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SUMMARY
A new stochastic model to represent the main characteristics of the failure strength of concrete is

presented. The approach can be seen as an extension of fracture mechanics within a stochastic
framework. Both time and the volume dependence, which is typicai for a brittle material like
concrete, are included. Several examples of the applicability of the model, including fatigue of
piain concrete, are presented. The results are primarily of interests in limit State designs.

RESUME
L'article presente un nouveau modele stochastique decrivant les principales caracteristiques de
resistance ä la rupture du beton. Cette approche peut etre vue comme une extension de l'etude
mecanique des fractures dans un cadre stochastique. Ce modele rend compte de la dependance
du temps et du volume qui est typique pour un materiau cassant comme le beton. Plusieurs
exemples d'applications sont presentes, y compris le cas de fatigue du beton non arme. Les
resultats sont principalement d'interet pour l'etude de structures ä l'etat limite.

ZUSAMMENFASSUNG
Ein neues stochastisches Modell für die Darstellung der wichtigsten Festigkeitseigenschaften
des Betons wird vorgestellt. Der Ansatz kann als stochastische Erweiterung der Bruchmechanik
angesehen werden. Die für sprödes Material wie Beton typische Zeit- und Volumen-Abhängigkeit
wird erfasst. Mehrere Beispiele für die Anwendbarkeit des Modells einschliesslich der
Ermüdungsfestigkeit von Beton werden gezeigt. Die Ergebnisse sind vor allem für die Bemessung
auf Grenzzustände von Interesse.
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1. INTRODUCTION

The strength characteristics of materials have traditionally been formulated
in aecordance with the theory of elasticity or the theory of plasticity. With
such an approach it is possible to make use of a well developed theory in the
calculation of stresses and strains in a body. But this often leads to a poor
representation of the strength properties of materials. This is especially noti-
ceable in modern limit state designs where the notion of a better use of the
strength of a material have been introduced.

It has been obvious for a long time that the strength of materials need to be

better characterized. One approach in a better understanding of the strength
characteristics is fracture mechanics. The original theory [5] has been improved
in many respects dependent on the application. For concrete several approaches are
available based on nonlinear assumptions [6] or other special assumptions [1,
8]. All such models have increased the understanding of the behaviour of
concrete. But fracture mechanics is difficult to apply on structures in general.
It is primarily a research method when it is applied to concrete.
A modern approach to represent the strength of materials is based on Statistical
principles. This method can be used in a traditional way to reflect the varia-
bility found in the failure strength of materials or as the basis for a stochastic

strength theory. A stochastic strength theory can, to a certain extent, be
seen as a generalization of fracture mechanics, but it also adds new features
which makes this approach of interest in practical applications.

2. STRENGTH CHARACTERISTICS OF CONCRETE

2.1 Some material qualities
Concrete materials and all cement based composites are basically discontinuous,
anisotropic, heterogeneous, multiphase composite Systems. The main components,
the matrix and the aggregate, may have different characteristics as well as the
proportions between them can vary dependent on desired qualities.
The properties and strength of any heterogeneous system depend on the physical
and chemical characteristics of its constituents, and the interaction between
them. In the concrete system, randomly distributed aggregate inclusions of
various sizes and surface texture are embedded in a continuous visco-elastic
matrix. The properties of the aggregate are normally well defined and can often
be represented independent of time. The characteristics of the matrix varies
with stress and time and is also subjeet to environmental influences. The
interaction between the two would therefore not only vary with stress and time but
also with mineralogical composition of the materials in contact. The aggregate -
matrix contact zone is a very significant phase in the concrete system and is
often the weakest link in a heterogeneous System.

2.2 The strength of concrete

It is characteristic of concrete materials that they have a high compressive
strength and a low tensile strength. A high compressive strength is primarily
due to chemical bonding forces within the crystal structure. The tensile
strength is primarily dependent on physical bonding and is of a lower order
of magnitude.
The strength characteristics of a specific concrete will depend on the
characteristics of the constituents, the matrix and the aggregate, and the bond inter-
phase between them. There are many factors which inter-relate the strength of
the composite. A significant amount of research has been devoted to explaining
these factors. It is also possible to explain the influence of a large number
of factors on the strength characteristics of concrete.
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From a practical point of view tensile stresses play an important role. In normal

concrete with random distribution of aggregates moisture movements creates
biaxial and triaxial stress conditions in the matrix and large tensile stress
concentrations occur around aggregate inclusions. Many experiments have shown

that the breakdown invariably Starts around the aggregate - matrix interphase.
This is because the tensile bond strength of the aggregate - matrix interphase
is much lower than the tensile strength of the matrix itself.
The implications of the stress concentrations can be illustrated with the creep
characteristics. In Fig 1 the stress strain curve for concrete in uniaxial
compression is shown. If a sustained stress lower than the failure stress is
applied, concrete will exhibit creep. If the stress level is below some critical
value, tensile stresses around aggregate inclusions will not be high enough for
cracks to propagate. The creep deformations can in this case be seen as a con-
solidation. If the stress level is high enough cracks will propagate and will
finally result in a brittle failure. The higher the stress level the shorter
the duration of this delayed brittle failure.
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Fig 1 Creep characteristics as a function of time and applied stress. From [10].
The brittle behaviour of concrete, which depends on microcracks or flaws, will
also be dependent on the volume under stress. The larger the volume the greater
the probability of larger flaws being present. The consequence of this is that the
failure load will decrease for increasing volumes under stress.
The dependence of the strength of concrete on the volume under stress and the
duration is important in connection with limit state evaluations. The assumption

of a constant concrete strength based on standardized testing of cubes or
cylinders is hardly justified.
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3. A STOCHASTIC MODEL OF CONCRETE STRENGTH

The Statistical theory of brittle failure was introduced to explain the dependence

of the failure load on the volume under stress [14]. Concrete loaded to
failure does also exhibit this volume dependence, which will be exemplified
later. In normal applications concrete will not be loaded to failure. But the
stress level might be high enough for cracks to propagate. In this case the
duration of the sustained stress has to be considered. Concrete, which will behave
potentially brittle, can be model1ed by an extension of the original theory [12].
3.1 The volume dependence

In a brittle material the strength will depend on flaws in the material. The
size of these flaws are assumed to follow some Statistical distribution F (r)
giving the probability of finding a flaw whose failure load is less than r. If
there are n flaws in a unit volume the strength of a larger volume can be
represented with the Statistical distribution of the minimum value

Fv (R) 1 - {1 - Fx (R)}nV (1)

If nV is large eq 1 can be written in its asymptotic form

Fy (R) 1 - exp {- cnV Rk} (2)
which is the Weibull distribution. For concrete a brittle behaviour can only
be expected above a certain stress level where cracks may propagate. If this
stress level is called r eq 2 will have the form

0 k

Fv (R) 1 - exp {- cnV (R - rQ)K) (3)

In many applications it is an advantage to express eq 3 in a way which relates
any volume V to a standardized volume V This is the case for concrete in
compression where V is the volume of a Standard test cube or cylinder. Equation 3

can now be written
R

FV (R) 1 - exp {- ^ (-J-J») } (4)

which is just a change of variables. The variables m, rn and k are determined
from experimental information. o

3.2 The time dependence

The time dependence of a brittle failure of concrete has to be considered if
the stress level is high enough for cracks to propagate. This time dependence
is most likely to be dependent on the volume under stress. The time dependence
is thus conditional on the volume under stress. This can be expressed as

FT (R|V) 1 - J1 - Fy (R|V)]nT (5)

It is possible to assume different types of dependences between the volume under
stress and the duration to reflect material characteristics like a memory. For
concrete subjeet to sustained high stresses the time dependence can be seen as
a delayed brittle behaviour. Such an assumption will lead to an expression similar

to eq 3. In a normalized form this can be written

FT (R|V) 1 - exp {- T_ VP (i^°)hj (6)

p
where T is a reference duration and V some reduced volume. It is here assumed
that m §nd r are the same as in eq 4. Only the parameter h need to be estimated
from experimental information.
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3.3 Extensions to the model

The stochastic model described is the simplest possible. More realistic models
can be introduced based on additional assumptions.
The flaws are often different in the interior of a body compared to the surface.
On the surface cracks might be present as a result of an uneven temperature
distribution during the curing or as a result of temperature or humidity variations
afterwards. This can be taken into account by expressing eq 1 as a function of
both volume and surface area. It is possible to introduce a memory assumption in
the derivation of eq 6 to consider a certain self-healing if the stresses are
not sustained.

All extensions to the proposed model will probably improve the description of
strength characteristics of concrete. But at the same time the model will be

more complicated and require more background information. This is normally not
desirable from a practical point of view.

4. EVALUATION OF THE MODEL

The stochastic model presented in the previous chapter relates the brittle
failure load of concrete to the volume under stress and a delayed brittle failure
in addition to the duration of the stress. In applications the expressions
given need to be evaluated and expressed in a more practical way.

4.1 The volume dependence

The brittle failure load as it is expressed in eq 4 will give the probability
distribution of a certain volumeV under stress. Often it is more practical to
express this in terms of the mean value and the variance. The mean is given by

E [R] rQ t J exp {- ^1} dR (7)
^ o

and
rRs (x, y, z) - r ,k

9 (R) - J jjj
dV (8)

Rs > rQ
<• m >

where s (x, y, z) is a dimension free, normalized function which describes the
stress distribution in a body, and R some characteristic stress, normally the
stress at failure. The variance can be expressed in a similar manner.

An explicit evaluation of the mean and variance can only be done for simple
stress distributions. In the case of a uniform stress distribution the mean
value and the variance are

E [R] rQ + m (Vo/V)1/k r (1 + 1/k) (9)

V [R] m2 (VQ/V)2/k {r (1 + 2/k) - r2 (1 + 1/k)} (10)

where r (•) is the gamma function. For most other stress distributions it is not
possible to derive expressions as simple as eqs 9 and 10. In such cases the
volume under stress has to be evaluated numerically. If the original volume is
divided into sub-volumes, each large enough to be considered independent of the
strength of others, then eqs 9 and 10 can be used as an approximation for each
volume. With such an approach it is possible to use a finite element evaluation
of stresses in a body.
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For practical purposes it is often better to write eqs 9 and 10 as

R Ro {a + b (VQ/V)1/k

C 0 V

V JA

a + o
IV

17F
'r (1 + 1/k)

r (1 + 1/k)

:n:

(12)

Now the mean strength R for a volume V is related to the mean strength RQ of
some standardized volume VQ. This relation is Visualized in Fig 2 where it can
be seen that the mean strength decreases with increasing volumes under stress.
The variability, which is represented by a Weibull distribution decreases with
increasing volumes.
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Fig 2 The volume dependence of the brittle failure load. The solid line and the
broken lines correspond to the mean behaviour and the spread around the
mean value respectively.

4.2 The time dependence

The delayed brittle failure load as it is expressed in eq 6 can be evaluated
in a similar way as the volume dependence. Without going into detail, the mean
value and the coefficient of Variation are

{a * b (Vo/V)1/k (TQ/T)1/h} (13;
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C 0 V

1/k

TT*

V 1/k T 1/h

a + b (r)
l/h

r +

1 +

:i4)

where, in a similar way as for eqs 11 and 12, R is the mean strength when the
sustained duration is T with reference to the strength RQ for the duration TQ.
The dependence of the mean strength on the volume under stress and the duration
is visulized in Fig 3. The time dependence should be seen as conditional on the
volume dependence.

R/R

/^

//

V/V

T/T

Fig 3 The brittle strength as a function of volume under stress and the duration.
The dotted line corresponds to the threshold stress.

The time dependence can also be used for durations shorter than T„. This will
give a higher mean failure load and a larger spread based on eqs 13 and 14. This
will be applicable for impact loads.

4.3 Parameter values

In an application of the theory of brittle behaviour or delayed brittle
behaviour information is needed which makes it possible to estimate the three
parameters in the model. Such information is not directly available for general use.
There is, however, certain information available which can be used for a

verification of the model.
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A brittle behaviour can only be expected when the stress level is above a certain

threshold value where cracks will propagate. This threshold value, which
is represented with r0 in the original formulation or a R0, will depend on the
qualities of the concrete, especially the bonding between the matrix and the
aggregate. If the proportional limit is used as measure of a R0 the threshold
seem to be in the ränge of 30 - 40 % of the failure load for cubes tested in
compression [7]. For small samples tested in tension the proportional limit seems
to be in the ränge of 60 - 70 % of the failure load [7].
The parameter k which determines the volume dependence can be estimated from
eq 12 based on a knowledge of the mean value and the variance of the concrete
strength. Such information is available in a large scale from standardized tes-
tings of cubes or cylinders for the compressive strength. Based on such tests
the value of k will vary from 2 for low strength concrete to approximately 12

for high strength concrete. In real structures the mean strength is normally
lower and the spread higher compared to the values obtained in standardized
tests. This is because the compaction and curing is not as good as for test
specimens. If this is taken into account the value of k will be reduced. For
concrete subjeet to tension no general information is available to estimate the
volume dependence.

The failure strength will be represented by a Weibull distribution. In Fig 4

normalized plots of the Weibull distribution are shown for some different values
of k. For k 3.4 a Weibull distribution will have a similar shape as a Gaussian
distribution. A normal distribution will thus give a good representation of
concrete with low strength.

F-W

n k-cO

6 -

k-lG
3 -

l-
k 5

k 1

Fig 4 Weibull density functions

The parameter h which determines the time dependent behaviour can be estimated
from eqs 13 and 14. Unfortunately wery few experiments have been performed of
the type shown in Fig 1 which could be used in the evaluation of the time
dependence. Normally such experiments have to last for several years. Otherwise it
will be difficult to estimate h because of the high variability encountered in
the beginning of the creep process. Information available [10, 13] indicate a

ränge of k between 15-30 for sustained loads under stationary environmental
conditions.
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When a concrete body is subjeet to temperature and humidity variations the creep
rate will be significantly higher compared to stationary conditions. The time
parameter h is thus reduced when outdoor environmental conditions have to be

considered. Variable loads and especially dynamic loads will also increase the
rate of crack propagation which will decrease the h parameter. The stress ränge
seems to be of special importance in determining the reduction.

5. APPLICATIONS

In an evaluation of the brittle failure load the stress distribution need to
be expressed in terms of compressive or tensile stresses. This can be done based
on Mohr's hypothesis

c1>24(cx + ay)./{(ax-ay)2+T2 (15)

where an evaluation based on a] and 02 will relate to a compressive failure or
a tensile failure respectively. Often the stress distribution can be simplified
to normal stresses in one dimension only.

5.1 Compressive failure loads

Even though it has been a well - known fact that concrete exhibits a volume
dependence very few experiments seem to have been performed in a large scale to
demonstrate this. One of the few larger experiments was performed in the thir
ties in connection with the construction of the Boulder dam [2]. Cylinders with
a height to diameter ratio of two, ranging in height size from 100 mm to 1800 -
were tested in compression. The 28 days strength of a Standard cylinder was 26
MPa with a water cement ratio of 0.5. This slow growth of the compressive
strength is typicai of concrete used at that time.

The result of the tests is presented in Table 1 with reference to the strength
of a Standard test cylinder, d x h 150 mm x 300 mm. A few tests on standardized

cylinders showed a coefficient of Variation of 0.08.

r-

mm

Cylinder size Rel. strength
d, mm h, mm %

50 100 109
75 150 106

150 300 100
200 400 97
300 600 91

450 900 87
600 1200 84
900 1800 82

Table 1 The relative failure strength
of cylinders as a function of
volume. From [2].

Based on the information available the volume dependence shown in Fig 5 can be
obtained. Of normal practical interest is the result for volumes larger than
a Standard cylinder which is shown as a straight line in Fig 5. The limiting
value aR is somewhat high but this might reflect a faster growth of the tensile
strength than for the compressive strength which would result in an early
obtainable threshold value. With a water cement ratio of 0.5 the final strength
should reach 40 - 50 MPa and a « 0.3.
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Fig 5 The volume dependence of the brittle fracture load in unaxial compression.

5.2 Tensile failure loads

The tensile strength of concrete is low which makes it difficult to perform
direct tensile testing. Instead alternative methods like the Splitting test and
the flexural test are used. Here the volume dependence of concrete tested in
flexure is presented.
The basic equations for the brittle failure load, eqs 11 and 12, are here
simplified by setting a 0. This makes it possible to derive explicit expressions
for a beam in flexure. For the two point load Situation shown in Fig 6 the mean

failure load and the coefficient of Variation are

hRt Rto{vv (1 +!k 1/k (16)

C 0 V r (1 + 2/k)
+ 1/k)

(17)

based on the theory of elasticity for the volume under tension. Even if such
a stress distribution does not reflect reality eqs 16 and 17 are reasonable
approximations.

A laboratory experiment [15] where beams of different sizes have been tested
with one point load and two point loads is presented in Table 2. Based on eq 16

the relation R^/Ro. where Ri is the failure load with one point and R2 is the
failure load for two point loads with e L/3, should be constant and equal t

Rt1/Rt2 (1 + k/3)k (18)

to

This is not the case. The reason to this is that if no major flaw is present in
the small volume under peak stress for the case of one point load, concrete will
exhibit a certain ductile behaviour. In two, or maybe four cases, the relation
R./R? takes a low value of around 1.16 which reflects an instantaneous brittle
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behaviour. This information can be used to determine the k value from eq 17.
This gives a k value of around 10. In Fig 6 the result of Table 3 is shown
together with the mean failure load. In this case eq 9 is used because there is
no generally accepted flexural test method which can be used to obtain a

reference volume. It can be seen in Fig 6 that a threshold value is rather high
which reflects the assumption that a 0.6 - 0.7 for concrete in tension.
Besides, flexural testing with small beams or with one point load is not advisable.

Beam dimensions Rupl.ure loa ds

d, mm b, mm L, mm Rr kN R2, kN R/R2

75 75 225 4.2 3.3 1.27
100 100 300 3.9 3.0 1.30
150 150 450 3.0 2.6 1.15
200 200 600 2.8 2.3 1.21

75 75 338 3.7 3.2 1.15
100 100 450 3.8 3.1 1.22
150 150 675 2.9 2.5 1.16

75 75 450 3.9 3.3 1.18
100 100 600 3.6 2.9 1.24

75 75 675 4.0 3.1 1.29

Table 2 The flexural strength for one point load, R

and two point loads, R?. From [15]. 1'

n 16.5-rtM/k) ,-

i ^i
Q> J^

V(1*f cx)

I00-I06mm320 W 60 60

Fig 6 The flexural failure load as a function of the volume under tensile
strength.
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5.3 Time dependent compression failure loads

The time dependent creep characteristics of concrete have been studied extensively.

But very few investigations have considered creep to failure for sustained
stresses. This requires investigations which will last for years.
One study which is presented in [13] has included delayed brittle failures for
a duration of 30 years. Compared to the brittle failure load obtained in
standardized testing the failure load after a certain duration is given in Table 3.
No additional information is given. If it is assumed that the threshold level
is 0.3 RQ where R0 is the strength at the duration 2 minutes. the result shown
in Fig 7 will be obtained.

Duration of loading T

min hours days years

Percentage of failure
load after duration T

2

10
30
60

0.17
100
365 1

3

30

100
95
92
90
88
78
77
73
69

Table 3 The reduction of the failure load after
sustained loading. From [13].
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MT)""
U

0.1 0A 0.6 0.6 1.0

Fig 7 The time dependence of the brittle failure load in unaxial compression.
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Another result [10] shows asimilar trend. But in this case the sustained loading
has lasted for less than a year.

5.4 Volume and time dependent compression failure loads

Any investigations of the combined influence of volume and durations on the
reduction of the failure load for sustained loads do not seem to exist. But if
the damage accumulation is simply a function of the time spent above the threshold

level, fatigue experiments of piain concrete can be used.

In the case of fatigue of concrete the time dependence is normally expressed
as the number of cycles to failure, N, instead of the duration. But during each
cycle a certain creep will take place dependent on the stress level and the
time spent on a high stress level. The number of cycles can thus be seen as a

measure of the time spent above the threshold aR0 in eq 13. In a simplified way
the mean fatigue strength of concrete can be represented with

R iR_ ,a + b (VQ/V)
1/k (N0/N)1/n} (19)

and the coefficient of Variation in a similar way as eq 14.

In a fatigue experiment [9] three different stress gradients were obtained by
applying a compressive load excentrically in two cases. The stress gradients
desired are shown in Fig 8. These stress gradients do probably not reflect
reality but they are used here in the evaluation of the volume under stress. The
compressive strength of the test specimens were around 41 MPa. The result of
the test, where failures are given as a function of maximum stress applied
compared to the static strength and cycles to failure, is presented in Fig 9.

A direct evaluation of the fatigue experiment based on eq 12 cannot be done
because of a lack of information concerning the variability of the static compressive

strength. An indirect estimation of k based on the difference in mean
fatigue strength after 10^ cycles will give the mean fatigue curves shown in Fig 9.

Similar results can be obtained for other fatigue experiments [12] of piain
concrete. When evaluating the fatigue life of concrete both the volume under stress
and the time spent above the threshold have to be considered. Fatigue curves
for practical use can be obtained from a knowledge that the spread can be
represented by a Weibull distribution.

5 max
Smnx/2- 'max 'max

]ßinJ4

r+ZA r^j\ f-±7\
/ 1/3 in 11 / 1 in i. I. /_UQ_J4

Fig 8 Stress gradients used in a fatigue experiment [9],
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Fig 9 Fatigue curves corresponding to the stress gradient shown. Dashed
lines originally proposed curves. From [9].

5.5 Volume and time dependent shear failure loads

It is recognized in most codes that the shear capacity of a beam depends on the
location of the load in relation to the depth of the beam. Besides there is also
a maximum allowable shear capacity when the load is close to the support. This
is Visualized in Fig 10.

qR OL

aRtuJ^.

nx)/

Rv Rot

~%r D
~r<

0.6*0A(Vn/V),/k(T0/T)m

V/VQ~a/d

Fig 10 The failure shear strength as a function of the location of a load.
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The shear strength of a beam is normally assumed to be related to the tensile
strength of concrete. This is because failures some distance away from the
support will appear as diagonal tension failures. The curve shown in Fig 10 can
be obtained from an evaluation of the volume under tension. The stress distribution

is given by eq 15 where it is enough to consider only the shear stress.
Because of the volume dependence the shear capacity is also time dependent. This
can be a very important aspect which is not considered in codes which allow an
increase of the shear capacity close to supports.

The upper limit of the shear strength when a load is close to a support seems
to be related to the threshold value for concrete in compression. This does not
reflect a volume dependence, merely that cracks will propagate directly because
of a complex stress distribution.

6. CONCLUSIONS

In this paper a new model of concrete strength has been proposed. The model
includes the volume and time dependence of the brittle strength within a stochastic
framework. A stochastic approach has mainly two advantages, which will be
discussed briefly below.

Stochastic models are valuable not only because they are capable to represent
uncertainty, but also because they are effective instruments of decision. The
model presented does not reflect reality in detail. It is an attempt to include
the main influences on the brittle strength of concrete. As such it cannot
describe special features which sometimes are of interest.
The model clearly demonstrates that the failure strength of concrete is dependent

on the volume under stress and the duration of a sustained stress. This
requires a new approach in the evaluation of the safety of structures. Loads
cannot be represented by some maximum value alone. It is necessary to include
a measure of the duration of loads too [11]. In the future it is desirable to
consider environmental influences in terms of their impact on the time dependence.

The formal evaluation of the safety of structures also requires a new
approach. The present model code [4] does not reflect the failure behaviour of
concrete as it is demonstrated in this paper. The modifications needed are,
however, not as drastic as it may seem.

This paper has mainly dealt with the failure strength of concrete. But the time
dependent behaviour of concrete, which normally is associated with creep, can
also result in cracks. Such cracks can reduce the durability of concrete structures.

This is an area which is equally important as the one dealt with here.
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