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New Definition of Slenderness of Reinforced Concrete Columns
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SUMMARY

The definition of column slenderness according to which the field of slender frames is defined in
Codes of Practice, including the CEB-FIP Model Code, does not take into account the influence of
axial load, reinforcement and concrete strength, despite the fact that these factors have a major
influence on the non-linear behaviour of the structure. In this paper, a modified definition of
slenderness is proposed which takes these parametres into consideration and which can apply to
both simple and multistorey sway frames. This definition is justified by parametric numerical tests
as well as by theoretical considerations.

RESUME

Dans les codes, et en particulier le code modele CEB-FIP, la définition de I'élancement des
structures élancées ne tient pas compte des influences de |*effort normal, de I'armature et de la
qualité du béton. Ces facteurs ont une influence considérable sur le comportement non linéaire
de la structure. Une définition modifiée de I'élancement est proposée, tenant compte de ces
parametres, et elle est valable pour les cadres simples et multiples. Cette définition est basée sur
des essais numériques paramétriques et sur des considérations théoriques.

ZUSAMMENFASSUNG

In den Normen, und besonders in der CEB/FIP-Modellvorschrift, wird bei der Definition der
Schlankheit der Einfluss der Normalkraft, der Bewehrung und der Betonqualitat nicht berick-
sichtigt. Diese Faktoren haben einen bedeutenden Einfluss auf das nichtlineare Verhalten der
Struktur. Eine modifizierte Definition der Schlankheit, welche diese Parameter beriicksichtigt,
wird vorgeschlagen. Sie ist gultig fir einfache und mehrfache Rahmen. Die Definition stitzt sich
auf Versuche und theoretische Uberlegungen ab.
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1. INTRODUCTION

The CEB Model Code |1| (as well as any other code of practice) defines the

field of "slender"frames: if a frame belongs to this field, second order effects
cannot be disregarded, and must be calculated using accurate or simplified
procedures of non-linear analysis; the procedures can be long and difficult to
apply, expecially in the case of sway frames, where a nonlinear analysis of the
frame as a whole needs be performed, followed by a verification of each column,
according to approximate nonlinear procedures (such as the "model column" method).
These procedures are really justified only when second order moments are a
sizable part of the total design moments in critical sections. Therefore to
define the field of slender frames means to delimit the field in which every
conceivable R.C. frame shows a sizable nonlinear behaviour.

To measure the "degree of nonlinearity" in structural behaviour a suitable
parameter is needed. Up to now the "Eulerian" slenderness of columns was adopted,
defined by the following expression:

A= 10/1
where:
lO = effective buckling length
i~ = minimum radius of gyration of the gross section of concrete only.

However the nonlinear behaviour of a structure does not depend only on the
geometrical parameters syntetized by A.

The axial load and material strength are also important factors.

However the slenderness as previously defined could still be considered a valid
way to measure the nonlinear behaviour of a structure made of an homogeneous
material; it is not suitable therefore for a non-homogeneous material such as
Reinforced Concrete, which is subject to cracking and viscous behaviour, in
which an essential role is played by reinforcing steel.

This considered, a parameter including at least the most important variables of
structural behaviour of Reinforced Concrete would be useful to define in a more
correct way the cases where second order effects must be considered. This is
however no easy task, given the complexity of the phenomenon and the number of
variables involved. This number is already considerable if, for the sake of
simplicity, isolated columns are studied.

If however, in a more realistic way, complete frames are considered, these
variables and the complexity of the structural behaviour increase considerably.
Besides, redistributions of moments take place among different sections in the
frame. For this reasons the more comprehensive definitions of slenderness which
were up to now formulated |3\|4|, are only in part based on theoretical consi-
derations.

Their validity is based also on the result of parametric analyses, which were
performed using nonlinear computer programs.

These programs permit to obtain a realistic picture of the evolutive behaviour
of R.C. plane frames subject to a given load history, taking into account
cracking of concrete, second order effects, plastic behaviour of concrete and, in
case, initial imperfections and creep.

Purpose of this work is to illustrate a possible formulation of a modified
definition of column slenderness which can better define the field where second
order effects need be considered in structural analysis of R.C. plane frames.

2. DEFINITION OF "SLENDER" FRAMES ACCORDING TO CEB MODEL CODE

As already stated, the CEB Model Code defines the field of slender frames using

the Eulerian Slenderness ; in particular the following limits are given:

a) for A < 25 no second order effects need be considered;

b) for A < 140 approximate methods of calculation of second order effects can
be used, such as the "model column" method.
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Such methods, which consider each column as a separate element, cannot be used

alone in the case of sway frames; in the latter case, as already stated, a non-

linear analysis of the frame considered as a whole, must be made:

c) for 140 < ) < 200 an "accurate" nonlinear analysis must be performed in any
case, while a slenderness > 200 is not recommended.

The experience, which has up to now been accumulated by the authors, shows how-

ever that in many cases frames whose columns have a slenderness between 25 and

40 often show very limited second order effects.

This is the case of the sway frames of Example 14 of the "Trial and Comparisons

Calculations" performed to check the applicability and validity of the Model

Code [5]. This is an example of sway frame, having a slenderness of 35 for which

a time consuming nonlinear analysis is required; however second order effects

are negligible, as the common sense would suggest for a structure whose columns

are 50 X 50 cm. square over a storey height of 3.50 m.

A more accurate lower limit of slenderness needs therefore be defined.

Let us also notice, on this subject, that the ACI Code 318/77 \2] sets a lower

limit of slenderness (also using the "Eulerian" expression of A) which has a

value of 22, that is even more conservative that the CEB value.

To establish a more reasonable lower limit of slenderness is however much more

important in the case of CEB as,according to this Code, easy to use approximate

methods of analysis (such as the "Moment Magnifier" method of ACI) are not

permitted in the case of sway frames.

3. FACTORS AFFECTING THE NONLINEAR BEHAVIOUR OF SLENDER R.C. FRAMES

As already said, the nonlinear behaviour of R.C. frames is a quite complicated
phenomenon, involving the influence not only of the parameters defining the
column under consideration but also those concerning the other members of the
structure, the distribution of loads, the load history and so on.

If we try to identify the most relevant among the parameters and we confine
ourselves to the column under consideration, in addition to the slenderness ,
these factors appear to be the most important:

a)the axial load on the column;

b)the reinforcement ratio;

c) the concrete strength.

A more satisfactory definition of "equivalent" slenderness for R.C. columns
should include at least these primary variables. This has been done by Menegotto-
Via |3|,who include in their expression axial load and reinforcement ratio, and
by the authors who added also the influence of concrete strength, as will be
explained in the following paragraph.

4. FORMULATIONS OF "EQUIVALENT" SLENDERNESS

Once the most relevant variables which influence the nonlinear behaviour of

columns have been identified, the following criteria can be followed:

- an approximate relationship is determined between second order moment MII (ox
magnifier factor py= (M; + Mr1)/Mp) and each of these variables;

- the same kind of relationship is adopted for a modified definition of slender-
ness X\+;

- in this way, instead of obatining a family of curves |y = f(A) corresponding
to different values of the relevant variables (see Ref. 4 ), a very "compact"
group of points can be represented on they /A* plane, so that an unique curve
p= £(A*) can be extrapolated.

This curverepresents in a sintetic way the nonlinear behaviour of the type of

frame under consideration and therefore permits to identify the field of slender

frames for the type, determining appropriate values of the modified slenderness

A*.
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Two formulations of the equivalent "slenderness" have been up to now proposed.
Menegotto and Via have suggested the following expression:

ax = 25T
where is
AS+C _ lo
J+ 203
c s
A +20 A
c s
s+c

is the slenderness of the column with reference to an homogeneized R.C.
section (with n coefficient = 20);

\Y is the reduced axial load on column.

This expression has been verified by a series of numerical tests performed on
isclated columns (not considering the effects of creep and initial imperfections).
The authors have suggested instead the following expression:

v0.6 £ . 0.5

*_
A=A 1 + 15p ‘17.5
where 1is
A = "Eulerian" slenderness;
P = geometrical reinforcing ratio.

This expression has been verified by a series of parametric numerical tests
which were performed on portal R.C. sway frames.

These tests are described in detail in |4|. This description is summarized in
paragraph 6. In appendix II a more detailed description is given.

5. THEORETICAL CONSIDERATIONS ON "EQUIVALENT" SLENDERNESS

As already said a satisfactory definition of "equivalent"slenderness should
include at least the influence of the following basic parameters:

- steel reinforcement;

- reduced axial load v.;

- concrete strength £ a:

Let us see in some de%ail how these factors were accounted for in the considered
expression of "equivalent" slenderness.

Steel reinforcement

In the expression by Menegotto-Via [3[, reinforcement was considered by introdu-
cing the expression:

(1)

This expression represents the slenderness of an "equivalent" reinforced concrete
uncracked element, where an homogeneization factor n = 20 is assumed.

The adopted value of n is considerably higher than the value resulting from the
ratio of elastic modules of steel and concrete.

This increase should take into account the increasing stiffening effect of
reinforcing steel due to the following factors:

- creep of concrete;

- cracking of the column.

The latter effect is very strong as in shown in the plot of Fig. 1 were the ratios
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of moment of inertia Jct+g corresponding to a negligible reinforcement (P=0.001),
are plotted for different values of p, for an uncracked (x > a) and cracxed
(x=0.5) rectangular doubly symmetrically reinforced section.
The adopted value n=20 is based on considerations deduced by criteria adopted in
theACICodeforthedefinitimdofsecondordereffects|11{.D1thisCodethenmmentof
inertia of the column is computed accorcing to the following expression:

JC/S + (ES/EC) J

1+ R

Jd =

where R (ratio of permanent load to total load) takes into account the influence
of creep A factor n = 5 (ES/EC) = 20 as adopted by Menegotto-Via seems unsuffi-
cient in many cases to take into account both cracking and creep, not only because
the ratio Eg/E_ can be as high as 10 for f_ = 20 Mpa but also because the
influence of creep on the stiffening effect of steel cannot be considered using
the ACI formula for this particular problem.

It is now useful for our purpose to transform the expression (1) so that it be
expressed in function of reinforcement ratio p, and slenderness A. This can be
easily done only in the case which is relevant here, that is the case of a
simmetrically reinforced rectangular section as represented in Fig.2. With
obvious passages expression (1) is transformed as follows:

ySte
\/J/A 1+n(J/J

1+n(A/A)

(2)

being for the rectangular section

3 2
_ ba _ a'
Je = 12 I =8 5

2A

s b -~
B& A7 & = S A
3

pab (0.9 a)” _ pba” 0.8 _ Dba3

expression (2) becomes

S _ 1 (3)

1 +n 2.4p0
1 +np

Expression (3) is plotted on Fig.3 in function of p for different values of
n (for x=1).

The authors have proposed, to consider the influence of p, a much simpler
expression

1
1+ 15p (4)
which was also plotted on Fig. 3, where it can be seen that adopting expression
(4) means to give to the stiffening effect of reinforcing steel a much greater
importance than using the previous expression; this seems rather reasonable,
given the influence of creep and the presence of cracked sections in the element
at ultimate limit state.
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Reduced axial load

In the expression by Menegotto-via | 3|, the influence of axial load was consi-
dered by introducing the expression

Vv

This expression is obtained by computing the second order moment according to

the so called "secant" formula |8||3| which is based on the assumption that the
first order moment be constant along the column axis. This is not the case in

most situations, where the first order moment varies linearly reaching the

maximum values at the extremities. If a "model column" scheme is considered as

in Fig.4/a, and the lateral displacement § is computed according to the elastic
theory, considering the stiffness constant along the column, it can be demostrated
that the relationship between M;r and v is approximately linear (see appendix 1).
In the expression which was adopted for A* however the formulation

0.6
v

was adopted, which seems to fit satisfactorily with the results of the parametric

study.
In Fig. 4/b the laws of variation of Myp in function of Vv are represented for

the considered formulations.

Concrete strength

Concrete strength influences nonlinear behaviour in two opposite ways: an higher
value of fcdcorresponds to higher tensile strength and therefore toc reduced
cracking, it corresponds also to higher elastic module of concrete and therefore
to an increase in column stiffness. These two factors produce a decrease in
second order effects. Or the other hand an increase of f_4 (for given value of
v) corresponds to higher values of axial load N at ultimate limit state and
therefore to higher second order effects.

In fact the elastic module Ec can be expressed in function of f .

The following expression could be adopted

E_ = 4809 \[F ACI Code | Mpal
ey 5700\]fck 0 Italian Code |Mpa]
= 9.5 (f  +8) CEB Model Code |Gpa‘
cm ck
If the ACI (or Italian Code) expression is adopted, MII can be expressed as
£ . £
_ cd _ ., cd _ ., 0.5
MII_kEcm_k = =08 Loy
cd
In fact, at equal value , My7 is proportional to f_45 and inversely proportional
to Eqp- If an £ = 17.5 Mpa is conventionally assumed as a reference value

(This convention influences the numerical value of A*, but not the validity of
the expression) the following expression to be introduced in the formulation of
A* is obtained

0.5
(fcd/17.5)

This expression is plotted on Fig.5, in function of the values of fC which are
practically interesting; in this field (from 10 to 40 Mpa) the equivalent
slenderness is increased by a factor of 2.

If the expression of E_, given by CEB Model Code is adopted, the following
expression is obtained (approximately)



AN 1ABSE PERIODICA 2/1987 IABSE PROCEEDINGS P-110/87

.1

i z

20

Il

T

Wl )

1

o z o
Le = -

Tt
y _ s /o fﬂ" "luJ
v/ il

~

|

|

: Pt
. : , i)
.4 % Illl 1 uU

| ! |
i ' |||||NH ‘ !

| uunu*
. L) ) m| !“

[ i ko ;

/ ):Irl N llh‘ £ |(rrames ]

b Ry T ]
100] :

Fig.20 - Moment magnification factors in function of A * (Cauvin-Macchi
expression) .

[

Fig.21 - Deformed shape of Example frame at Ultimate Limit State



V.
iy

A

56 IABSE PROCEEDINGS P-110/87 IABSE PERIODICA 2/1987 y

f f
M = cd K cd -k f 0.66

II 1/3 1/3 cd
(fCd + 8/1.5) (fcd)

and therefore the following term should be introduced in *

0.66
(fcd/17.5)

This expression is also plotted on Fig.5; as can be seen from this figure the
variation of fcd/17'5 is not markedly different from the one previously
obtained.

6. RESULTS OF PARAMETRIC NUMERICAL TESTS ON SIMPLE SWAY FRAMES

About 420 nonlinear analyses were performed on one storey, one span portal

frames. Details of these tests are given in Ref.|4

The variable which were considered are the following:

a) column "Eulerian" slenderness (from 25 to over 100);

b) concrete quality (f_ _ varies from 17.5 to 35 Mpa);

c) column reinforcement (the geometrical reinforcement ratio was varied from
p=10.01 to p=0.04);

d) axial load on columns (the reduced axial load V was varied from 0.1 to 0.5).

The analyses were performed considering two different load histories:

- in the first load history vertical concentrated loads were applied in the first

load step and then a horizontal force was proportionally applied until collapse.

of the frame (Fig.7);

- in the second load history vertical loads (considered as permanent loads) were

applied to a frame having a non intentional inclination of 1/150 H. Then the

creep due to these forces was simulated; at last the horizontal force was

proportionally applied until collapse.

As a consequence, two sets of results were obtained: in the first creep was not

influent, in the second the combined effect of creep and non intentional

inclination was considered.

As may be expected much greater values of moment magnification factors were

obtained in the second case.

The influenceof non intentional inclination is not, correctly speaking, a non

linear effect; it is however reasonable, for practial purposes, to include it

in the value of M;1. In fact, the CEB Model Code prescribes the computation

of this effect for slender structures only; therefore non intentional inclination

"contributes", so to speak, to the definition of the field of slender frames,

which is the purpose of this work; that is, when non intentional inclination

has sizable influence on the results, the frame must be considered slender.

In Fig.s 8 to 13 displacements of joints of the left hand column during the

application of loads were plotted for the first load history and for some

significant cases; dashed lines indicate the displacements which were obtained

without taking into account the so called "Tension Stiffening" effect, according

to the procedure described in |7]

Tension stiffening has a considerable influence on displacements, as can be

seen from the diagrams, but a much more limited one on action effects, at least

in the case which were considered.

In Fig.14 these displacements were plotted for the second load history. In all

these diagrams the gradual diffusion of cracked zones is also indicated.

In Fig. 15 the "displacement history" of the upper joint of the left hand column

is plotted for the two load histories.

Being the main purpose of this research to check the validity of the expressions

of "equivalent" stiffness, the moment magnification factors at ultimate limit

.
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state (with reference to the base section of left hand column) of all the
consicdered cases, for both load histories, were plotted against the values

A* (Cauvin-Macchi)and A** (Menegotto-Via) of the equivalent slenderness.

See Fig.s 16 and 17.

The ultimate limit state which is considered is the one corresponding to the
formation of the first "plastic hinge" in the column.

The moment magnification factor is defined as (MI+MII)/MI, MI and MII being
first and second order moments.

The moment magnification factors were also plotted against the corresponding
values of the "Eulerian®slenderness. The diagrams are reported in Appendix II.

7. RESULTS OF NUMERICAL TESTS ON MULTISTOREY FRAMES

Results based on simple portal frames are by no means general and need to be
checked against more realistic cases. This was done in a limited way by studing
four multistorey frames as described in Fig.s 18 and 19.

Examples 1 and 2 are one bay multistorey frames which are identical excepting
the fact that in example 2 ground floor columns are hinged at the base, while the
same columns of example 1, are built-in the foundation (Fig.18).

Examples 3 and 4 are multistorey two bays frames which differ from one-another
in the same way.

Design of reinforcement was performed according to a linear elastic analysis
(for example 1 an approximate non linear analysis, using the so called F-A
method was performed and the reinforcement modified accordingly) .

The influence of creep and non intentional inclination were not considered.
Loads were applied proportionally until collapse of the structure.

Slenderness of columns at each floor was computed according to the well known
expression given by CEB Model Code |1|

)\_12!(1\
¥ h

where is

k relative horizontal displacement between floors for a unit load applied
at the top being assumed E=1

A total area of column sections at considered floor

h floor height.

It is interesting to notice that this method for the determination of A (as
well as the criterium to compute the buckling length in a column belonging
to a frame, according to the ACI Code) considers loads as applied on joints
of the frame only. The influence of loads distributed along the beams is
disregarded. As a consequence the value of ) are the same at each floor.
For each column of the four frames, where plasticization of the most stressed
section is reached, before the collapse of the frame under consideration, the
moment magnification factor has been represented in function of the "equivalent"
slenderness X. The W factor corresponds to the ultimate state in the column.
The results are represented on Fig.20, where also the corresponding results
of the parametric study previously performed on simple portal frames are
represented. In both cases the influence of creep and non intentional inclina-
tion were disregarded. A curve u=f(A*) can be extrapolated which does not
correspond to the one obtained from simple frames, but gives higher values
of u.
A suitable definition of "equivalent slenderness A* should lead to the extrapo-
lation of a p=f(A*) curve, which is unique for a broad class of plane frame
layouts and loading conditions.
Once this curve had been determined two aims could be achieved:

- The frontier between slender and non slender frames could be defined
by a suitable value of A*;

- The moment magnification factor U could be derived directly from this
curve, thus avoiding complicated nonlinear analyses of the frame under
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consideration.
If the values of U obtained for multistorey frames 1, 2, 3 and 4 are represented
on the u/A* plane, it easy to see that they do not fit well in the band of points
from which the curve concerning simple frames was derived.
A second curve can be drawn which for high values of A*(A*>25) gives higher
values of u.
However, the lower limit of p*=15 (corresponding to a magnification factor of
less than 1.10) can still be accepted, as the two curves do not differ much
around this value.
Therefore the definition of the frontier between slender and non slender frames,
which was defined for simple, one bay, cne storey frames can be accepted also
for multistorey frames.
To understand the nonlinear, behaviour of frames 1, 2, 3 and 4 with reference
to the parametric studies concerning simple frames, the basic difference between
the two sets of frames must be examined.
In multistorey frames, sizable load uniformely applied along the beams were
considered, while only loads concentrated on joints were applied on simple
frames. While, according to CEB rules \1[, the "Eulerian" slenderness at each
floor was computed taking into account the gecmetric properties of the frame
only and therefore the same value of A was found for each column of the same
floor, the load distribution along the beams can influence the effective
length of the columns and therefore their slenderness. As an example let us
consider the deformed shape of ground floor of frame number 1 at ultimate
limit state (Fig.21); the presence of a considerable vertical load distributed
along the beam produces a displacement toward the top of the left-hand point
of flexure,thus increasing the effective length of the same column. As a conse
quence, in the real behaviour of the frame, the slenderness of the columns be-
longing to a given floor is not the same, greater being the slenderness of the
left-hand side column (if of course horizontal loads are applied from left
to right). This can also be derived from the diagram of Fig.22, where values
of magnification factors p are plotted for the two ground floor columns
of frame N.1, in function of A* at different load levels and not only at
Ultimate Limit State as in the preceding diagrams. It is easy to see that the
values for the left-hand column are considerably higher. This phenomenon is
relevant whenever the distributed load is high, whilethe beam /column stiff-
ness ratio is relatively low. This is the case in many practical situations.

8. CONCLUSIONS
An "equivalent" slenderness expression

1 0.6 D
¥ = e O (/T80

was proposed and justified with the purpose of individuating a parameter capa-
ble of giving an approximate measure of the "degree" of non linearity of
structural behaviour.

To perform this task, the expression must contain the variables which are mostly
relevant to nonlinear behaviour and give a very compact representation of moment
magnification factors.

This result is with acceptable approximation attained with both proposed formu-
lations (Fig.s 23 and 24).

It must be noticed that the expression proposed by the authors seems more
effective when creep and non intentional inclination are considered in nonlinear
analysis (upper curve of Fig.23) while good results are cbtained with the
expression by Menegotto-Via, only in the cases where these factors are disregar-
ded.
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This fact may be explained by what was previously said about the stiffening
effect of reinforcement: the Menegotto-Via expression tends to under-estimate
this effect, which is, on the other hand,emphasized by creep behaviour. Both
formulations however permit to individuate clearly a lower limit of slenderness,
below which second order effects can be disregarded. In the case of A* formu-
lation, if the assumption is made that second order moments of less than 10% of
first order moments can be disregarded, a lower limit of A*=15 can be assumed,
as already stated in Ref.|4|.

This limit seems to remain valid when more complex frames are considered as
results from the parameteric study illustrated in paragraph 7.

The same results show also however that the p=f(A*) diagrams cannot be used
for the direct determination of second order effects, at least as long as the
procedure to determine the effective length of columns does not take into
account the distribution of vertical loads as explained in paragraph 7.

The proposed formulation modified in some detail will be introduced in the new
Italian Code for the definition of the field of slender frames (See Appendix III)
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APPENDIX 1 - Theoretical relationship between My; and Vv

The second order moment M 11 in a "model" column as represented in Fig.4/A

can be derived from the beam column elastic theory (see Timoshenko and Gere |8\)
or by assuming a deformed shape of the column, such that the displacement on
top be a function of curvature at thebuilt in end of the column. Although the
expressions which are obtained in both cases are complex, it can be shown that,
for moderate slenderness and axial load (A<70,v<0.5) and in the field of
normally used concrete design resistances (10Mpa<f.3<30Mpa) M;; can be
considered approximately as a linear function of V; therefore V should
theoretically be introduced in the expression of A* affected by an exponent

i 2 1 (however a lower value i=0.6 was introduced, to better fit the results

of "accurate" nonlinear analyses).

- First method
This method was used to derive the "moment magnifier"procedure suggestedby the

ACI Code |2| to compute Mj; in slender columns.
The top deflection of the column can be expressed as

13
= 22g5 KW
where
_ lo N
=9 EJ
and
3(tan u - u)
x(u) = 3
u

an approximate expression of ¥(u) can be obtained by developing tan u as a

series
3

tan u = u + J%—-+ %ﬁ; S
2
2u 1 2 N
Xw) =1 +===1+35 1 53
The second order moment is therefore given by
‘ P13 ; 12 @b £ v
M = N = V _ — 1
I1 dfa 2 VP10 = ) (1)

is represented by a polynomial expression where the quadratic term is small
ig the parameters influencing the slenderness (l, and J) are sufficiently small.
If the third term of the series representing tan u is disregarded, a linear
expression is obtained for Myp = £(v). X(u) could be also expressed approximately
by the following relationship (adopted by the ACI Code, see Ref.s |2| and |8|)

1 1

X(u) = =

1 - N/N_ . vab fcd

crit 1 = S 5
(T°EJ) /1
MII is therefore expressed by
V
M _ Pl3 ab fcd _ kv (2)
II 24EJ ab fcd\) 1 -k'V

('anJ)/l2
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If the column slenderness isnot too high (and therefore the design load/critical
load ratio is sufficiently small) again a linear expression is obtained for

MII:f (V) .
- Second method

The second order moment could be also computed using the basic criteria adopted
by CEB Model Code |1|, in the so called "Model Column" method.

MII can be expressed as

2
—3 / .
MII N 10,10 1/r

where 1/r is the curvature at the column built in base

e Plo . MII ) Pl0 + 2 MII
T 2EJ EJ 2 EJ
2
N1 (Pp1 + 2 M__)
M _ o o 1T
II 20 EJ
N 13 P v13 P
M _ o o - [e) - kv _
II oer-2n1° 2089 _ 5 12 kv —xw
o bafcd o
(3)
_k/k' v _ _k"v
1-k"/k'v 1 -k
" 1.2 £, :
k = Wikt = ; 2 (for rectangular section)
E a

the klv constant is small in most cases and therefore expression (3) can be
considered a linear function of V.

The values of the moment magnifier U=(MI+MII)/MI have been plotted using
expression (2) (first method)and expression (3) (second method) for v variing
from v=0.1 to v=0.8, for three values of )X (35,50,70) and 4 values of fcd
(10,20,30,40 Mpa).

These values are reported on Fig. 23 It is interesting to note that similar
values of p are obtained with the two methods.

APPENDIX II - DETAILS ON NUMERICAL TESTS
1. Computer program

The program used for this research, named SICA NL, can execute a non linear
analysis of generalised concrete plane frames taking into account both material
and geometrical non linearities.

The "displacement" approach was chosen and a step-by-step procedure is used

to track the evolutive behaviour of the structure up to collapse.

In brief the operations that the program can perform can be summarized as

follows:

a) Structural and load data are read.

b) The load vector {F} is subdivided in a given number of steps A_{F} of
constant or variable intensity. Subdivision of loads in steps éan be
performed in a number of ways according to necessity; in particular some
loads may be increased up to a given level (permanent loads) and then left
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constant while others can be increased up to collapse of the structure. It
is thus possible to consider non proportional loads.

c) Solution, at every step, of an equilibrium system of the kind
AP} = [k, (4, {u} (1)

where A,{u} is the displacement vector corresponding to A, {F} and \E. |

is the structure stiffness matrix, relative to step i-1, which is co%fected

at every step to take into account material and geometrical non-linearities.
d) Computation, at every step, of progressive displacements

n
fu}= Ei Ai{u}
1

and of the corresponding internal forces.

Operations described in c¢) and d) are repeated until the predefined number of
steps has been exhausted. The accumulated errors implicit in this kind of linea-
rization are eliminated using an iterative procedure

Material non-linearities have been taken into account using the following
procedure:

a) Beams and columns are automatically divided in a given number of elements
introducing additional joints.

b) The plastic effects are concentrated in those section where the ultimate
moment is reached, in the sense that in those sections a plastic, limited
rotation hinge is introduced. The ultimate moment is computed in every section
in function of axial load at every step, using the constitutive laws of ma-
terials prescribed by CEB (or ACI).

c) Cracking of the member is considered by substituting the stiffness of the
cracked section in those elements where the ultimate tensile stress of concre
te has been reached. N

d) The "tension stiffening effect", that is the influence of tensile resistance
of concrete between cracks, has been simulated with the method described in

ENE
2. SIMULATION OF CREEP

Creep deformations which are produced by permanent (and semi-permanent) loads can

be computed step-by-step by the program, so that evolution of the phenomenon can

be followed.

The computation procedure can be summarized as follows:

a) Permanent ( and semipermanent) load is applied step-by-step.

b) When the maximum value of permanent load is reached, the structure is analy-
sed with that locad for a given number of steps which correspond to time inter-
vals.

At every time step the load is kept constant, while a moment-curvature
diagram is used, which is obtained from the original diagram, by increasing, at
equal moment, the curvature and the corresponding concrete deformatione ) by a
quantity k¢(t). ¢

$ (t) is the creep coefficient, which, can be expressed by

d(t) = Blﬂz(t)

where Bl was assumed equal to 2.07.
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R.(t) expresses the dependance of ¢(t) upon time.
Tﬁe following expression has been assumed for Bz(t)

log t - log ti

B,(t) =
2 -
log tf log ti
where is
ti = initial time
tf = final time
t~ = current time.

The new moment-curvature expression is therefore given by

M

E J
cr

where Ecr is the equivalent elastic modulus of concrete relative to permanent
loads (and therefore considering creep).
If creep is not considered the moment-curvature expression is given by

k' = k(1 + ¢(t)) = (3)

M

k = 5 (4)
c

where E is the elastic modulus of concrete relative to short duration loads
(and therefore not considering creep).
From (3) and (4) we obtain

E

Ber T 177 0(0) (5)

Therefore, from a practical point of view, this method can be adopted by substi-
tuting at every step the equivalent elastic modulus given by (5). The procedure
of application of loads is illustrated by fig. 7.

In the first steps permanent loads are applied.

In the steps from 2 to 5 the load is kept constant, the modulus of concrete is
varied according to (5), while, in the calculation of member stiffnesses, accor-
ding to 2nd order theory, the deformations relative to the previous steps are
considered.

From step 5 onward the short duration loads are applied, while the Ec value of
elastic modulus is restored.

3. ONE SPAN SWAY FRAMES CONSIDERED IN THIS STUDY

A total of about 420 non linear analyses were performed, using the computer pro-
gram described in the previous paragraphs, on five series of one span one story
reinforced concrete sway frames, to investigate the influence of some relevant
variables on the non linear behaviour of this kind of structures, and determine
useful rules of design

The variables which were considered are as follows:

1) Column slenderness

2) Concrete quality

3) Column reinforcement

4) Initial sway due to imperfections

5) Axial load on columns.

The analyses were performed first disregarding the influence of initial sway and
creep and subsequently considering it.

For each series of frames two different values of ratios between beam anc column
stiffenesses were considered

O

bhc //1
*pe 771 " S
c’b 10
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In this expression J,, and J. are the moments of inertia of the uncracked

setion of concrete of beam and column respectively, while lb and hC are their
lengths.

The vertical load V was applied directly on columns and five values were consi-
dered corresponding to a reduced load

—

b d fcd

equal to 0.1, 0.2, 0.3, 0.4, 0.5.

The reinforcement in columns was designed according to a linear elastic analysis.
Two critical sections were considered (at bottom and on top of column) and the
reinforcement designed for each of these section was extended for 1/2 the height
of the column.

The same reinforcement has been assumed for each series.

Four values of P were considered.

A symmetrical reinforcement was adopted throughout.

For P = 0.02 analyses were also performed with an improved quality concrete.

Vo=

The design value for concrete compressive strength was obtained from the
characteristic value f iy dividing it by a safety coefficient Yh equal to 1.5
according to CEB Model Code |1|. Such a value (f.3) is introduced only in the
calculation of the strength of the critical section, while the initial modulus
of elasticity E. is computed for the characteristic strength f_p.

Two basic load histories were considered for each case; as previously explained.

4. DEFINITION OF SWAY-FRAME ACCORDING TO CEB

A first check of the obtained results concerns the CEB definition of "sway frame"
In table 1 the frames of the studied family are considered, and the corresponding
values of the expression

hiot \ [/ Fy/Ecn J

are calculated, Fy being the total vertical load on the frame (see ‘1|).

In the table, the shaded area shows the frames which are not considered sway-
frames according to CEB rule. The larger area separated by dots includes the
frames for which the second order effects increase by less than 10% the first
order moments in the critical section (according to the performed calculations),
with a reinforcement ratio P = 0.01 in the columns.

If the reinforcement is increased to P = 0.04, the area is further increased
the new border is indicated by crosses.

Considering for instance the second column of the table, (h. = 3 m and therefore
A = 35#40) it means that only for an axial load V = 0.1 the frame is considered
"non sway" by CEB, but with V = 0.2 the second order effects are less than 10%
with a reinforcement 0P = 1%; and it is still less than 10% even with V = 0.4

if the reinforcement is increased to P = 4%,

It can be concluded that the CEB rule is conservative, but that the limits
could be considerably raised taking into account the reinforcement ratio in the
measure of the conventional slenderness.
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APPENDIX III - PLOTS OF MOMENT MAGNIFICATION FACTORS IN FUNCTION OF "EULERIAN"
SLENDERNESS

The most sinificant results of the analyses were organized and plotted in the

following manner:

a) The critical section at the base of the left-hand side column was considered

b) In that section the magnification factor

MI * MII
MI
was computed, where (M_ + M__) is the moment resultiny from a non linear
analysis with program gICA ﬁﬁ, while M; is the moment resulting from a
conventional linear elasticanalysis.

c) The value of the magnification factor were plotted against the slenderness A
of the column. This slenderness was computed in a conventional way, that is
considering the uncracked concrete section only, and using the CEB expression
already mentioned (paragraph 2).

The moment magnification factors are represented in fig.24 for the reinforcement

ratios p = 0.01,0.02, 0.03

On each of these diagrams the interpolated curves corresponding to the considered

values of V are represented; for each value of V two curves are plotted correpon-

ding to the considered values of beam to column stiffness ratios.

In the upper set of curves the combined effects of initial sway due to imperfec-

tions and creep are considered.

In the lower set such effects are disrenqarded.

In fig.25 the same results are plotted for three values of V s to

emphasize the influence of this factor on the results.

The given diagrams emphasize the considerable influence of v and p on second

order effects.
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APPENDIX IV - PROVISIONS OF THE FUTURE ITALIAN CODE CONCERNING THE DELIMITATION
OF SLENDER FRAMES

According to this code columns are considered slender when

lo 15(1 + 15(Q)

A=K
T

being a = f,3/17,5.

The limit of A*= 15 has therefore been accepted as the frontier between slender
and non slender columns while the espression for A* has been slighth modified

A
AE = ________,{
1+ 15 -

as Y is affected by an exponent of 0.5 instead of 0.6



	New definition of slenderness of reinforced concrete columns

