difference and standard deviation.

If the strength of a structure is obtained by addition of the
strength of a number of cross sections (like e.g. a statically indermin-
ate beam or a rigid block supported on a great number of piles) the
gscatter in the strength is smaller than that of the individual cross
sections. It is not reasonable therefore to calculate statically inde~-
terminate structures with the same "factor of safety" as statically
determinate structures.

On the other hand many structures contain a number of elements that
are linked in a series, like the links of a chain, the consecutive
elements of the cable of a suspension bridge, or the columns that are
situated one above the other in a high building.

It is obvious that the chain is no stronger than the weakest link.
If mean ¥4 and standard deviation o1 of the strength of a single
element are known, the mathematical mean and standard deviation of the
weakest of a series of n elements can be calculated approximately [2].
In fig. 1 the necessary parameters rp and S5, are given. The weakest
element of a series of n elements has & mean strength xn 1 - rpo4
with a standard deviation oy = Sjoq.

— = n=number of elements in series

. 2 3 4567810 2 3 4 5678107 2 3 456781°
04
\ S /—_ . —-—
,QJ-—#"’ n elements, each having a mean strength X,
08 /—” . and a standard deviation 0y are linked in series
2 \n The weakest element of a chain of n elements
K N has a mean strength =X, and a standard
16 N\,.\ deviation o
\ in =i1 -9
\
20 g G =Sne0y
K*~\
24
28 \\\ ~
~
32

fig.1 The strength of the weakest link of a chain of n elements
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The mean strength of a series of elements is therefore smaller than
that of a single element, A greater value of the coefficient of safety
will be needed in such cases, This is true especially in cases where
the scatter in the loads is relatively great. In cases where the loads
are known rather accurately the effect is mildered by the fact that the
standard deviation Ty for the series is smaller than o, for the single
element.

The same sort of phenomenon occurs in greater structures. It seems
appropriate to consider a greater structure as an assembly of a great
number of structural elements. Each of these has to fulfill certain
specifications in respect to safety.

Let the greater structure consist of n elements. Each element has
a (Small) probability of failure = pq. This does not fix the probability
of failure of the whole structure. In the worst case each individual
element will by collapsing bring about a total destruction of the whole
structure. This is the case for example in a completely statically
determinate structure. In this extreme case the probability of failure
of the whole structure will be approximately p, = npq. If p, must have

an acceptable low value, pq = ;? must be extremely small.

A much more normal situation will be, that only a smaller number
of elements (n,) will bring about a complete failure by failing indivi-
dually, whereas the other n - no elements cause only local damage that
can be repaired.

In such a case p, may be set egqual to P, = NoDo (p2 is the
probability of failure of the critical elements). For £Iimilar reasons

D
as before py = 52 will have to be considerably lower than Py

The designer has to know what elements are critical, so that he
can make these elements sufficiently safe. The safety requirements for
the other elements that can cause only local damage may be less stringent,

If there are 100 critical elements in a greater structure, and if
P1 = Pp = 10‘3, then po will have to be po = 10~>, For the normal
elements this means that the difference between strength and expected
loads has to be equal to 3.1 x the standard deviation, for the critical
elements this difference becomes 4.2 x the standard deviation.

Calculations make it seem simple to do this. If the loads and the
strength both have a standard deviation of 10 %, the mean strength of
the normal elements has to be 1.58 x the mean value of the expected
loads caused by the most unfavorable load combination, and the strength
of the critiecal elements must be designed with a factor of safety =
1.90 in order to have p, = 10-5,

In reality this is nongense. For not too small levels of probabil-
ity (order of magnitude 1077) it is completely reasonable to consider
loads and strength as quantities that may vary in magnitude, but retain
more or less the same character. If however one has to look for smaller
probabilities, the probability of occurrence of completely other types
of load (like those brought about by explosions, collisions, inundations,
earthquakes, etc.) becomes sufficiently great to make it necessary that
these tooc are considered. The same is true for the strength, where far
‘more abnormal situations (fire, chemical attack, eto.) come within the
range of possibilities.
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This seems to indicate that it is not sufficient to increase the
conventional coefficient of security in order to d&iminish the probabil-
ity of failure of a certain gtructural part below a certain - normal -
1imit. If this is necessary at least some qualitative insight in the
cauges of structural damage is needed, as well as some idea of the
frequency of occurrence in practice.

%, STATISTICAL DATA ON STRUCTURAL DAMAGE

In the daily papers mention is made regularly of occurrencies
where structural damage has been involved. Dependable gtatistical data
are not available. The "news-value" is rather independent of the extent
of the damage, so that for a structural engineer the selection by the
daily papers seems completely haphazard. Due to the fact that in many
cases conflicts arise between several parties on questions of who is
responsible for the damage etc., it is not easy to publish freely about
specific cases where details are known on causes and extent of structur-
al damage.

This makes necessarily the following statistics a rough estimate.
Nevertheless the facts are remarkable enough.

For 1967 the following causes for structural damage in the Nether-
lands can be enumerated (where in all there are about 3.000,000 houses,
flate and other buildings):

15000 fires, known at the fire brigade offices (in 1500 of these fires
flameover occurred in at least one room).

200 individual cases, where wind loads caused rather severe structural
damage (i.e. more severe than faellen chimneys and roof tiles).
Among these was a whirlwind which caused considerable damage to
meny houses, several roofs were torn of apartment buildings etc.,
a sport hall was blown over etc.). _

200 explosions caused structural damage. Part of them occurred out-
side buildings (ship carrying ammunition, oil refinery, tank
transport vehicle), another part occurred in the buildings them-
selves (gas explosions of natural gas, sewer gas, acetylene
‘cylinder, gasoline, chemical experiments, detonating gas in an
industrial accident, etc.).

100 collisions (ship against bridge, truck against bridge, car or tranm
against building, building crane falling down on building, air-
plane against guying of television mast, etc.).

50 total or partial collapses under almost normal circumstances, due
to materials defects and/or faulty design.

20 total or partial collapses caused by local overloading (among
these a complete roof of an industrial building coming down as the
result of an extremely high loading by iron dust on a very small
part of the roof.

The total demage may be estimated at H fl. 400.000.000,- (this is
about 1/2 % of the national income, and 5 % of the total budget of the
whole building industry in the Netherlands). Moreover about 100 people
were killed in the accidents described. Roughly one half of the damage
was caused by fire,

Another important aspect is that in many cases the indirect damage
(e.g. caused by the loss of a vital part of an industrial process) or
the injuries to people and the loss of goods that were in the damaged
building have caused far greater losses than the structural damage in
the building itself.
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As far as can be seen this year is not exceptional. In 1968 there
was somewhat less damage caused by wind. In the beginning of 1969 some
10 collapses due to snow loads occurred, which had not been present in
the previous years,

All this happened without earthquakes, civil war, sabotage, flood
disasters, hurricanes and other disasters striking a large area enter~
ing the picture.

If it is assumed that only in the case flameover occurs fire
causes structural damage, in one year more than 2.000 buildings are
damaged in one way or another., This means that from the 3.000.000 buil-
dings in the Netherlands some 100,000 (3 %) will be damaged during
their lifetime.

In structural calculations the coefficients of security normally
adopted would lead to exgect a very low probability of failure (order
of magnitude 10=4 or 10~ ) due to "normal" causes., The designer ought
to be more conscious of the adverse possibilities of loading by fire,
explosions, collisicns, etc, This may be expected to have a relatively
great influence on the real safety of structures., Only if this is done,
advantage can be reached by using refined calculating methods and
quality control.

In the next chapter some more details will help to visualize the
risks that a structure runs.

4. CAUSES OF BUILDING FAILURES

There can be discerned three main causes for structural damage:
1. fire,
2, brute violence (explosions, collisions, some cases of wind damage,
inundations, earthquakes, sabotage, war actions),
3, an unfortunate combination of material, structural
and loads.

Most of the somewhat spectacular failures can be found in the
firat two categories. In many cases a minute accident triggered off a
sequence of events, leading to substantial damage and loss of human
lives. Mostly a great total damage occurs when a relatively great part
of & building is damaged., Sometimes however even a failure of a minor
structural part (e.g. a sewer pipe) can cause considerable dmage in the
industrial sector.

By fire great losses occur if the room where the fire starts has
gregt dimensions, if the contentis are very costly or if the fire can
spread later on to adjacent rooms or buildings.

The risk that during the lifetime of a building flameover will
occur in one of its rooms may be estimated at 2 %, This makes it
obviously a sensible thing to take precautions for diminishing the
risk of spread of fire to adjacent rooms. Very large individual rooms
should be avoided wherever possible.

Brute violence causes some damage to about 1/2 % of all buildings.
Most building codes do not take explicit precautions against this sort
of calamities = nor do more advanced ideas on structural design current
in the technical litterature. There is no reason to believe that this
risk is automatically covered by the conventional coefficient of
security.

In normal circumstances quite a lot of communicetion is needed
between the several people concerned with the design and the erection
of a building. BEven in the design phase no one concerned can effectiv-
ely supervise all the different viewpoints (economic, heating and
ventilation, structural, aesthetic, etc.).
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The designer has in mind a definite purpose. Even during erection un-
expected circumstances may arise. During the long life of a structure
changes in use, additions and internal reorganization may alter the
circumstances of several structural parts considerably. It is not to be
wondered that in some cases by an unhappy coincidence of structural
design, execution and loads part of a structure fails.

This again is an argument, which makes it clear, that in a good
design the possibility of a local failure ought to be considered.

5. RISK CONSCIQUSNESS

Especially in cases where a failure may endanger the lives of many
people (high apartment building) or where great industrial damage may
be caused, it is urgent that methods are developed to make the design
"fail-safe'.

In aeroplane industry this is commonplace, in shipbuilding water-
tight compartments have since long been completely normal. Why has it
taken such a long time, before the need for "risk consciousness" for
the structural engineer became apparent?

Obviously one of the main causes is that for small structures there
is not much difference between the extra margin of safety that is
obtained by a coefficient of security and by some form of risk conscious-
ness. At this moment however a magnification in scale causes more, bigger
and more complicated structures to be built than ever before. In such
cases the risk of a complete failure induced by a local failure cannot
be covered by the use of a coefficient. The type of design is the only
factor that can help without exceptionally high costs.

Necessarily some money will be needed to make a structure so that
a loecal failure cannot cause severe damage to a greater part of the
structure. The certainty that a local failure will only cause local
damage will make it possible however to choose a higher probability of
failure (i.e. a smaller coefficient of safety) for the design of the
individual structural elements. This may offset the greater part of
the extra costs of the main structure.

In all cases one ought to seek for a solution which makes the sum
of building costs, exploitation and risk as small as possible. In a
greater object the risk becomes more prominent. As an example a total
failure of a normal one family house will cause a damage of say
H f£1. 100.000,~ and there is a reasonable chance that no human lives
will be lost in such a failure. If however by a similar cause a high
apartment building containing 100 flats collapses, the damage is 100
times as great and there is a reasonable probability that some hundred
people will be killed. Moreover the odds that some clumsiness of one
of the people living in the building causes the initial calamity is
equally great as in 100 one family houses.

This makes it clear that the greater and more complicated buil-
dings and structures that are becoming more and more common now mast
have some capacity of sustaining completely unexpected loads and local
failures. Very accurate calculations seem out of place, but it ought
to be investigated at least intuitively and with some rough calculat-
ions what can happen in exceptional circumstances.

During the last war prof. J.F, Baker used similar considerations
for reinforcing the roof trusses of factory halls. He wished to avoid
that 2 small bomb that e.g. blew away one of the columns would cause
the roof to come down completely. In order to increase the risk
consciousness of the structural engineers it seems useful to include
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in building codes and similar documents a sentence like "The structure
shall be designed in such a way, that local damage cannot induce dis-
proportionately great damage in the structure as a whole or cause dis~-
proportionately great effects on the function of the gtructure'". Such
a sentence has effect only if building authorities act upon it.

6. SCIENTIFIC EVALUATION OF RISK

By now the behaviour of most structures under deterministic cir-
cumstances is known well enough to enable a 8pecialist to calculate the
real behaviour under loads in considerable detail., In many cases it will
be possible to calculate the behaviour of a given structure under a
given sequence of loads. ‘At the end of this sequence the final state
can be described by a number of parameters fixing e.g. the deflections,
the crack widths, etc. in a number of typical points. The necessary
calculations can be made very rapidly using a computer.

There is a method, called "Monte Carlo method" or "simulation".
This means that a rather great number of possible structures is chosen
(taking into account the known frequency distributions of material
properties, dimensions, etc.)., In the same way for each of them g
certain sequence of loads occurring during the "lifetime" can be chosen.
Some of these loads have exceptional magnitudes - like those due to
removal of furniture - others have an abnormal character - like fire,
which occurs in varying severity in about 2 % of the cases ~, With a
computer all the typical parameters of the structural behaviour at the
end of the load sequence chosen for that structure are calculated.

The situation of some tens of thousands more or less similar
structures under more or less similar conditions can be determined in
this way. The data can be evaluated statistically in the same manner
ag experimental data, and give - within the range of our knowledge of
loads and material properties - a realistic estimate of the risk that
the structure will become unservicable.

It is obvious that for a complicated structure this type of
analysis will be difficult, because so many assumptions have to be
made on scatter and frequency distributions of loads, material proper-
ties and dimensions.

Even for a rather simple structural part however this type of
analysis may lead to unexpected results that can serve as a guide for
future work. As an example it would be extremely interesting to
investigate in this way the behaviour of a simple reinforced concrete
slab. The cover, the quantity and quality of the reinforcement bars,
their diameter, the concrete quality and the slab thickness may be
taken as design parameters. It seems certainly possible, that this
may lead to the conclusion that several normal design procedures are
unrealistic (like multiplying body weight and external loads with the
same load factor, determining the amount of steel of different quali-
ties from the yield moment at normal temperature and determining the
cover from tests in pure bending where the crack width is observed).

It is hoped that this type of analysis will lead in future to
methods of structural analysis, where as well the scatter in loads and
structural properties as the influence of abnormal loading like fire
and structural defects are treated in an orderly way.
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7. CONCLUSIONS

Abnormal types of load like fire and brute violence occur too
frequently fto be neglected in structural design. If these are considered
in an adequate manner the real safety of structures can be improved
materially. This is especially so for greater structures built from a
great number of structural elements.

The probability that in such a building one of the elements is
loaded far heavier than normal is so great, that it must be explicitly
avoided that any such element causes a complete disaster in failing.
This can be ensured by providing alternative paths of load if one
element falls. Critical elements must be located and special precautlons
must be taken to insure their safety.

In most cases rough calculations and qualitative insight will
suffice. The more refined modern building codes (like e.g. the CEB
regulations) build up a coefficient of security from a great number of
separate factors. As a kind of check list on all the influences thisg
procedure may be useful. From a statistical point of view multiplica-
tion of a number of these factors is nonsense. Moreover the great
numerical accuracy achieved in that way leads to the neglecting of more
important aspects of safety.

Good statistical data on exceptional loads and on building failures
are not available. For the time being a more realistic approach must
therefore make use of extremely rough estimates. Some increase of know-
ledge in this area will lead to much more increase of gtructural safety
and economy than most of the structural research going on in laborato-
ries all over the world now (including my own!

[1] See e.g. The analysis of structural safety. Final report of the
Task Committee on factors of safety ASCE by A.M. Freudenthal,
J.M, Garrelts and M. Shinozuka. Journal of the Structural Division
Proc. ASCE, Febr. 1966 (page 4682 etc.) and
J. Perry Borges & M. Castanheta "Structural Safety", LNEC Lisbon,
1968.

[2] Van Douwen, Kuipers and Loof "Correcties op gemiddelde waarde en
?tandaard?fw1gk1ng bij proevenseries met symmetrische proefstukken
in Dutch
Report Oe 5, Stevin Laboratory Technical University Delft (May '58).
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SUMMARY

In greater structures there is a difference between failure of
a structural part and failure of the structure as a whole. A part
can fail by overloading and materials defects but also by fire or
brute violence. Statistical data show that this happens during the
lifetime of % % of the buildings in the Netherlands., A good struc-
ture has to be "fail-safe" as well as sufficlently strong in the
normal situation., Critical elements must be located.

RESUME

Pour les constructions d'une certaine importarnce, il y a lieu
‘' de distinguer entre la défaillance d’un membre et 1'écroulement de
la structure ertiere. La rupture d'un membre peut 8&tre occasionnée
par des surcharges excessives et par des défauts de matériaux, mais
augsi par le feu ou la violence. Les statistiques montrent que 3 %
des batiments en Hollande subissent un dommage pendant leur durée
de service. Une structure bien faite ne doit pas s'écrouler, méme
en cas d'avarie & 1'un de ses €lémerts. Les parties critiques
de la structure doivent étre localisées.

ZUS AMMENFASSUNG

In grdsseren Bauwerken muss man zwischen dem Bruch eines
Gliedes und dem Zusammenbruch des Ganzen unterscheilden. Ein Tell
kann sowohl durch Ueberbelastung und Materialméngel als auch durch
Feuer und rohe Gewalt versagen. Die Statistiken weisern aus, dass
in Heolland 3 v.H. Gebiuder innerhalb der Lebensdauer Schaden er-
leiden. Eine zweckméssige Konstruktion muss bruchsicher und im
Regelfall hinreichend tragfihig sein. Die kritischen Teile miissen
lokalisiert werden,

3. Bg. Schlussbericht
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INTRODUCTION

Over the last two decades, there has been an increased interest in the study of
safety of structures from a probabilistic viewpoint. In these studies, two schools of
thought can be identified: a classical probability analysis of the problem of safety
exemplified in the works of Freudenthal (]), and an engineering approach to design
codes, based on probabilistic concepts but aiming to maintain the simplicity of

(2’3’4). This paper pursues the lafter approach.

existing codes
It is recognized that the probability of failure of a structure is fundamental to
a rational measure of the safety in view of the stochastic nature of resistance and
load. The present state of knowledge permits ordinarily only an evaluation of the
probability of failure of individual components {i.e. members) of a structure. The
search for methods to calculate the probability of failure of structural systems remain
an active field of research. In the spirit of the codes currently in use, this paper is
concemed immediately with the design of individual components.
The load and resistance of a structure are functions of many stochastic variables.
These variables are inter-related and their influence on the probability of failure is
therefore very complex. Some design codes (e.g. the CEB Recommendations (5),
attach partial safety factors on the effect of each specified variable. However, if
the aim of a code is to achieve a constant probability of failure, it may not be valid

a priori to assume that the effect of the stochastic variables can be separated; the

partial safety factor would in general be mutually dependent. Therefore it would
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seem that a probabilistic design objective can only be achieved within a partial safety
factor scheme at the expense of prohibitive complications in the expressions for the
partial safety factors or, alternatively, by introducing coarse simplifications. Further-

©

more, the advantage of partial safety factors is partly lost if they are selected
arbitrarily . ‘

Yet, the partial safety factor format remains attractive from a practical point of
view, and it is worth the effort to examine how well it can be reconciled with the
stochastic approach. The work reported in the following shows that it is always
possible to derive a set of partial safety factors in such a way that consistency in the
probability of failure is achieved with reasonable accuracy.

Following Cornell (2), the resistance R may be regarded as a product of three
variables, M representing material strength, F representing fabrication and P
representing the influence of professional assumptions, that is, the errors involved in
the calculation of the resistance. For example, P includes variation within the
limited discrete member sizes available, and accuracy of the formula for resistance

@)

used. The load S may be regarded as a product of two variables: total load T
and o factor E representing the uncertainty in engineering analysis of the evaluation
of the load effect (for example; maximum moment) assuming that the actual loads were
given.

Design then consists in the selection of 'characteristic values' of these five
variables. The characteristic value of a load variable is the value at a specified
number of standard deviations above the mean. This specified number may be called
the 'characteristic coefficient' and is related to the probability of exceedance.
Characteristic values of sirength variables are defined in a corresponding manner,

6

following established notions about strength and loads The ratio of the characteristic
to the mean value of a variable is the corresponding central partial safety factor. Thus,
it is seen that this partial safety factor for each variable depends only on its
coefficient of variation and its characteristic coefficient.

This formulation permits selection of the coefficients of variation of the above

variables, depending on experience and the particular design situation, in order to

determine a set of partial safety factors.
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DERIVATICN OF PARTIAL SAFETY FACTORS
For the random variables, resistance R and load effect S (which may be an
applied load, or applied moment, for example), with means R and S, and coefficients

of variation V, and V., we may define the central safety factor 8 as

R 5
8 =R/ )
Referring to Fig. 1, failure occurs when the resistance R is less than the applied load

S, that is, when the stochastic variable (R ~S), the safety margin, is less than zero.

FIG 1
failure distribution of (R-S) DEFINITION OF
SAFETY INDEX g

0 R-S (R-S)

B x std. devn.

A measure of the degree of reliability B, called the 'safety index' is defined
as the number of standard deviations of (R - S) befween its mean value and zero.
With a knowledge of the actual distributions of R and S, one can calculate the

probability of failure of an element for any specified 8. Thus:

g = R-S _ R-3 _ 8 -1 @
std. dev. R - S) [(VRE)Z " (ng)z]% [92V§ N ng%

We now effect a linearization of the square root function, forany x and vy,
by introducing a function a = (x/y) defined by the relation:

1
]

62y = ey L aby) ®
It is easily shown that « always lies between 0.707 and 1. Moreover, if
x and y are roughly of the same magnitude, « is practically constant, For example,
the assumption that o has a constant value of 0.75 would introduce a maximum error

less than 10% for 0.25 < x/y < 4.0.
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By Eq. 2 and Eq. 3, the safety index is:

A @
aBv, +V,)
From Eq. | and 4, we get for the central safety factor:
1+aBV
Q= g =g 0 . )

1—aBVR R™S

where 95 =1+ VS is the partial safety factor on the load effect and GR =
(- aBV = is the partial safety factor on the resistance.

Now, GR
variables M, F, and P as follows:

—~i

can be separated into partial safety factors on the component

6R=(I—aBVQ

2 2,.,2%,-1
=71- +
[1-aB Vg +VE+ VDR ©
By repeated use of Eq. 3, the partial safety factor on the resistance becomes:

_ -1
8p = [1 oo BV, ~aa 0BV, - oo ]azsvpl 7]

Factorizing, and keeping the term containing VM independent of the other

terms, we get:

oo 10‘23VF et i -1
— hY -
Or L0 -8V (-3 BVM’( T BV, 0 a BVF)]
= [a- aa ,BVy) (1-C e a8V (1 - aa]aZBV )]
_ -1 _
= L0 -Ky8Yy) (- K8V (1=K BV )T = 8,66, (8)

where KM, KF’ and Kp are functions of VM’ VF’ and Vp.

Each ei may be regarded as a partial safety factor on the variable i. It is shown
below that the Ki are approximately constants, in the range of practical designs,
so that each characteristic coefficient (KiB) varies predominantly with 8 only.

Similarly, the partial safety factor on the loads may be re-written:

8¢ = (17K;8Vy) (1+ KBV = 0.6, (9)
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where K_ and K_ are functions of V_ and VE and, as will be shown below, are

T E T
practically constants. 8_ and 8 _ are the partial safety factors on T and E

T E
respectively,

Furthermore, the effects of dead load and live load variations can be separated
into individual partial safety factors, GD and 6 L respectively, which may be
combined into the partial safety factor on total load, BT, by proportional addition
as in the AC| 318-63 Code. Also, it can be shown that these additional partial
safety factors depend only on the coefficients of variation of the loads.

Returning to Eq. 5, using Eq. 8 and 9, we get for the central safety factor

6 = GRGS = eMeFePBTeE (10)

CALIBRATION TO AN EXISTING CODE

The process of selecting appropriate values for the parameters in a code is
called calibration (3). A new code may be calibrated to an existing code so as to
produce approximately the same member proportions as produced by current design,
and, in the process, to produce approximately the same probability of failure, cost
of failure, etc.

A convenient way to calibrate the proposed code format is first to calculate the
implied value of B8 in the existing code by using a realistic set of {V} = {Vo} of
coefficients of variation of the variables M, F, P, Tand E, and a calibration value
of the central safety factor 6 = Oo.

With this value of 8 and for different combinations of the set {V}, the values
of the set { K} ={ KM’KF’KP’KT’
approximately constant in the practical range of the set { V} as shown (in the example

KE] are calculated. The value of each K is

for KM) in Fig. 2. Accordingly, the uncertainty in thé value of {V} assumed in
calibration to the existing code KM
has very little influence on the

resulting calibration, {K} = {Ko} 0.7

0.6

FIG 2.
VARIATION OF

Ky WITH V. B
| [ |

0.5

0 0.05 0.10 0.15
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Fig. 2 shows, furthemore, that the value of KM as an approximation, can be
replaced by a constant. In fact, the other functions in the set { K} can similarly be
assumed to be constant. Averaged over the domain of combinations of realistic values
of the set {V}, we may put {K} = {0.56, 0.52, 0.58, 0.56, 0.503 . Moreover,
we may simplify the results by inverting the expressions for GM, GF, and GP and
neglecting terms of second and higher order. Finally we may even choose a global

value, optimized over a realistic domain, of K =0.60, say. Accordingly,
6. =1+ KBV, i =M,F,PT,E (n

can be used to calculate all partial safety factors for different conditions of materials,
inspection etc.

The error in 8 according to Eq. 10 arising from using Eq. 11, embodying all
these approximations, rather than the correct expressions, Eq. 8 and Eq. 9, was
determined using a digital computer over the unweighted practical ranges of the five

coefficients of variations. Fig. 3 shows the distribution of this error.

A o
.?]o% FIG 3
> ) CALIBRATED VS
0 sl EXACT CENTRAL
F—-
é . SAFETY FACTOR
S
N Al (o =1 point)
( O =3 points coincident)
8 =2.71
K =0,60
0 i ] |
0 2 3 4 % rruE

DESIGN PROCEDURE

In actual design the value of K as determined by the code authority could be
given in the code and the designer might be free to select the set {V} according to
conditions. If the consequences of failure were particularly severe, a higher value for

B would be specified. The central safety factor 8 to be used would be calculated
from Eq. 10 and 11,
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Alternatively, the partial safety factors 6i might be specified in the code in
the manner similar to the C.E.B. Recommendations.
ILLUSTRATION

A partial safety factor code is to be calibrated to an existing code, (assumed to
be National Building Code of Canada 1965 (7))

As calibration point, we here select (somewhat arbitrarily, for the purpose of

illustration only);

Office building :  Nominal live load = 50 psf.
Supported area : 20 ft. spanat 10 ft. c.c. = 200 psf.
Dead load (6 in. slab, plus self weight, etc.) = 80 psf.
Steel beams, simply supported Fall =0.6 fy =21,900 psi .
Here, Fy is the mill test nominal minimum yield strength (for A36 steel). Actual
yield strengths are assumed to have a mean of f = 36,000 psi with a coefficient of
variation for such beams equal to 12%, on the basis of tests ® assumed to be relevant,

The mean office live loading is assumed to be 25 psf.(9) and with a coefficient of

(10)

1
variation equal to c/Aj‘g = 0.92 for this particular area

The central safety factor implied is therefore:

2 2
e 20° 36,000 202 _
6—R/S—(80+50)x-§—xm/(80+25)x—8——2.0

A realistic set of coefficients of variation is taken as:
V,, =0,12, VF =0.05, (Good Control)

M
V, =0.05, (Highaccuracy), V, =0.92, VD=0.05, (Average)

P

VE =0.10 (Ordinary analysis).

Combining the loads, T =L+ D, we get:

L

41

Vo= vL)2+(|5 vD)zj%/ (L+D) =T (25x 0.92)% + (80 x 0.05)21% /(25 + 80) = 0.22

Using these values, we calculate the coefficients of variation of the resistance and

the load, respectively, as:

2 2 24 ,
Ve = VotV VR = o4

VS v T+V E) 0.24
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By equation 2, the safety index B is equal 0 2.71. The set { K} in Egs. 8and 9

is found using this value of B. The result is:
[K} ={ KM, KF, Kp’ KT, KE} ={0.52, 0.44, 0.47, 0.53, 0.41} (12)

The desired partial safety factor code should result in approximately the same
safety level as in the existing code at the calibration point. Therefore, we select
B =2.71 for the new code. The code is to acknowledge the variability in all five
variables as shown in Table 1, where the coefficient of variation of each condition
is listed. For each of these conditions, the resulting partial safety factors from Eq. 8
and 9 range as shown in the Table. The values shown are the averages of the exact
values for the entire domain of combinations of the coefficients of variation given in
Table 1.

It can be seen that the proportioning of the safety margin between load and

strength is quite different from that of the reference code.

TABLE 1
Partial safety factors derived for a safety index of 2,71,
Good Average Poor
RESISTANCE Conditions Conditions Conditions
Coefficient of variation 0.05 0.10 0.15
BM 1.09 1.17 1.29
6 £ 1.07 1.15 1.27
BP 1.08 1.18 1.33
low average high |
QAR variability variability variability
Coefficient of Variation 0.05 0.20 0.40
8 T 1.08 1.31 1.65
STRUCTURAL ANALYSIS accurate average approximate
Coefficient of Variation 0.05 0.10 0.15
6 1.06 1.12 1.18
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DISCUSSION

The performance of the partial safety factor code format suggested here, relative
to the first order probabilistic code format can be judged from Fig. 3. Bearing in mind
that the total cost of a structure near the optimum range is insensitive to the variations

(an

in the safety factor , most of the deviations are seen to be of no practical consequence.

Moreover, practical limitations in feasible probabilistic codes, as reflected in the

@)

presence of the vague parameters V_, V and VE in Cornell’s format ¥, invalidate

F* P
any attempts at increased accuracy at the expense of simplicity.

When the safety index B is reduced, the distribution narrows. For example,
for B equal to 1.45 the ratio 8/6 brore is always between 0.97 and 1.10. Conversely,
when it is attempted to raise the reliability level by increasing the safety index, the
ratio B/Gtme may be significantly below unity; but always for unreasonable
combinations of the coefficients of variation.

The range of the ratio 6/6 L be reached considerably at several stages
of the derivations, by optimization of the parameters; this is best done by an individual
code committee after the operating range of the parameters and the calibration points
have been carefully selected.

Figure 3 also reflects the variation in the actual central safety factor typically
inherent in partial safety factor code formats. If fewer than five factors are used to
represent the variation of design reality, greater error relative to the probabilistic
ideal must occur.

It can be shown by partial differentiation of Eq. 2 that an error of 20% in either
of the coefficients of variation of resistance or load, produces an error of approximately
10% in the calibrated valve for 8. Such an errorin 8 would only alter the

2)

probability of failure a fraction of an order of magnitude “’; this should be acceptable.

The value of the safety index B, that is, the ratio of the mean of safety margin
to the standard deviation of R = S), is directly related to the probability of failure of
the element. If the distributions for the variables M, F, P, T and E are given, the
probability of failure is practically constant for all combinations of {V1}, provided
that the shape of the distribution of (R - S) does not change significantly.

It is seen from Table | that in order to achieve a constant safety index under

varying control conditions, a variable control safety factor is required; also from this
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table, it can be inferred =~ and verified by calculation -- that the constant central
safety factor computed using present deterministic procedures does not assure a constant
level of safety.

The partial safety factors separate the effect of each stochastic factor, such that
the individual influence of each variable can be directly appreciated as a valuable
guide for decisions in design or research planning.
CONCLUSIONS
1. A first order probabilistic design, based on a consideration of the first and second
moments of the stochastic variables in design can be made without introducing any new
notions beyond that of the partial safety factor. In other words, a partial safety factor
code can be derived, which may maintain the accepted concepts of deterministic design
and which is also self-consistent in the probabilistic sense; that is, if achieves a sensibly
constant probability of failure in ali design situations.
2. It is possible effectively to separate the influence of the interdependent stochastic
variables on the central safety factor, using a set of partial safety factors. These factors
can be calculated by Eqs. 8 and 9. As in some present code formats, each of these
partial safety factors is dependent on the coefficient of variation of the corresponding
stochastic variable. However, the factors are not arbitrarily selected here and they
are directly related to the safety index as defined in Eq. 2. A code committee can
evaluate its code parameters and characteristic values from the derivation presented
herein.
3.  The results justify the common approach in code writing, whereby load criteria
and strength criteria are separately prescribed —- often by separate code writing
authorities. In contrast to present codes, the ceniral sofety factor can be evaluated
explicitly even when the statistical data are limited.
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SUMMARY

A set of partial safety factors are derived from purely proba-
bilistic concepts. In contrast to present codes, one may derive
central safety factors for design which maintain a specified level
of safety over a domain of the component variables. The: analysis
congsiders only the first and second moment of the distributions of
the variables, thus not requiring the detail distribution to be
specified.

Using these factors, one may evaluate, rationally, the 'charac-
teristic values' and multiplicative, heretofore arbitrary, safety
parameters.
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RESUME

On dérive un ensemble de coefficients partiels de sécurité i
1'aide de concepts probabilistiques. On peut aller plus loin que
les normes actuelles et dériver des facteurs centraux de séecurité
pour des calculs qui exigert un niveau donné de sécurité sur un
domaine des variables. L'analyse ne ccnsidére que les premiers et
seconds moments des distributions des variables stochastiques;
ainsi il n'est pas nécessaire de spécifier la forme exacte de la
distribution.

L'utilisation de ces facteurs permet d'évaluer d'une maniére
rationnelle les valeurs caractéristiques et multiplicatives des
coefficients partiels de sécurité, qui étaient jusqu'a maintenant
arbitraires.

ZUSAMMENFASSUNG

Ein Satz von Teilsicherheitsfaktoren wird aus der reinen
Wahrscheinlichkeitslehre abgeleitet., Heutigen Vorschriften ent-
gegen kann man zentrale Sicherheitsfaktoren flr eine vorgeschriebene
Sicherheitshthe Uber einem Bereich der unabhingigen Zufallsvariablen
auswerten, Die Berechnung zieht nur die ersten und zweitern Momente
der Zufallsvariablen in Betracht, wobei die Verteilungsart unbe-
kannt sein kann. Mit diesen Faktoren kann man auf einfache Weise
die "charakteristischen Werte" und die multiplikativen, bisher
beliebiger. Sicherheitsbeiwerte schétzen.
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1. Introduction

In a recent paperl dealing primarily with aerospace structures,
the author pointed out the importance of proof-load test in conjunc-
tion with the optimum structural design based on reliability concept.
In fact, Ref. 1 developed an approach to an optimum design (either
minimum weight design or minimum expected cost design) introducing
the proof load as an additional design parameter and demonstrated
the advantage of the use of proof load in terms of weight saving
(under constraint of expected cost). From the view point of prob-
abilistic safety analysis, it was also pointed out, the advantage
of performing the proof-locad test was two fold; it could improve
not only the reliability value itself but also the statistical con-
fidence in such a reliability estimate since the proof-load test
eliminates structures with strength less than the proof-load. 1In
other words, the structure which passes the proof-load test belongs
to a subset, having the strength higher than the proof load, of the
original population. The fact that the proof-load test truncates
the distribution function of strength at the proof load alleviates
the analytical difficulty of verifying the validity of a fitted
distribution function at the lower tail portion where data are
usually non-existent. Evidently the difficulty still remains in
the selection of a distribution function for the load., However,
the statistical confidence in the reliability estimation now de-
pends mainly on the accuracy of the load prediction. The question
of how to deal with the statistical confidence of the load distri-
bution was also discussed in Ref. 1,

Consider now civil engineering structures such as bridges,
transmission towers and buildings., Because of their characteris-
tic construction processes, these structures usually undergo tacit
processes of proof-load test during the construction., If a
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structure does not fail duri ng and upon completion of construction,
it implies that all of its structural components and therefore the
structure itself have sufficient strength to withstand at least the
dead load. This is the information that must be taken into consid-
eration as the lower bound of the strength distribution for the re-
liability estimation of an existing structure, although the lower
bound thus established may in some cases be too small to be of any
practical significance. Furthermore, if a structure under construc-
tion survives a live load due to severe wind or earthquake accelera-
tion, which are referred to as secondary live load in many design
codes but of primary importance for safety consideration of existing
structures, the combined action of such a live load and of the dead
load (existing at the time of occurrence of the live load) can be
interpreted as a proof-load test. The fact that the partially com-
pleted structure has survived such a proof-load test should be taken
into consideration in the reliability analysis since this fact
‘usually makes it possible to establish a better lower bound of the
strength of each of structural components {(existing in the partially
completed structure).

Although the subject of such implicit processes of proof load-
ing appears to be an interesting item for future study, the present
paper places an emphasis on the explicit proof-load test for civil
engineering structures to be performed before the structures are
placed into service, and examines the conditions under which the
explicit proof-load test is economically advantageous.

An important implication of the above argument is that sep-
arate considerations are given to the safety of a structure during
and after completion of its construction. This seems quite reason-
able since the cost of detection possibly by means of proof-load
test and the cost of the replacement of that part of the structure
which failed because of a member or members with insufficient
strength may be absorbed as the construction cost or otherwise,
whereas any failue after the structure is placed into service by
the client would produce much more serious contractual and socio-
economic problems, possibly involving human lives.

2, Expected Cost and Optimum Proof Load

The present discussion deals with a structure designed under
a conventional design code with a specified design load Sd' The
structure is supposed to withstand a system of proportional loads
with a reference value S which is statistical, This system of
loads is hereafter referred to as the load 8, and the design
load is meant by the same system of loads with a particular refer-

ence value Sd' Furthermore, it is assumed that the proof load to

be applied is also the same system of loads with a reference
value de, in which a positive number m indicates the magnitude
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of the proof load in terms of the design load, For example, when a
bridge is designed for a design uniform load w, the proof load is
the uniform load with intensity mw. This assumption is made essen-
tially for simplicity of discussion and does not imply the limita-
tion of the proocf load approach presented here., An obvious example
in which the proof and the design loads cannot be of the same type
is a tower structure designed for wind pressure. In such a case,
how to specify a system of (proportional) loads as well as its mag-
nitude that should most effectively (in some sense) be used as a
proof load, is not a trivial problem. BEvidently, it is possible

to proof~test structural components individually before they are
assembled (an approach discussed in Ref, 1). This approach, how-
ever, appears to be too expensive to be applied to civil engineer-
ing structures.

Under these circumstances, it seems reasonable, for the pur-
pose of presenting the essential idea of optimum proof load, to
assume the following form of expected cost EC of a structure,

EC = qoco + pfcf or EC* = qov + P (1)

where EC* = EC/'Cf = the relative expected cost, v = Co/cf’ q,=

the expected number of the (candidate) structures that fail under
the proof load before the one that can sustain it is obtained,
Co = the cost of a proof load test including the cost of loss of a

(candidate) structure (during the proof load test), b, = the prob-

ability of structural failure (that might occur after the structure

is placed into service) and Cf = the cost of structural failure

(that might occur after the structure is placed into service) such
as cost of the structure, loss of prestige, etc. It is noted that
Eg. 1 takes only the costs of failure and of proof-load test into
account, although more elaborate forms are obviously possible and
may even be desirable depending on the specific problem at hand.,

Since the proof load is applied to the {(entire) structure,
not to its components individually as in Ref. 1, there is a prob-
ability P, that it will produce a failure of the entire struc-

ture unless a method is devised to replace the component that ex-
hibits an initiation of failure at a magnitude of proof load less
than the prescribed value before the structural failure developes.
If the proof load can produce only component failures because of
such a device or otherwise, it seems reasonable to consider that
the ratio +y 1is as small as 10°% or even smaller, If, however,
the proof load can lead only to structural failures, the ratio
does not seem to be so small, 1In the present discussion, it is
assumed that the proof load may produce only structural failures
and that the ratio <y ranges from 10-¢ to 1031,

4. Bg. Schlussbericht
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The expected number q, of candidate structures that will

fail under the proof load can be shown to be

d, = po/(l—po) (2)

in which the probability Po {defined previously) is given by
p_= I £, (x)dx = F_ (mS,) (3)

with fR {-} and FR (-} Dbeing respectively the density and the

]
distribution functions of the resistance R of the structure on

(-]

which the proof-load test has not been performed yet.

The probability of failure, Pg> of the structure which has

passed the proof-load test can be written in the following well-
known form:

Pe = J Fo(x) £ (x)dx (4)
o
where FR(-) is the distribution function of the resistance R of
-the structure which has passed the proof-locad test and fS(-) is

the density function of the load 8.

Under further simplifying assumptions, as used in most of
previous papers including Ref, 2, that the pertinent resisting
strengths (such as yield strength) of the individual structural
members and therefore the resistances (load carrying capacities)
of the same members are statistically independent of each other as

well as of the load S, the distribution functions F_ (-) and
;i R
FR(-) can be written as °
n ,
FRO(X) =1 - ki [l - Foﬂ:cix/ai>] (5)
i=1
— _n _ k!
FR(x) =1 ijl [l Fi (cix/ai/i (6)

where n 1is the number of members constituting the structure. Egs.
5 and 6 are to be used respectively in Egs. 3 and 4. 1In Eg. 5,
Foi(') is the distribution function of the ("parent”) resisting
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strength Toi of the i-th member of the structure which has not
been subjected to the proof-load yet. Also, Fi(') in Egq, 6 indi-
cates the distribution function of the resisting strength Ty of

the i-th member of the structure which has passed the proof-load
test, Quantities c, and a, are such that the load Si acting

in the i-th member can be obtained from the load S as

S, = ciS (7)

R. = a,T, (8)

For example, Ti and ai are respectively the yield strength and

the cross-sectional area of the i-th member if a truss structure is
cons idered,

As was discussed in detail in Ref. 2, the following points are
to be noted in deriving Egs. 4, 5 and 6; (1) the definition of
structural failure is in accordance with the weakest link hypothesis,
that is, the failure will take place if at least one of the compo-
nents fails, (2) the assumption that the member strengths are sta-
tistically independent to each other is a conservative one, (3) P

in Eg. 4 indicates the probability of structural failure due to a
single application of the load S. Also, in deriving Eq, 7, the
effect of the dead load is neglected for simplicity. Any method of
structural analysis can be employed to obtain Eg. 7 including the
finite element method.

By applying the proof load mS each member is subjected to

d)
a force cimsd' Therefore, if the structure (and therefore all the
members) survives the proof load, a lower bound cim.Sd is established

for the resistance of the i-th member. Because the force and the
stress are related by Eg. 8, this in turn establishes a lower bound

Tog = cimsd/a,l (9)
for the parent resisting strength Toi of the i-th member, Then,
the distribution function Fi(°) of the {"truncated") resisting
strength Ti of the same member of the structure having passed the

proof-load test can be shown to be
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F .(x) -F (1t .)
a iy

o
1 -F . (1 .)
oi' mi

Fi(x) H(x - Tmi) (10)

where H(+) is the Heaviside unit step function,

Eg. 10 indicates that the distribution function of the (trun-
cated) resisting strength of the structure which passed the proof
load test is obtained from that of the parent strength by "“trun-
cating" it at the lower bound established by the proof load (and
normalizing it).

The standard design requires that the nominal resistance

_ i i S _:
aiTai be equal to the nominal applied load c.84

. . o= C, a,.Tt . , = C, 11
a.T c.8 or i pl/“l ;84 (11)
where Tai = the allowable stress, Tpi = the specified minimum
resisting strength and v = the safety factor of the i-th member

(these quantities are functions not only of the material but also
of the mode of failure, e.g. in bending, in tension, in stability,
etec.).

From Eq. 11, it follows that

ci/ai = Tpi/(“isd) (12)

The right hand side of Eg. 12 consists of quantities specified
in the design code. Therefore, Eq. 12 makes it possible to replace
ci/ai in Egs. 5, 6 and 9 by known quantities.

Egs. 2 and 4 (together with Egs. 3, 5, 6, 9, 10 and 12) can
now be used in Eg. 1 to compute the relative expected cost if
Foi(-) and fS(-) are known. The optimum intensity of the proof

load 1s then obtained as that value of m which minimizes the
relative expected cost EC*,

3. Example

In the following, the assumptions are made that (1) the allow-
able stresses (or both the specified minimum strengths and the
safety factors) and (2) the distribution functions Foi(x) of the

parent strengths are identical for all the members; Toi = T, and
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Foi(x) = Fo(x). These assumptions are made purely for simplicity.

The analysis presented in the preceding section can easily accom-
modate the situations in which this is not the case; e,g. consider
different allowable stresses specified for tension and compression
members and also consider the fact that in reality, different dis-
tribution functions of the parent strengths are needed for tension
and compression members,

The immediate consequences of these assumptions are that (1)
ci/ai in Eg. 12 and hence Tmi in Eq. 9 become independent of the

subscript 1i; ci/ai = Tp/(de) and T = mTP/v, and (2) the trun-

cated strength distribution Fi(x) also becomes independent of 1i;
F,(x) = F_(x).

In the present paper, the parent strength distribution is
assumed to be distributed according tc the Weibull distribution:

Fo(x) =1 - exp[—(x/Tc)b1 (13)

where Tq is the characteristic strength and b is a positive

constant.

From Egs. 10 and 13, it follows that

0 s (- en[- G- 0w

with

B =e Zp % (15)
}cPl:(\)Tc .J

Therefore, Egs. 5 and 6 can be respectively written as

X
FRo(x) =1 - exp[— (chF] x >0 (16)
n X ™
FR(x) =1-B exp[— CRC/F] X > mS, (17)
and from Eq. 2,
n
qo =B = i1 (18)

1 . T
where Rc = hsd/n /b with h = VTC/TP is the characteristic
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resistance of the structure which has not proof-load-tested yet,.

The parameter b is a measure of dispersion of the distributions
of T, and R,; the coefficients of variation in terms of their
characteristic values are 0,46, 0.33, 0.25 and 0,21 respectively

for b = 2, 3, 4 and 5.

For the distribution function FS(X) of the load S, the

first asymptotic distribution function of largest values is
assumed. However, since only the upper tail portion of the dis-
tribution is significant, the following exponential form is used
as an approximation for larger values of the load;

1l - Fs(x) = r exp[-a (x-ksd>1 X > kSd . (19)

~

where "a" 1is a positive constant and de(O <k <« 1) is the lower

bound above which such an approximation is valid and r is such that
the probability that S will be larger than de is r.

The final expression for the probability of failure is
P n X N1 ¥ e
= -— - — —_ : - ]d 20
Py = Ta | {1 B exp[ (RCZFJ} exp[ a (x ksd/] x (20)
de

Although this integral cannot be evaluated in closed form un-
less b = 1 or 2, an asymptotic approximation can be obtained by ex-
panding the first term of the integrand and integrating term by
term as long as 4 »» 1 where 3 = shAﬂﬁ> with s = (1-k)"'4n(x/qg).
The result is

p, & Ar expl-s(m-k)] (21)
with
A= (2ms + 2) /2> (b=2)  (22a)
A = {3(ms)2 + 6(ms) + 6}/k3 (b=3) (22b)
A= {4(ms)3 + 12(ms)° + 24(ms) + 24}/x4 (b=4)  (22¢)
A= {s5ms)* + 20(ms)’ + 60(ms)? + 120(ms) + 120}/2°
(b=5)  (22d)
where ms should be smaller than ) and g is the probability

that the load S will be larger than Sd' The result does not

contain the parameter "a" (Eq. 19) explicitly. It however,
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appears in the preceding equations implicitly since a = s/Sd.

The validity of such asymptotic approximations is checked by
comparing the result using Eq. 21 with that of the exact integra-
tion for b = 2, The agreement is more than satisfactory.

A number of sets of parameters are considered for numerical
examples. Among these, the result for the case where the structure
consists of 7 members (n=7), b =4, g= 0.02, r = 0.1, k = 0.6(thus
s = 4,03) and y = 1,67, is presented. The specified minimum strength
Tp is defined so that the probability of the parent strength T,

being less than Tp is p. Therefore, from Eg. 13, TC/TP = [=4n

(1-p)~14], For the present example, p = 0.1 1is used (hence h =
5.15). The assumption that g = 0.02 implies that the design load
with a return period of 50 years is considered if the distribution
Fs(x) is that of the annual largest load.

The result is illustrated in Fig. 1 where the relative expected
cost EC* 1is shown as a function of | = m/h, The value u indi-
cates a magnitude of the proof load relative to hS at which the

d
loads (the stresses) acting within the individual members are equiv-
alent to their characteristic values a,T (TC). Since the optimum
&

proof-load is the one at which EC* becomes minimum, Fig, 1 indi-

cates that the proof-load becomes optimum when y = 0,2, 0,38, 0,55
and 0.67 (or m = 1,03, 1.95, 2.83 and 3.45) respectively for v =

101, 10-2%, 10°% and 10°%. The locus of those points at which EC*
assumes minimum values (Curve 1) is also plotted as a function of

L in Fig. 1, Since b = 4, the coefficient of variation with re-
spect to the characteristic value of the parent strength T is

0.25, Therefore, these optimum proof locads truncate the strength
distribution at 3.2, 2.5g, 1.8 and 1.35 below its charac-
teristic value respectively for « = 101, 1072, 10°® and 1074,
Also plotted in Fig. 1 is the probability of failure as a function
of . The probability decreases monotonically as | increases;
the reliability increases as a larger proof load is applied.

The above result indicates that, for this particular example,
performing the proof-load test may not be justified if v 1is of
the order of 10°! because (1) the optimum proof stress is more
than 35 away from the characteristic strength and therefore not
much improvement in statistical confidence in reliability estima-
tion is expected and (2) if one increases the magnitude of the
proof load beyond the optimum value to achieve such improvement,
the prohibitive cost is likely to be incurred due to possible loss
of the (candidate) structure(s) which is rather expensive (larger
value of ). However, if v 1is of the order of 1072 or less,
performing the proof-load test appears justified from the point of
view of improving (1) the statistical confidence in the reliability
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estimation (since the points of truncation are at most 2,55 away
from the characteristic value) and (2) the reliability itself. How-

ever, the optimum magnitude of the proof-load increases considerably

as v decreases,
proof-load test.

This may present some difficulty in performing the

8

: 16% y=0' Jo? fo? .

Since the preced- sl . Y1072
. . . \~ 4 - B
ing observation is s 20
based on (1) the com- |+ XCurve 1 G ] 1 .
putation associated % \\ L -~ ,@
with a particular set W ,| P4~ < w 4_’1=3 i/
of parameters, (2) the "f;o2 \ 105 b=4\ /7 \
particular formof the Gl R\ \ :['“7 // b*
expected cost and (3) 8- ] AN mona .
the specific form of 0.1 03 05 07 oo 03 0s 07 09

Fig., 1 — Fig, 2 p—

strength and load dis-~-
tributions, and sensi-
tivity of these items on the result will be an interesting subject
of future study. For example, Fig, 2 shows the loci of the optimum
points (such as Curve 1 in Fig, 1) for b = 3, 4 and 5 plotted on
the same diagram, indicating the effect of b and vy on the opti-
mum proof-load.
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SUMMARY

The interrelationship among the probability of structural
failure, the expected cost of structure and the proof-load testing
is established and used for a general reliability analysis. The
optimum proof-load is defined for structures designed under a con-
ventional design code and conditions are examined under which the
proof-load testing is advantageous economically as well as from the
viewpoint of improving both the reliability itself and the statis-
tical confidence in such a reliability estimate.
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RESUME

On examine la relstion ertre la probabilité de ruine, le
prix évalué de la construction et les essais de charge. La charge
d'essai optimale est définie pour les structures congues d'apreés
les normes converntionnelles. Puis on examine les conditiong sous
lesquelles les essais de charge sont aussi bien avantageux écono-
miguement gqu'utiles pour la sécurité et pour la certitude de la
sécurité évaluéde.

ZUSAMMENFASSUNG

Aufgezeigt wird die Beziehung zwlschen der Bruchwahrschein-
lichkeit, dem Erwartungswert der Kosten sowie der Priiflast und fiir
die Zuverlédssigkeitsrechnung verwendet. Die optimale Priflast wird
fir nach alten Vorschriften entworfene Bauwerke definiert. Sodann
werden die Bedingungen untersucht, flir welche das Priiflastverfahren
sowohl wirtschaftlich als auch im Hinblick auf die Zuverlissigkeit
selbst und das Vertrauen in eine solche Zuverlissigkeiltsschitzung
vorteilhaft ist.
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The probability of failure and safety of structural section loaded with a multi-dimensional
force-combination

La probabilité de rupture et la sécurité d’'un élément de structure chargé avec une combi-
naison multidimensionnelle de forces

Die Versagenswahrscheinlichkeit und die Sicherheit eines mit einer vieldimensionalen Kraft-
kombination belasteten Bauteiles

EERO PALOHEIMO
Dr. Ing.
Helsinki

The problem of reliability has been discussed in several
papers during recent years and, as we know, many methods have been
developed to solve this question. These solutions usually aim at
determining the probability of failure of the observed structure.

As far as the writer is aware, the calculation methods are
all quite approximate, and the mathematical difficulties have pre-
vented the development of more exact sclutions.

However, the character of the problem, means that there is a
need for a mathematically satisfactory design method. The purpose
of research in this subject is to take rational account of the
irregularities of material, dimensions, loads and calculations,
e.g. by a number called "safety factor".

If the calculation method by which the safety factor is deter-
mined is very approximative, we are actually obliged to use a
complementary factor to eliminate all the unreliabilities which are
included in the calculation of this factor. This is, of course,
not desirable,

The development of the computers in the last years has made it
possible to solve more complicated mathematical problems and to
reach a higher degree of exactness of results than before. The fol-
lowing work presents an attempt to solve the probability of failure
of a structural element using a computer, by a method which the
writer supposes to be general enough and to contain a number of
approximations, which gives a sufficient exactness for practical

purposes.
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This paper is to a great extent partial abbreviation of a lar-
ger study, supposed by the Scandinavian Building Institutes. The
study forms part of a joint Scandinavian project and will be pub-
lished by the State Building Research Institute in Denmark.

1. The necessity of a general kind of frequency-function.

A central problem in the calculation of the probability of
failure is the combining of several known fr.f.(frequencyfunctions)
which are connected with each other by some known function. The
result of such combinations is a new fr.f., which cannot generally
be determined exactly. On the other hand, also the form of the
initial distributions is in most cases unknown and to be esti-
mated from the sample.

In addition to these. aspects it is necessary to avoid the
errors caused by small samples. We will return this later.

To comply with the requirements mentioned above, the following
fr.f. has been chosen for use in the one-dimensional case:

n
k
Zak'x
(1) f£(x) = g8

The parameter a, will be determined so that

+O0

F(oo) = [ F(x)-dx = 1 where x represents an arbitrary
quantity, which has an influence on the probability of failure,
e.g. a property of a material, a dimension of a structure or a
load.

Without paying more attention to the following question, we
need only mention that, e.g.,

~ the normal distribution

- the log-normal distribution

- the first asymptotic distribution of the extreme value

- the Weibull-distribution
all converge toward (1) with increasing n.

For the distribution function we use

0oy
) %
(2) F(x) = e~® X=0

and in the multi-dimensional cases anologically to (1) and (2)
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9 k, Do K, 0. k.,
Z’% Z"z "'Zxr ak1k2...k
k;=0 k,=0 k_=0 T
(3) f(x) = e
n n n
—ekz-o 1 e T2 kT "k, ke
(4) PF(x) = e 17 2= ™ o

With increasing n,...n-values in (3) and (4) we can estimate
multi-dimensional samples with arbitrary moments and also define
distributions with very varying forms.

2. Estimation of the parameters of the various distributions.

For large samples we use either of two estimation methods,
both well known from the statistical literature. The simpler is
the method of moments, introduced by K Pearson, and the more deve-
loped is the method of maximum likelihood introduced by R.A.
Pisher. In this connection, it is not sensible to explain either
of these methods.

For small samples we use the following, more complicated
method of estimation.

We first assume that the pereni population has a general fr.f.
f(x,ao...am) where the parameters 8q+++8, are assumed to be unknown.
The parameter a  is a function of a,...a so that F(co) = 1. The

sample values of x are XqeeeXpe

We then study the situation after one value of the sample, X4
has been found. In this case the fr.f. of a parameter combination
can be represented by

f(x1,ao...am)

(5) g-,(ao...am) =
j[f(x1,ao...am)-daT...dam

Bn

The result has been found by examining a conditional frequency
function of BpeeeB,y relative to the hypothesis x = Xq e Ve assume
then that before any values of the sample are known the fr.f.
f(x,ao...am) is represented by an m + 1-dimensional fr.f. where
m-dimensional marginal distribution in the space aqeeedy, is
rectangular.

If we then assume that we take n values from the same unknown
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population of the form f(x,ao...am), we again get a conditional
distribution

|

l f(xk,ao...am)
1

k
Sn(ao"’am) = n
j/( u1f(xk,ao...am%) day...da

Ry

Function (6) represents the combined distribution of para-
meters 3,8, ON the basis of the sample > SRRES N If we now
define the distribution of the value X,412 We evidently obtain a

fr.f. of this value:

il

(6)

ey
Rff(x,ao...am);c|=[1f(xk,ao...am)-da1...dam
Rﬁ/’ég;f(xk,ao...am)-da1...dam

The formula (7) can now be applied to arbitrary types of
distributions. It has the advantage that the mistakes which can
be made using the method of moments or the method of maximum likeli-
hood with small samples can be avoided.

4. Capacity of a structural element.

The failure of a structural element can be defined by one or
several inequalities (9), assuming that this element is loaded with
a k-dimensional combination of forces and moments.

These inequalities can be illustrated in a k-dimensional space
Rk 8o that the different types of failure each form a k-dimensional
set of points in Rk’ which have an infinite volume and are formed

as sectors.

These sets are limited in relation to each other by k-1 dimen-
sional hyper-surfaces, and each set is divided into two subsets,
the first containing all the points which cause failure and the
second containing all the combinations by which failure does not
oceur,

We get the equations:

r
:1Tj = Ry where T, Ty = O when j # 1
j=

Tj = Tj? + Tj2 where Tj1-T32 = Q

(8)
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r
L Ty =T
j=1
(8) . ,
I Tjo =Up =1,
i=1
where the set ZEsz = U, represents the points in the space

=1
Rk(s1"‘sk) which cause failure of the element and the complemen-
tary set Uy, the points where no failure is produced. Here Sqee
Sk represent the external forces.,
These parts are also represented in fig. 1, which shows an
example of the different possibilities of failure by a rectangular
reinforced concrete element.

> Usually on the basis
‘ of empirical studies and
T32 statics we can write
« T g1(x1‘.lxrl’s1‘..Sk) é O
N (9
T21 \\ 2 0 @ <
11\\\ T12 N gr(x-'uoc%,s‘]uonsk) = O
T _::5» - where every inequality
\7;‘\‘““;=y<::;ﬁglg gives one type of a condi-
21 P
e T tion of failure. Here Xqoo
< 22 x, represent the internal
T32 properties of the element
and S1...Sk the external
forces. Anyhow, every

inequality requires a group of supplementary conditions which sepa-
rate the different types of failure from each other.

In this way from (8) and (9) we get as the complete condition
of failure
0)

HA

A

0)

lIN

Vig 0N g, 20AN...Ag
(10) 72 21 2m2

V(gr 20 A &nt

I\

0 A .../'\grm £ 0)
r

We have already been able to define the fr.f. of the factors
XpeooX, e These can usually be considered as independent, and so
we can write:
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]

(11) f(x1...xn) = f?(x1)...fn(xn)

Using the quantities S1...Sk as parameters for every combi-
nation of S1...Sk we get the probability of failure through the
integration:

(12) h(S1...Sk) = P(42) = J/f(x1...;n)-dx1...dxh

(10)
where P(10) indicates the probability that (10) is valid and the
region of the integration signifies the part of the space R, where
the inequalities (10) are valid.

Without further consideration of the question of the inte-
gration above, it may be noted that there are simplifying methods
to solve the integral (12) so that it is not necessary to operate
in n dimensions.

In this way we have been able to determine the function (12)
to represent the probability of failure of the known structural
element as a function of the k-dimensional combination of forces.
The next problem is to define the fr.f. of the external forces
which load this element.

4. Transformation of the loads into forces and moments.

By the determination of the probability of failure there is a
fundamental difference between the invariable and variable loads,
since the variable loads are considered as inconstant with time,
and the invariable loads are considered to retain their size
during the life time of the construction. The difference in the
calculation is that the forces and moments caused by the invari-
able loads are of direct importance, while the variable loads and
the forces caused by them are not of interest in themselves, but
only the corresponding extreme values appearing during the life-
time of the construction.

By both types of loads we have to change the fr.f. of the loads
into fr.f. of the forces. This will be dcne in both cases in a
similar way, which will be presented below.

In most cases the mutual dependence of the loads and the
forces can be given in the following form:
a11-q1+...+a1m-qm = S1
(13) L]
ak1'q_1+-oo+ahn'qm = Sk or A'q = S
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The parameters Bpqeeedy, Can usually be considered as constants.
If this is not the case, the solution will have a complementary
complication, which will be explained later. In principle we have
three different cases; m<k, m = k, m>k. We assume here that the

rank of matrix A is m, or in the last case k.

Without the deduction of the following formulas, we have as
the fr.f. of S1"’Sk in the three different cases:

m = k

(14) fS(S1c--Sk) = {fq" (q'T = C11'S1+000+C1k'sk)oon

1
(q = o 8,44 .+0C - S )jl.—_—-—_
k k1 ™1 kk "K' jaqqe.e8qy

qu
Here ¢ is a reciprocal oo
matrix of A. By q e e
k<m

Rk

1
Ck.]' S1+---+Clm'qm) 'f

(i ) e
m a11...a1k

1(qk+1)...f

Ut U

CHERRRY
qu+1...dqm
k>m
(16) fs(s1...sk) = {fq1(q1=c11-S1+...+c1k-sk);..-qu(qk=

1
Crq* SateeetCy S )}——_—

a,k.l...akk

The difference between (14) and (16) is that the fr.f. given
in (16) is limited in the degenerate part of the space Rm, where

Sk+1"'sm have the values:
Spe1 = cm.-i-1,1's1+"'+°m+1,m'sm
(17)4 ...

Sk = Ck1' S1+o . a+cm‘ Sm
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5. Definition of the probability of failure by a structural

element.

We have now in R, two different fr.f. for external forces
which have been found in the way explained in 4. We also have the
fr.f. of those internal quantities of the element, which are inde-
pendent:

(18) fy(y1...ym)-dy1...dym = fy1(y1)...fym(ym)-dy1...dym

The exact solution of the probability of failure, which is our
goal, can be obtained by integrating all the possibilities by which
the sum of the forces produced by the variable and invariable loads
at some time during the life-time of the construction exceeds the
capacity of the structural element.

This probability can be found by the following formula:

(19) P(y<8) = ]%y(y) ];Sg(sg)- 1_[ f}Sp(sp) dSp1...dSp%r}
By B Ty
-ng1...dsgk-dy1...dym
In this formula the set Tk gives the k-dimensional set defined in
the following way:
'1‘k is the set of combinations which form the complementary set %o
(10), actually the set U1 in (8). The difference is, however, that
XpeooXy have been changed into YyeeeVpy by gradual integration, and

the values §,...5, in (9) are represented by Sg1 + Sp1,... Sgk+spk.

The value N gives the relation between the life-time of the
construction and the interval which has been used to define the d.f.
of the variable loads in an arbitrary moment.

We assume that Tk is a set of points which fulfil the
following reguirement:

(20) g(g1(sg1+ Sp1,---,8gk+ Spk), 8o(Yqeee¥y)) >0

Writing

(21) f (S ...S )=N|:[f (S oo-S )‘ds .oods
Spe Py Py S Py Py Py Py

(20)p
’f (S L p-S )
Sp P4 Py

Through a rather complicated deviation, we get the probability
of failure (19) in the following relatively simple form:

N-1

22 < =[ . .
(22) P(y=<s) ’ fsg+spe(sg + Spe) h(Sg + Spe) d(Sg + S
k

pe)
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where —fsg+spe(sg + Spe) is the k-dimensional fr.f. of the sum of

forces caused by invariable loads and the extremevalue of variable

loads.

—h(Sg + Spe) is the function from (12).

6. Definition of the probability of failure by a structure.
To define the probability of failure by a struecture is a much

more complicated question than the reliability of a single element
of this structure. Work on this branch has already begun, and

some of the main aspects, which seem to be important, are as
follows:
- whether the material of the structure is brittle or tough
-~ the number of different possibilities of structure failure
- the number of critical sections by different types of
failure

the interdependence of the capacity of these sections.

7. Determination of the method of design the structural

element.

In 5. we have been able to find a method of determining the
probability of failure of a structural element. However, this
does not give us the necessary information, as to what methods we
should use to determine the right dimensions of this element.
Because we strive for a certain, suitable probability of failure
P1(Sq>Sy), we write (22) in the form

(23) (5> S,) =ﬁ’s (a/o)n(sy) - /e Las
R a
k
and solve the value which corresponds to the probability P1(Sq>
S. ) which has been chosen in the beginning of the calculation.

q q

Por this value we can usually use 1070 - 1078,

The value <gives us the possibility to see, what nominal
values XqyeeeXys Qqec+Qys PpeeePy WE have to use in:the calcula-
tion to find structures, which have the probability of failure
P1(Sq:>Sy). After this we maybe have the possibility of finding
such methods of calculation, which are simple encugh to use for an
engineer who does not know the statistical basis of these methods,
and at the same time achieve the same probability of failure in
various parts of the structure. This should also be our goal.
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Symbols:
x - quantities, which have influence on the probability of
failure.
q - loads
S - forces and moments loading the structural element
Sg— forces and moments loading the structural element, caused

by invariable loads.

5_~ forces and moments loading the structural element, caused
by invariable loads.

Spewforces and moments loading the structural element, caused
by extreme values of variable loads.

Sq- forces and moments loading the structural element, caused
by total load.

Sy' forces and moments representing the capacity of the
structural element.

X - a scale coefficient
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SUMMARY

A method to determine the probability of failure by different
structural elements is presented, based on the use of a computer,
It treats a general case where the element is loaded with a multi-
dimensional combination of forceg and momentg. The paper has four
mainthemes: Estimation of the parameters of the various distri-
butions; Capacity of a structural element; transformation of the
loads into forces and moments; and definition of the probability
of failuwre.

RESUME

On présente une méthode pour déterminer la probabilité de
rupture causée par différents €léments de structure et basée sur
l'emploi d'un ordinateur. La méthode traite le cas général de
1'élémert chargé par une combinaiscn multidimensionelle de forces
et de moments. Cet article a quatre thémes principaux: 1l'estima-
tion des paramétres de différentes distributions, la résistance
d'un élément de structure, la trangformation des charges en forces
et en moments et la définition de la probabilité de rupture.

ZUSAMMENFASSUNG

Mar: hat eine Methode fir die Bestimmung der Versagenswahr-
scheinlichkeit beil verschiedenen Konstruktionselemeriten dargelegt.
Die Theorie fusst auf der Anwendung elektronischer Rechernmaschinen.
Ein allgemeiner Fail, wo das Element mit einer multidimensionalen
Kombination von Kraften und Momenten belastet ist, wird behandelt.
Der Artikel ist in vier Hauptthemen aufgetellt: Schitzung der
Parameter der verschiedenen Verteilungen, die Tragféhigkeit des
Konstruktionselementes, die Transformation der Lasten in Krifte
und Momente und die Bestimmung der Versagenswahrscheinlichkeit.
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Factors of Safety for Structural Design
Coefficients de sécurité pour le calcul des constructions

Sicherheitsfaktoren fir den Entwurf

MAX HERZOG
Consulting Engineer
Aarau, Switzerland

Introduction

Sufficient statistic information on the probability of dev-
iations from mean values of both stress and strength still lacking
for the next future, the structural engineer needs a clear and
simple method of evaluating adequate factors of safety in design
practice.

Factors of Safety Composed of Partial Coefficients

As outlined earlier /1/ the factor of safety has to prevent
actual stress from becoming equal to actual strength. Possible
deviations from the mean values of both stress and strength assum=-
ed in the design calculations can be accounted for by partial co-
efficients /2/ considering all influences of any importance,

1, Influences on stress:
(a) loads,
(b) design calculations,
(¢) adaptability of structure,
(d) type of failure.

2. Influences on strength:
(a) strength of construction material,
(p) workmanship,
(c) section-size of member,
(d) type of load,
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The partial coefficient characterizing the uniformity of a
value has been defined as the possible deviation from the mean for
a certain probability /1/.

Table I: Partial Coefficients for Structural Design

Group Influence group Partial
No. coefficient
1(a) Loads
Standardized (dead, live, snow load; wind
and water pressure; teﬁ%rature changes;
earth quake acceleration) 1,0
Non-standardized (earth and ice pressure;
air-blast from weapons) 1,2
1(b) Design calculations
Interpolated from measurements 1,1* (1,0)
Extrapolated from measurements 1,2* (1,1)
Not based on measurements 1,3* (1,2)
*) valid for the probable loading combinat-
ion only, to be reduced for the most un-
favorable loading combination to values
in brackets
1(c) Adaptability of structure
Linear systems
(1) statically determinate 1,
(2) statically indeterminate 1,
Plane and spatial systems 0,9
1(4d) Type of failure
With warning (preceding deformations) 1,0
Without warning (brittle failure or instab-
ility) 1,1
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Table I: continued

Progressive failure 1,2
Catastrophic conseguences _ 1,3 to 1,5
2(a) Construction material

Steel and aluminum 0,9
Timber and plastics 0,8
Concrete

(1) ready-mixed 0,7

(2) mixed-in-place 0,6

2(v) Workmanship

Excellent 1 8

Average 0,9

Poor or unknown 0,8
2(ec) Section-size of member

Big , 1,1

Average 1,0

omall 0,9
2(q) Type of load

Static

Dynamic | Introduced

Vibration as

Impact reference

Fatigue or response

Effect of (1) time strength

(2) temperature

With the above values for the partial coefficients K the fac-
tor of safety is calculated with formula
K
K

x K x K x K
b

2axK2be2c L A A I I I I B A IR A A B A L .

S =
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Numerical Example

A completely worked example for the reinforced concrete skel-

eton of & multi-~story office~building will explain how the factor

of safety is calculated from partial coefficients.

Loads standardized

Design calculations extrapolated from measurements
Linear system statically determinate (columns)
Plane system (flat slab)

Pailure with warning deformations (flat slab)
Progressive failure (columns)

Strength of ready-mixed concrete

Strength of reinforcement

Workmanship average

Section-size average

(a) Members mainly in bending stress (flat slab)

S = %jg ; %:S i i:g X 110 _ 1,7 for concrete
5 = %Jg i %’g i g.%,x 1:0 - 1,3 for reinforcement,
4 [ ] ]

e i R Lol B Ll A e
S = 0,7 X 0,9 X 1,0 = 2,5 for concrete
l,0 x 1,2 x 1,1 x 1,2 .
= =29 X "2 X o4 X 1.2 _
S 5,0 x 0.9 % Lo 2,0 for reinforcement.
References

la
1b
L
lc
K14
14
28
28
2b
2¢

= NOROR

r R R K

/1/ Herzog, M.: Load Factors (Discussion of a paper by E., Torroja)
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SUMMARY

Departing from a definition of its mission the factor of safe-
ty is composed of partial coefficients taking into account all pos-
gible influences on both stress and strength. Numerical values of
the partial coefficients are giver for design purposes. The method
described is illustrated with a typical numerical example.

RESUME

Partant de la définition de sa mission, le facteur de sécurité
est composé de coefficients partiels prenant en considération toutes
les influences possibles aussi bien sur les contraintes que sur les
résistances. Des valeurs numériques sont données pour les coeffi-
cients partiels applicables dans la pratique. La méthode décrite
est illustrée par un exemple numérique caractéristique.

ZUSAMMENFASSUNG

Von der Definition seiner Aufgabe ausgehend, wird der Sicher-
heitsfaktor aus Partialkoeffizienten zusammengesetzt, die alle mog-
lichen Einfliisse sowohl auf die Beanspruchungen als auch auf die
Festigkeiten bericksichtigern. Zahlenwerte der Partialkoeffizienten
fir Entwurfszwecke werden mitgeteilt. Die beschriebene Methode
wird mit einem typischen Zaklenbeispiel erléutert.
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