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Non Linear Analysis of Cable-Stayed Bridges Eccentrically Loaded

Analyse non linéaire des ponts a haubans chargés en flexion et torsion

Eine nicht lineare Untersuchung von Schragseil-Mitteltrager-Bricken
unter exzentrischer Belastung

Domenico BRUNO

Prof. of Struct. Eng.
University of Calabria
Cosenza, Italy

Domenico Bruno,
born 1948, received
his civil engineering
degree at the Univer-
sity of Naples, ltaly.
Prof. of Structural En-
gineering at the Dep.
of Structures, Univ. of
Calabria, presently
carrying out research
on statics and dynam-
ics of long-span cable-
stayed bridges and
general problems in

Angelo LEONARDI
Research Fellow

2nd University of Rome

Rome, Italy

Angelo Leonardi, born
1945, received his
chemical engineering
degree at the Univer-
sity of Naples, Italy.
Presently, Dr. Leo-
nardi is  research
fellow at the Depart-
ment of Civil Engi-
neering, 2nd Univer-
sity of Rome. His
activity deals mainly
with computerized
structural analysis.

structural mechanics.

SUMMARY

In this paper the non linear behaviour of long-span cable-stayed bridges under eccentric live loads
is analyzed. Two different structural models are presented. The first is obtained by assuming a
continuous distribution of the stays along the deck, the second one is a discrete model
corresponding to the actual stays spacing. The numerical results obtained show the significance
of nonlinear effects and the accuracy of the structural models used.

RESUME

Cet article étudie le comportement non linéaire des ponts a haubans de grande portée chargés en
flexion et en torsion. L'analyse est dévelopée, en étudiant par modéles d'une fagon continue la
distribution longitudinale des haubans, ainsi qu‘avec I'emploi d'un modéle discret, qui prend en
compte la position réelle des haubans sur la poutre. Les résultats numériques montrent
I'importance des effets non linéaires et |'efficacité des modeles employés.

ZUSAMMENFASSUNG

In dieser Arbeit wird das nicht lineare Verhalten von Schragseil-Mitteltrager-Bricken unter
exzentrischer Belastung untersucht. Die Untersuchung erfolgt einerseits unter Benltzung eines
Modells mit kontinuierlicher Verteilung der Seilabspannung langs der Brickenachse und ander-
seits eines diskreten Modells, das die tatsachliche Verteilung der Seilabspannung langs der
Brickenachse berlcksichtigt. Die auf diese Weise erhaltenen numerischen Resultate zeigen die
Bedeutung der nicht linearen Einflisse und die Effizienz der angewandten Modelle.
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1. INTRODUCTION

The considerable progress in the field of structural engineering, material
technology and methods of construction has brought about great interest in the
study of long-span cable-stayed bridges. Therefore, it's a common view to con-
sider the cable-stayed bridge scheme an efficient alternative to the suspen-
sion bridge. Basic studies about fan-shaped cable-stayed bridges are given in
[1-3].

Usually, the investigation methods about the statical behaviour of this scheme
are based upon a linear analysis, by using Dischinger's fictitious tangent
modulus for the stays. Consequently, torsion and vertical bending are examined
separately. This approach is unsuitable for bridges whose central span is
longer than 700-800 mt. In this case, in fact, a non-linear analysis, for
a more accurate evaluation of some significant effects, is required. Recent
contributions about non linear behaviour of cable-stayed bridges are given
in [4-7]. In particular, the influence of non-linearities, due to stays'beha-
viour and geometry changes, is shown in [6-7].

A numerical and analytical investigation is developed in the present work,
including the main nonlinearity due to the stays'behaviour. Thus, torsion
and vertical bending of the girder are examined in a coupled nonlinear ana-
lysis. At the beginning the analysis is made by using a continuous model,
already used in [3,6,7]. Solutions, approximate but suitable to account for
the stays'main non linear effect are obtained by using a perturbative method
of solution. Then, the analysis goes on by using a discrete model of the
bridge, corresponding to the actual stays' spacing.

2. STRUCTURAL SCHEME AND STATICAL BEHAVIOUR

The structural scheme we are going to examine is shown in Fig. 1: the stays
are characterized by a fan-shaped arrangement, the pylons are composed of two
parallel independent towers and the deck is supported by the stays.

The statical behaviour of such scheme is based on two typical characteristics
[3,6,7], namely:

- diffused stay arrangement along the deck (A/L<<1)
- truss-like statical behaviour

Under dead loads g, according to the commonly erection methods used, the
girder has a straight configuration and is free from bending moments. So
that the stresses are given only by axial forces both in the stays and in
the deck. When live loads are applied, deformation and stress increase will
be analyzed by taking into account the non-linearity due to the stays' beha-
viour.

We assume that the whole central span is under a uniform live load (Fig. 1):
P*(\) = N (2.1)
where )\ is the load parameter and p is the design value of the live loads.

This load condition is interesting because in such case the maximum torsional
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I~

Fig. 1 Structural scheme

rotation and the maximum deflection occur at midspan.

Thus, if the extensional and shear deformabilities of the girder and pylons
are neglected, bridge's additional deformation is determined by the following
displacement parameters (Fig. 1):

- the girder's vertical displacements v(z)
- the pylon tops' horizontal displacement u
- the girder's torsional rotations 6(z)

- the pylon tops' torsional rotation Y

Before analyzing the non linear elastic response of the bridge under live
loads, we shall examine the behaviour of a single stay. Let us consider a
generical stay anchored to the left pylon; the deformation increment A€ produ-
ced by v, u, 6,V displacements is:

Ae = % [(v £ 6b) sin?a — (u + ¥b) sina cosa] (2.2)

where + or - signs respectively apply to the left or right stay in respect
to the pylons' vertical axis. The A0 stay temnsion increment can be evaluated
as:

Ac = EJ Ae (2.3)

%

where Es is the secant modulus of the stay's O-€ relationship. The taugent
and secant moduli are defined in Fig. 2. According to Dischinger's theory
these moduli are given by:

. _ E * E (2.4)
E = £ E,— .
C 14 YGE 14 _YBLE 1+8

120} 12 o3 2/

where B represents the ratio between the final value of the stays' tension
0=0,+A0 and the initial one 0,: B=0/0, ; E is Youngs' modulus, Y the specific
weight, %, the horizontal projection length of the stay.

The cross sectional areas Agand A, of the double curtain of stays aund of
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Fig. 2 Elastic response of the single stay

the anchor stays, respectively, are found from the design values Oq (which
we assume constant stay by stay) and Jg0 of the stays' tension due to dead
loads. We have:

A =—22 s de=—Eap +(§>21m[(2%>1—11 (2.5)

g, sina 20‘0

Moreover, operating on the truss-like scheme we get the following values of

Og and Ogo'

g = P 2¢ -1 711 2.6
g =g, ’ gp=0, | 1+=[1 4 (2.6)
A q, p+g & [ g (L )] ]

g, being the cable's allowable tension.

According to the assumption of uniform stays' distribution along the deck, the
bridge's equilibrium equations in terms of the displacement parameters v, u, 0
y are:

Girder equilibrium

EIvY = qv + Ap (2.7)

C,0” = —m, — \pe* (2.8)

Pylon equilibrium

L/2
—s qdz —Ku—S;—S2 =0 (2.9)
—t

L/2
_s m, dz — Kb2y — (ST — SO)b = 0 (2.10)
—t

We observe now that the terms ¢, ,q, ,my and mg, appearing in egs. (2.7)+
(2.10), are the vertical and the horizontal forces and the torsional and hori-
zontal flexural couples, per unit length, corresponding to the stays-girder
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interaction produced by the stays' axial deformations [7]. The terms S and
Sp are the horizontal components of the anchor cables axial forces due to
the displacements u and { . Moreover, EI and C, represent the flexural and
torsional stiffnessess of the girder respectively, while K is the pylon
tops' flexural stiffness.

It is convenient to rewrite equations (2.7)%(2.10) in dimensionless form.
Therefore, let us introduce the following quantities:

z v u e* H
= —, V =— 3 U = —, = —_— = — &
(Y H H H £ b t b (2.11)
v H’ — LR 1
a= HJE , aL.R(g_):a ._1'.‘-_.'34&, @L‘R(g'): (2.12)
124, 28% acl) 201+ @0l (1+82)
- (Alag —(—Ceo i - _bog 2.1
€ (H’g) ) T (Ebng) ’ P = Eg (2:13)

Hence, equations (2.7)+(2.10) become:

E L+ )V + (0, — & . U— =) L = )P
4 (‘P ‘P) (¢ ‘Pn) t (o + 'PR) g-(lP,_ ‘Pn) I (2.14)
70" —t(p,— @) V—1I(p, + @a) 0+ t§ (o, — @a) U + (0, + 0g) ¥ = MPE (2.15)
L/2H 1 L/2H 1
| storeavaret | sto.— ettt — (e U—1T Y =0 (2.16)
—/H —(/H
L/2H L/2H
ts o, — p)VAE + S Sloeteg) 6dE — toU —(e+x)¥ =0 (2:07)
—t/H —(/H
where
L/2H L/2H
e= $ (er+ep) dS + x0 + x5 e = S S (e — oa) dE + X2 — x93 (2.18)
—U/H —t/H
and
o _ 1 Elht._n A, o, . 3 Ko
Xex =5 FeH sina, cos’a, , X = —Eé‘— (2.19)

In the previous equations the indexes "L" and "R" are respectively applied
to the left or right stays with respect to the pylons' vertical axis.

An approximate solution of equations (2.14)+(2.17) which reflects the truss-
like behaviour will be given. We will show how this solution, though approxi-
mate, can represent the main qualitative and quantitative aspects of the brid-
ge's structural behaviour.
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3. CONTINUOUS MODEL

We observe that the flexural and torsional girder stiffness parameters ¢
and T which appear in equations (2.14), (2.15) are very small for long-span
cable stayed bridges, usually € = 0.1 + 0.3, T = 0.05 + 0.1. This circumstance
allows us to apply a perturbative approach to obtain an approximate solution
of equation (2.14)+(2.17). Actually, the solution is exact when € + 0 and
T + 0. Therefore, the general solution (V, U, 6, V) of equations (2.14)+(2.17)
can be expressed as:

V(§) = Vi(§) + V() Uu=U,+U, 6(8) = 6,(¢) + 6,(5), V=9 + ¥, (3.1)

where (V,, U,, 6,, VU,) is a particular solution obtained by setting e =1 =0
in equations (2.15), (2.16), and characterizing the bridge's dominant truss
behaviour, while (V;, U;, 6,, ¥, ) is an approximate solution of the homoge-
neous system (2.15)+(2.18), of local nature.

For the particular solution, putting L/2H=r in eqs. (2.14)+(2.17), we get

V,(¢) = %)\P (o, + sog);- :R(soa_— o) tu, (3.2¢)
6(¢) = %m (P — m)ww: :R(m + @) v, (3.24)

An approximate solution of the homogeneous system can be expressed as [3,6,7]:

Vi(§) = cie” sinf(§) + ce” lcosf(i), 6(¢) = ke + ke, U, =y, =0 (3.3)
where
_ 1 e _ 1 " s _ 1 g’|/z
()= \e d¢, £ =7 \e d¢, fA?)—‘7- e df, (3.4)
'3 (g 0
and
e(f) = o) + exl8) (3.5]

Hence for the given load condition we get:

=Ll ¢ _{u,+ N2+ (G T F T+ T+

Wiy = oot

+ NPE[P(T, — Tp) + (1 + 00T — T} + [€7sinf(8) — e Pcos 5] (3.6)
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6(8) = — —2— [MPI(T — Tp) + 2@, — T +
¢ (r)

FEER + T+ T + 20(F + TN + o) e — NPeEe (3.7)

The maximum deflection & and maximum torsional rotation 6(r) at midspan are
expressed by:

% - %)\P{(l F O + T + (1 + T + B+ 0T — T +
€ _— — B 1 e S o S
+ U, ~ 2070 {U.,+)\P[(2 + A+ agr+2r(a,+ag)]+NPE[r(a—ag)+2r(a,—a R)]} (3.8)
O(r)/t = %)\P {r’(?, — )1 4+ ) + E2(1 + ) + (1413 (7, + ?,,)]} + )/t +
_ _of’T‘T NPT, —T ) + 20T, — T +£r(2+ T, + T Q) +20(T,+ TR + Vo/t} (3.9)

Furthermore, the bending moment at midspan is expressed by:
M) - L) U+ N2 + T+ T+ 20T+ )+
pH *
+ (T —T) + 20 (5, — TN (3.10)

and the twisting moment at the section 7 = O:

%"&I%)-=)\ET+T’—$— (3.11)

The equations (3.8)+(3.11) are non linear because of terms depending on the
value of the secant modulus of the stays. Therefore, these equations have been
solved by using a direct iterative procedure.

4. DISCRETE MODEL

In the previous section, the non linear behaviour of the fan-shaped cable-
stayed bridge scheme has been analyzed by assuming a uniform stay distribution
along the deck. An approximate analytical solution has been obtained which
reflects the main truss-like behaviour of such structures. Obviously a more
accurate analysis of stresses and deformations may be obtained only by means
of a discrete model which accounts for the actual stays' spacing and geometry
change. However, the results given in [6-7] shows that with a suitable choice
of the girder stiffness parameter €, the non-linear effects due to geometry
changes are insignificant. Therefore, in the present work a discrete model
which includes only the nonlinearities due to the stays' behaviour will be
analyzed.

The discrete model is defined by the following displacement parameters:

- the pylon tops' horizontal displacement u
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- the pylon tops' torsional rotation ¥

- the girder's nodal vertical displacement v;
- the girder's nodal bending slopes ¢;

- the girder's torsional rotations 6;

The finite element discretization is based on a cubic interpolation of the
vertical displacement ve(z) and on a linear interpolation of the torsional
rotation 8.,(z) for the element of length A, that is:

v(z) = FT(z)d", 0,(z) = Fi(z) d,” (4.1)
(1) (2)

where d, and dg are the vectors of the nodal displacement parameters
(deflections, bending slopes and torsional rotations of the end sections),
and Fq, F2 are the shape function vectors. The elastic response se(de) of

the girder element is defined by means of the virtual work equation:

sdls, = | (Ewov" + C0°50") &z
A

(4.2)
)
where d, -[d7=b] is the nodal displacement vector of e-th element.
The pylon equilibrium equations, analogous to (2.16) and (2.17), are:
—(e+xu—bev+ o L rle+eliv+ L £ fiel— et = 0 (4.3)
o A X A ¥
— (e + X)'v"——g—u + b_H i=21 $ (‘P:._'ﬁo.:l)vi ik i i=E] &'(‘Pi + 1,0:,)0, =0 (4.4)
where 9’t=¢L(Ci),¢;=¢R(§i) and N = (L/242)/A+1.
The girder equilibrium condition is expressed by:
s—q—M3p=0 (4.5)

where p is the global nodal load vector, s is the assembled elastic response
of the girder and q = [q,, q;] is the stays' action on the deck:

q, = ——fﬁ%— (0! + oh)ut,— v)) + blpl — pe)¥s, — 6)] th.5)

ol = —2%‘:—— [ble. — pe)ut, — v) + bler + eR)¥s —0))] (4.7)

For numerical applications, the set of non linear equations (4.3)+(4.5),
has been solved by using the standard Modified Newton-Raphson method.

5. NUMERICAL RESULTS

Numerical results, obtained by using both the continuous model and the discre-
te model are given. The main parameters which characterize the bridge scheme
are:
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Fig. 6 Continuous model: midspan ben
ding moment (e=0.3, 1=0.1)

For the first two parameters, according to the stability condition of the an-
chor stays and to the minimum weight condition of the stays, we assumed the
following values [3]: L/2H=2.5, 2/H=5/3. The value of 0;/E is, for steel stays
Cia/E=7200/2.1x106 . For the nondimensional tower bending stiffuess K/g parame-
ter, according to its weak influence on the overall behaviour of the bridge,
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we assumed the mean value K/g=50. While, for the e, 1, a, p/g parameters,
which have a considerable influence on the overall behaviour of the bridge,
some values, corresponding to long-span cable-stayed bridges, have been consi-
dered.

In Figs. 3-10 the values of some dimensionless quantities which are more
significant to describe the bridge behaviour are given. That is, the maximum
midspan deflection &/L, the midspan bending moment M/sz, the maximum midspan
torsional rotation O(r)/t and the twisting moment M;/pbH at the section g=0.
Furthermore, Figs. 11-14 show the comparison between analytical and numerical
solutions. Obviously, the approximation of the results obtained by using
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cal and numerical results. cal and numerical results.

the continuous model in respect to the discrete one is connected with the
values of the € and T parameters and with the ratio A/L. In particular,
the approximation of the results relative to the midspan deflection and the
midspan torsional rotation obtained by using the continuous model is related
to the values of parameters €, and T, with errors between 5-87 (Fig. 11)
and 0.5-1% (Fig. 12), respectively, for €=0.2-0.3 and T=0.05-0.1.

In figures 12, 14 similar results are given for the bending moment at the
midspan section and the twisting moment at section g =0; the error of the
continnous model compared to the discrete one in this case is higher and
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is roughly between 8-20% (Fig. 12) for £€=0.2 - 0.3 and 1=0.05-0.1 in respect
to the bending moment; while as far as concerns the twisting moment, this
error is strongly related to the ratio A/L and is about between 8-40% for
A/L=1/30 - 1/120.

In any case, we can observe, from the figures previously shown, that the dif-
ferences between the results obtained by using a linear analysis, and those
derived by a more refined nonlinear analysis, is considerable in particular
in regards to the deformations, that is, midspan deflection (= 30%) and tor-
sional rotation (2 45%).

6. CONCLUSIONS

In this paper the static non linear behaviour of long-span cable-stayed bridges
was analyzed. A suitable continuous model of the bridge was developed and
an analytical solution of the Statics' basic equations was derived. This solu-
tion focuses the prevailing truss behaviour of the bridge and allows us to
achieve a synthetic understanding of the statical behaviour of the bridge
and to express, by simple formulas, the more significant stress and deformation
characteristics, useful for design in practice.

Moreover, the influence of the intrinsec nonlinear behaviour of stays on the
overall behaviour of the bridge was examined. In particular the obtained re-
sults show the importance of nonlinear effects on the deformability of the
bridge, which, especially for long-span bridges, is undergoes severe restric-
tions.

REFERENCES

1. LEONHARDT F., ZELLNER W., Cable-stayed bridges, IABSE Surveys S-13/80, May
1980.

2. GINSING, N.J. and GINSING, J., Analysis of erection procedures for bridges
with combined cable systems. Report No. 128, Department of Structural
Eng., Tech. Univ. of Denmark, 1980.

3. DE MIRANDA, F., GRIMALDI, A., MACERI, F., COMO, M., Basic problems in long-
span cable stayed bridges. Internal report, Department of Structures,
University of Calabria, September 1979.

4., CAFARELLA, F., Sulla statica in campo non lineare dei ponti strallati a
grande numero di stralli. Costruzioni Metalliche, No. 1, 1981.

5. RAJARAMAN, A., LOGANATHAN, K., RAMAN, N.V., Nonlinear analysis of cable-
stayed bridges, IABSE Proceedings pp. 37-80, November 1980.

6. BRUNO, D., GRIMALDI, A., LEONARDI, A., Sul comportamento non lineare dei
ponti strallati di grande luce. VI Congresso AIMETA, Genova ottobre 1982.

7. BRUNO, D. and GRIMALDI, A., Non linear behaviour of long-span cable-stayed
bridges. Meccanica, Vol. 20, N° 4, pp. 303-313, 1985.



	Non linear analysis of cable-stayed bridges eccentrically loaded

