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Design of Reinforced Concrete Columns Subjected
to Imposed End Deformations
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SUMMARY

A new design concept is presented for braced reinforced concrete columns in buildings and
bridges. Such columns do generally not fail when their flexural resistance is reached. They simply
start to develop plastic hinges. It is proposed to design these columns by considering the normal
forces and the imposed end deformations. Methods for the check of the ultimate and
serviceability limit states are given.

RESUME

Un nouveau concept de dimensionnement est présenté pour des colonnes en béton armé
retenues horizontalement. La rupture de ces colonnes n‘a généralement pas lieu lorsque la
résistance a la flexion est atteinte. |l se forme tout simplement des rotules plastiques. On propose
de dimensionner ces colonnes en considérant les efforts normaux et les déformations imposées
aux extrémités. Des méthodes de vérification des états-limites ultimes et d'utilisation sont
données.

ZUSAMMENFASSUNG

Vorgestellt wird ein neues Konzept fur den Entwurf von seitlich gehaltenen Stahlbetonstitzen.
Bei solchen Stlitzen tritt normalerweise kein Bruch ein, wenn der Biegewiderstand erreicht wird.
Die Stitzen beginnen einfach plastische Gelenke auszubilden. Es wird vorgeschlagen, diese
Stitzen unter Berlcksichtigung der Normalkrafte und der aufgezwungenen Endverformungen zu’
bemessen. Es werden Methoden fir den Nachweis der Trag- und Gebrauchsfahigkeit prasentiert.
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1. INTRODUCTION

In the design of columns it is necessary to distinguish between load and defor-
mation problems.

Fig. 1 shows a cantilever column.
Either the column fails as soon as
H = the maximum resistance is reached at
the base of the column or, in the
case of a very slender column,
through instability before the maxi-
mum resistance is reached at the
base. This problem is termed a load
—— problem.

Fig. 1 Load Problem

(a) Building with core (b) Bridge with horizontally
fixed support

Fig. 2 Deformation Problems

Fig. 2 shows two examples of braced columns. These problems are deformation
problems. The horizontal loads are taken by the core or the fixed support, res-
pectively. The columns are primarily loaded by a normal force. Bending occurs
through imposed end deformations, which can be either rotations and/or displace-
ments. An asymmetric load on the beams produces a rotation of the column ends.

A relative change in the length of the beams due to temperature or shrinkage
causes a horizontal displacement of the column ends.

The actual design actions in such reinforced concrete columns are quite diffi-
cult to estimate. It is difficult to make precise calculations for the moments
because of crack formation in the concrete, nonlinear time dependent material
behaviour, as well as geometrical nonlinearity in case of slender columns. Re-
sults of an elastic analysis are very often used for the determination of the
moments acting at the column ends. Many times calculations are omitted and ec-
centricities of the normal force are chosen to determine the end moments. The
column is then treated as an isolated element and analysed with the two previous-
ly determined end moments. An amplification factor, which takes the column slen-
derness ratio into account, is finally used to determine the maximum flexural
moment for the design together with the normal force.

This method of column design using the normal force and estimated end moments
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may lead to unlogical conclusions: the ultimate load capacity for a hinged co-
lumn would be greater than for a fixed ended column, which is subjected to com-—
pression and bending. Only the hinged column would be able to allow large hori-
zontal displacements, or rotations of the beams. On the other hand the column
with rigid connections would quickly reach its maximum flexural resistance. In
order to eliminate moments at the column ends, expensive and unnecessary solu-
tions such as concrete hinges, knife edges, roller supports or neoprene hinges
are often chosen.

It is however well known that a rigid connection of the columns is not only
cheaper but that it also increases the strength of the structure with respect

to instability. The fact that the buckling length for hinged columns is greater
than for fixed ended columns indicates that the ultimate load capacity of built-
in columns should in general be greater.

The erroneous conclusions result from the fact that the column has been isolated
from the rest of the structure for the analysis. Consequently, the nonlinear in-
teraction of the column with the structure is neglected. For example, the column
does not fail when the maximum flexural resistance has been reached at the base

of the column. A plastic hinge will simply be formed in the column, which allows
further large deformations to occur.

A new design method is proposed which attempts to solve these problems of impo-
sed deformations. The design of a column is carried out by considering the nor-
mal force and the imposed angle (Fig. 3) due to the interaction of the column
with the beam.

<< ¢ << << <<
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Fig. 3 Deformation Cases
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2. DESIGN CONCEPT

The proposed column design is based on limit state considerations. The service-
ability and the ultimate limit states of a column are verified by comparing the
imposed angles at the column ends with the respective limit angles. The latter

depend on the level of the applied normal force. The imposed angles have to be

smaller than the limit angles of the columns.

The material behaviour of the concrete is time dependent. The imposed deforma-
tions can either be short term, or long term for which creep has to be conside-
red. The two limit states will therefore be checked for the time t, and t,.
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2.1 Serviceability Limit State

The imposed deformation on columns in service should neither cause excessive
cracking nor spalling of the concrete cover. This condition is fulfilled if the
imposed angle under service load % is smaller then the admissible limit angle
O_:

a

d <0 (2.1)

2.2 Ultimate Limit State

The columns shall be able to carry the vertical load up to the formation of a
failure mechanism in the beams. The large deformations which occur before a me-
chanism is finally established in the beam clearly indicate the impending col-
lapse of the structure. Such a failure mode is preferable to a sudden collapse.
The load capacity of a column is sufficient if the imposed angle under ultimate
load ﬁr is smaller than the maximum limit angle em:

9, < O, (2.2)

For cases B, C and D (Fig. 3) the method is limited to columns which reach the
maximum flexural resistance at the column end. In case A, the maximum flexural
resistance is reached at midspan. In practice most building columns and also
short columns in bridges are hence covered.

The definition of possible strains and curvatures in a column (chapter 4) allows
the estimation of the admissible and maximum limit angle (chapter 5) for a given
deformation. A control of the column slenderness and the applied normal force
(chapter 6) shows whether or not the second order influence has to be checked.
Simple methods are used for the estimation of the imposed angles (chapter 7).

Firstly, the deformation behaviour of reinforced concrete columns under imposed
end deformations will be discussed.

3. BEHAVIOUR OF COLUMNS SUBJECTED TO IMPOSED END DEFORMATIONS

Load controlled tests on reinforced concrete columns are not suitable to demons-
trate the ductility of the columns because failure occurs as soon as the maximum
load is reached. The results of such tests and corresponding calculations using
current material laws (limitation of the maximum concrete strain to 3 to 4x1073
based on the value observed on load controlled cylinder tests) have often led to
the incorrect conclusion that columns exhibit little ductility.

Deformation controlled tests on reinforced concrete columns, on the other hand,
show a surprisingly high degree of ductility.

Fig. 4 shows a column with a constant normal force, pinned at one end. The base
is subjected to an increasing rotation. The rotation has the same effect as if
the initially vertical column were subjected to a horizontal displacement of the
pinned end.
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Fig. 4 Moment and Curvature Distributions
for Different Deformation States

Curvatures and strains can be measu-

red in the zone near the fixed end
N = const. where a plastic hinge is formed. The
A\ @ moment-curvature diagrams are of the
P type shown in Fig. 5 (curve 1). The
o) extended horizontal branch of the
moment-curvature diagram shows the
high ductility of the reinforced
concrete column. The strains on the
compression face of the column are
around 4 to 5x 10”° when the column
reaches the maximum flexural resis-
Zm tance. Strains between 9 to 16x10~°
have been measured in tests when fai-
lure occured because of buckling of
the longitudinal reinforcement [1].
The columns were provided with minimum
shear reinforcement, with stirrup
spacings equal to the column depth.

V4
e
=

Lo Ze

Fig. 5 Moment-Curvature Diagram
at the Plastic Hinge

Other tests [2] show that even higher values of 20 to 30x10”% and more can be
reached (see Fig. 6) if in the region of the plastic hinges the stirrups (diame-
ters 8, 10, or 12 mm) are closely spaced (50 to 100 mm).
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O s.=72mm;column & ¢ =0.0000033/sec % &=0.0167 ;column 17 s,= 98 mm
7 £=0.0167/sec 18 s,= 72 mm

18 &=00167/sec 19 s,= 88 mm

wilis 20 s, = 64 mm

h P . L
7 8% first stirrup fracture first stirrup fracture
Me— P p

T ] I =& [ %
-0.020 -0040 -0.020 -0.040
(a) Core concrete stress-strain (b) Core concrete stress-strain curves
curves of concentrically loaded of eccentrically loaded columns of
columns under two different different stirrup spacings (curve 1:
strain rates unreinforced column)

Fig. 6 Stress-Strain Curves of Confined Concrete (from [2])

ag ar
arc tan Eg arc tan E,
s £
a) steel b) concrete The elastic-plastic behaviour of a
column under imposed deformations
i g can be analysed using nonlinear
5 f, (ess feun) o comquer progra?s (curve 2 in Fig.5)
" ‘“\? ;. or using a?alytlcal methods (curve 3
- = i and 4 in Fig. 5) as shown in [3] and
[4], using simple material laws
fye (Fig. 7).
c) steel d) concrete

Fig. 7 Elastic (a/b) and Plastic (c/d)
Material Laws

Fig. 4 shows the curvature distribution over the column length for different de-
formation states. Moment M and curvature X increase with increasing rotation of
the column base until the maximum flexural resistance is reached. The column

then starts to form a plastic hinge. Tests show that plastic hinges develop over
a length Rp of 0.5 to 2.0 times the column depth h. The length depends on the
moment gradient and therefore on the shear force (see [5]). The curvature increa-
ses only in the plastic hinge after the maximum flexural resistance has been
reached. The curvature in the elastic zone of the column decreases with the de-
crease of the moment in the plastic hinge.

The normal force N has reached its maximum eccentricity at the column base when
the maximum moment of resistance has been reached (Fig. 8b). Thereafter the nor-
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mal force centres itself in order to maintain equilibrium. The first order mo-
ment M;, which is equal to the normal force times the eccentricity of the nor-
mal force with respect to the undeformed (vertical) column axis, becomes smal-
ler after the maximum flexural resistance has been reached. The second order
moment M,, which is equal to the normal force times the deflection of the co-
lumn axis, is continuing to increase. The less in the concrete force due to the
diminishing concrete resistance is transferred onto the steel reinforcement.
The first order moment is equal to zero when the normal force at the column base
is completely centred (Fig. 8c). The remaining resistance in the plastic hinge
has to balance the second order moment at this stage. Further rotation of the
column base would cause the normal force to move to the other half of the cross
section at the column base (Fig. 8d). This additional rotation is in general
very small and can be neglected because no further transfer of force from the
concrete to the reinforcement is possible.

(a) deflection (b) positive moment (c) zero moment (d) negative moment
at centre at the rotated at the rotated at the rotated
line column end column end column end

Fig. 8 Position of the Normal Force with Increasing
Plastic Rotation of the Columnd End

However for a column in a frame which developes the maximum moment at midspan,
case A, the load capacity is reached as soon as the maximum flexural resistance
is reached at the column midspan (see test results of [6]). Only a reduction of
the frame loads would allow a decrease of the column end moments so that a plas-
tic hinge could develop at midspan. Deformation case A does not occur in bridge
columns or edge columns of buildings. It is normally not governing the design

of interior columns in buildings since relatively small loads result from a
checkerboard load pattern on the beams.
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4. LIMIT CURVATURES

4.1 Admissible Limit Curvature

Crack widths have to be reasonably small and no concrete spalling should occur
in a column under service conditions. A limitation of the steel and concrete
strain allows a simple way of estimating the admissible mean curvature of a co-
lumn.

Large strains in the reinforcement bars cause excessive crack widths. Many codes
of practice recommend admissible stresses in the steel bars equivalent to about
half of the yield strain, approximately 1x1073. Tests on reinforced concrete
elements under pure tension [7] indicate that the admissible average strain for
steel bars lies somewhere between 1 to 1.5x107%. The maximum crack width at the-
se strains were smaller than 0.4 mm in the elements which had sufficient rein-
forcement (pyop*f,/f. > 0.1 to 0.12). Comparisons with column tests [8] show
that 0.55%ey = 1.1x10"3can be taken as a safe limit. Those columns which have
reached an average strain in the steel bars of 1 to 1.1x10"*had a maximum crack
width which did not exceed 0.3 mm. The CEB MANUAL [9] recommends that crack
widths should not exceed 0.2 to 0.4 mm.

Concrete spalling can appear in a column when the strain in the extreme fibre

exceeds the following values. Short term tests on concrete columns without rein-
forcement and on reinforced concrete columns [2] show that the concrete cover
starts to spall when the strain in the extreme fibre reaches 4 to 5x103%. Lar-

ger strains can be reached with slow load application. The allowable compressi-

ve strain of the extreme fibre is assumed to be 2x10~° at the time of load ap-
plication tgy. Due to creep the allowable strain is increased to (1 +9g,)+2x1073

for the time t.: Pn is the creep coefficient(e.g.@n = 2.5).

Fig. 9 shows possible strain diagrams which define the points in Fig. 10.

Fig. 10 gives for two different cross sections the admissible limit curvature

as a function of the normal force ratio N/Np for the time ts and t - Np is defi-

ned as

N =A-f + A f, (4.1)
P c ¢ sy

where A, is equal to the section area of the column and Ag = Pgor°A, is equal

to the steel area. f, is the concrete strength and fy is the steel strength.
Fig. 10 shows that the limit curvatures do not depend greatly on the amount of
reinforcement. Fig. 10 also shows that in the case of sustained loading the

maximum curvature in a column with a small normal force has to be significantly
smaller at the time of load application t, than the corresponding admissible 1li-

mit curvature, as creep increases the curvature with time by a factor of 2.5.
Therefore the curvature in the column at time t_ is governing.

Table 1 gives admissible limit curvatures for rectangular cross sections, Y= 0.6
to 1.0 (Y is the ratio of the distance between the longitudinal reinforcement

of opposite faces and the column depth, h). They will be used for the estimation
of the admissible limit angles at the serviceability limit state.
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Fig. 9 Strain Diagrams for the
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Fig. 10 Admissible Limit Curvatures
for Cross Sections with
Prot*fy/f, = 0.17 and 0.85
respectively; ¢ = 0.85

N/Np bitgn 46,0 he x5 (te) heye(tg) hexe (te)
0 + 0.05 0.0010 0.0020 0.0035 0.0045
0.05 = 0.01 0.0015 0.0030 0.0040 0.0055
0.1 = 0.2 0.0020 0.0040 0.0045 0.0065
0.2 % 0.4 0.0025 0.0050 0.0050 0.0075
0.4 + 0.5 0.0020 0.0050 0.0045 0.0075
0.5 = 0.6 0.0015 0.0040 0.0040 0.0065
0.6 =+ 0.7 0.0010 0.0030 0.0035 0.0055
0.7 + 0.8 0.0005 0.0015 0..0015 0.0025

Table 1 Admissible and

Plastic Limit

Curvatures for the Time ty and te
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4.2 Plastic Limit Curvature

A parameter study [3] using elastic material laws has been made to estimate the
curvature when the maximum bending resistance is reached. The curvature was ter-—
med plastic limit curvature Xg. The index e has been used because elastic mate-
rial laws have been used to define the curvature. Table 1 shows the different
values for h*X, as a function of the normal force ratio N/NP.

4.3 Maximum Limit Curvature

Tests [2] show that large strains (20x10—3and more) can be reached in the core
concrete of reinforced concrete columns with closely spaced stirrups such that
no buckling of the longitudinal bars and practically no loss in the concrete
resistance will occur. However, relatively small concrete strains (4 to 5x107°)
are sufficient to cause spalling of the concrete cover. The following assumption
are hence made:

The maximum strain which is possible in the core concrete and in the longitudi-
nal reinforcement is assumed to be 20x10”™%, 10 times the steel yield strain

Eyc = 2x1073. The (dimensionless) maximum limit curvature is assumed to be

h-Xm = 0.02/¢. (4.2)

It is further assumed that the column looses its concrete cover after the maxi-
mum flexural resistance has been reached and that the resistance of the column
with no concrete cover remains thereafter constant.

The strains in the reinforcement bars on the compression face lie between 0 and
20x10~* when the maximum limit curvature is reached, depending on the applied
normal force. A column with a very small or no normal force may reach larger
curvatures in a plastic hinge as there is no danger of buckling of the reinfor-
cement bars. The proposed limit is nevertheless considered to be sufficiently
large to allow large plastic rotatioms.

5. LIMIT ANGLES
5.1 Admissible Limit Angle

121,
1 /
[ b g
h—4e “
.
O, Op g Of Za 0, g

.= 1/4-1/h 13- 1/k 14 - Ik 1/6- 1k

Fig. 11 Admissible Limit Angles:
Curvature Distributions and Coefficients &,
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Fig. 11 shows the assumed curvature diagrams for the calculation of the admissi-
ble limit angles. A linear curvature distribution is assumed. Local curvature
variations due to cracking are ignored as well as the increase of the curvature
due to the deformation of the column (27d order effect). The admissible angle
can be expressed as:

0, = £,"h"X,- (5.1)

The coefficient £, depends on the deformation case and on the slenderness ratio
2/h of the column. Table 1 gives the values for the curvature heX,.

The curvature distribution of deformation case A has been assumed to be triangu-
lar in order not to overestimate the limit angle as the maximum moment is rea-

ched at midspan.

5.2 Plastic Limit Angle

The curvature distributions of the columns which have reached the maximum flexu-
ral resistance have been assumed to be similar to those shown in Fig. 11. The
plastic limit angle is equal to

B = £ heX,. (5.2)

5.3 Maximum Limit Angle

A B C D
T ™ /
U (& ‘ /
\[ 1
L > r [ / ;p
@m Zm 194- @m Zm$-‘xe~—
= L1 1.1 11 1.1
€ 4 h 3 A 4 h 6§ h

! 1 h 3 h . h
b b (Ll (3 (ha)s

Fig. 12 Maximum Limit Angles:
Curvature Distributions and Coefficients ge, Ep

Fig. 12 shows the assumed curvature distributions for the calculation of the
maximum limit angles. The maximum limit angle is equal to

0, = EgthrXg + Epr(he Xy = heXp). (5.3)

The coefficients £ and £, are given in Fig. 12, the plastic curvature heX, is
given in Table 1. Eq. (4.2) gives the maximum limit curvature h*Xy. The value
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Ap in coefficient Ep is defined as
A =2 /h, 5.4
. P/ (5.4)

with 2, equal the length of the plastic hinge. Comparisons between mesured de-
formations on test columns and theoretical results where £, = h has been used
in the calculations show good agreement [1,3]. Rp = 0.5*h, h or*2 h respective-
ly can be used in the estimation of the maximum limit angle provided that the
column has closely spaced stirrups over h, 1.5+h or 2.5+h respectively in the
zone where the plastic hinge will develop.

In case A, it is only possible for an isolated column in a deformation control-
led test to develop a plastic hinge at midspan and to reach the maximum limit
angle. A frame column can not reach the maximum limit angle since instability
occurs as soon as the maximum flexural resistance is reached at the column mid-
span (see chapter 3). The maximum limit angle for case A is equal to the plas-
tic limit angle.

6. SLENDERNESS CONTROL

The second order effects have to be checked for columns with high normal forces
and high slendernesses. For derivation of the following relationships and re-
sults reference is made to [3].

m m m
n=const n=const n=const

S 2
Tt L, 1T 1T,
hz, haz, hz, hi,
(a) constant re- (b) diminishing (c) strongly diminishing
maining flexu- flexural re- flexural resistance
ral resistance sistance

Fig. 13 Possible Moment-Curvature Relationships

Fig. 13 shows schematically three possible moment-curvature relationships for
a column with a constant normal force. The actual moment-curvature relationship
depends on the applied normal force and on the material behaviour of the steel
and concrete.

Fig. 14 shows also schematically the moment and curvature distributions over

the column length for the four cases defined in Fig. 3. Two different deforma-
tion states are shown, the state at which the maximum flexural resistance is
reached (Fig. 14 a to c) and the state at which the maximum limit curvature is
reached in the plastic hinge (Fig. 14 d to k). Three different moment and cur-
vature distributions are shown for that state. They are based on the three possi-
ble moment-curvature relationships shown in Fig. 13.
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Plastic limit angle

Maximum limit angle
constant remamning flexural res.

Diminishing flexural res

Strongly diminishing flexural res.
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Fig. 14 Moment and Curvature Distributions for the Deformation Cases A, B, C and D
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Fig. 15 Curvature Distributions and Formulae for the Calculation of the 20d Order Moment



102 IABSE PROCEEDINGS P-77/84 IABSE PERIODICA 4/1984 A

In case A, instability occurs in a frame columns as soon as the moment at mid-
span reaches the maximum flexural resistance:
- 6.1

M+ My(X) = M. (6.1)
M; is the first order moment (end moment), MZ(Xe) is the second order moment and

is the maximum flexural resistance. The ultimate limit state is verified in
case A, if eq. (6.1) is fulfilled: the imposed angle under ultimate load is
equal to the plastic limit angle (ﬁ} = Oe).

The moment distribution in Fig. 14b for case B, C and D corresponds to the ex-
treme moment distribution for which the column still forms a plastic hinge at
the rotated end: the moment diagram, for which a parabolic shape has been assu-
med, has a vertical tangent at the column end where the maximum flexural resis-
tance is reached. Fig. 14b shows that the maximum second order moment has to be
smaller than one quarter of the flexural resistance if the column should reach
its maximum resistance at the rotated column end in the cases B, C or D:

MZ(Xe) < Mp/&. (6.2)

The second order moment has to be smaller than the remaining flexural resistance
after the formation of the plastic hinge in case B, C or D (see Fig. 14 e/g/i):

My(Xy) € MOX) < M, (6.3)

with M the remaining flexural resistance.

A safe limit value can be found for the second order moment if a rectangular
curvature distribution (Fig. 15) is assumed. The second order moments calculated
in this way are slightly too large and hence lead to a conservative design.

Deformation case D is equal to deformation case B, if one takes 05+{ instead of
%. Deformation case C lies somewhere inbetween these two cases. Deformation case
C can approximately be treated as case B if one takes 08+Q instead of 2. The
formulae for the deflections and second order moments are given in Fig. 15.

L depends on the deformation case and can be %, 08+%Z or 05-%.

A control of the second order influence is not necessary if the slenderness ra-
tio does not exceed a certain value. Limit values for this slenderness ratio

can be found by expressing eq. (6.1), (6.2) or (6.3) as a function of the de-
flection. For example, eq. (6.1) can be written as

_1_.(1-‘_)2.11.)( < u .Y_a_]_._l_ (6.4)
8 \h e ™ M, h . :
The allowable deflections (w,11) have been determined [3] as a function of the
normal force ratio N/w'Np using M-N-p diagrams. The M-N-p diagram for cross sec-

tions with no cover concrete has been used in order to make a conservative esti-
mation. For the plastic limit curvature the value h*X, = 0.0075 has been used.

Fig. 16a and b give the derived lower limit values for the slenderness ratio

A = /12+%/h as a function of the normal force ratio N/y*N, for columns with rec-
tangular cross sections for which eq. (6.1), (6.2) and (6.3) respectively are
satisfied. The influence of the second order effect, eq. (6.1), (6.2) and (6.3)
respectively, need not be considered for columns with a slenderness ratio and a
normal force ratio which lies within the allowable range for the given deforma-
tion case (see Fig. 16).
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(a) For deformation case A (b) For deformation cases B, C and D

Fig. 16 Limit values of slenderness ratios for which eq. (6.1), (6.2) or (6.3)
[second order influence] need not be checked. Valid for rectangular
cross sections with equal and opposite reinforcement layers;
ptot'fy/fc 2 0.15, 0.6 < ¢ € 1.0.

7. IMPOSED ANGLES

7.1 Imposed Angle at Serviceability Limit State

The imposed angle due to an eccentric load may be estimated with the displace-
ment method. The angle (see Fig. 17) is equal to

$q = Mg/IS. (7.1)

An elastic behaviour is assumed. Mg is the fixed end moment at the node. IS is
the sum of the stiffnesses of the individual members. The stiffness of an indi-
vidual member (with the length ) is S = t*E*I/%, ¢ 1is equal to 3 or 4 depending
on the deformation case. I is the moment of inertia of the concrete cross sec-
tion (in the case of flat slabs the equivalent beam width is equal to the slab
width). E is the modulus of elasticity of concrete, taken as

E = fc/0.002 for t,, (7.2)
and
E = fc/0.002°(1-+¢n) for tg. (7.3)

The relatively low value for the modulus of elasticity takes into account the
loss of rigidity due to crack formation and initial creep. The influence of the
normal force on the stiffness is neglected.

The imposed angle due to a change in length of the beam due to shrinkage is
equal to

ﬂ;s = GCS/E = Aecs-ldf/Q. (7.4)
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Fig. 17 Serviceability Limit State

Scg 1s the horizontal displacement, % the column length and f4f the horizontal
distance between the column and the fixed point of the beam. Ae.g is the diffe-
rential shrinkage strain. Ae.g is assumed to be equal to €.4/3 for columns in
buildings and is equal to €.g for columns and bridge piers fixed rigidly to the

foundations.

The imposed angle due to a change in length of the beam due to temperature is

equal to

(7=5)

0, is the coefficient of thermal expansion for the concrete and steel, AT is the

temperature change.
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7.2 Imposed Angle at Ultimate Limit State

Critical beam mechanisms for columns are those mechanisms which lead to plastic
hinges in the columns (Fig. 18). A large deformation capacity is required for
these columns. The columns need a much smaller deformation capacity if the me-
chanism produces plastic hinges in the beam only.

|

| Fig. 18 Ultimate Limit State

Different mechanisms:

- plastic hinge in an
interior column 1
- plastic hinges in
[~ edge columns s .2
- plastic hinges in
the slab only ¢ 3,4,5

® ® © ®

Generally no plastic hinges develop in interior columns. Sufficiently long
reinforcement bars in the beam over the interior columns make it impossible for
a mechanism to occur over several spans. The dead load is generally higher than
the live load so that even the extreme load case with the live load on just one
side of a column will lead to a single span mechanism.

Normally only the columns on the edge of a building are critical, and in parti-
cular those of the top floor. A plastic hinge appears inan edge column if the
flexural resistance of the edge column is smaller than the flexural resistance
of the beam. A simple way to prevent the formation of a plastic hinge in an
edge column is the choice of a column with a resistance which is higher than
the resistance of the beam.

In the case of flat slabs the flexural resistance of interior spans is determi-
ned with the total width of the slab. At edge columns only a limited zone of the
slab around an edge column helps to restrain the column against bending. The
width of this zone may be assumed to be the width of the column plus twice the
slab thickness on each side of the column.

Fig. 19a shows a failure mechanism with a plastic hinge in the edge column in
which only the plastic deformations are shown. The first plastic hinge usually
appears in the column, and a second follows in the beam at the fixed end. The
last plastic hinge is formed at midspan.

Fig. 19b shows the deflected form of the beam at the onset of the failure mecha-
nism, with the formation of the last plastic hinge at midspan. The moment dia-
gram is given in Fig. 19c. The rotation angle of the beam over the support is
equal to the imposed angle on the column. It will be shown that the angle can
be estimated when making the following assumptions

The contribution to the deformation of the curvatures in the plastic hinge at
the right end of the beam (Fig. 19d) is neglected (the length of the plastic
hinge is small compared to the beam length). The curvature diagram is continuous
and parabolic. The small negative curvatures at the left end of the beam are
neglected.
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The angle can now be calculated with the principle of virtual force:

Lo -
= . . = + - Ll -_— . = . . .
¥, Lxd Medx = (XJ o+ Xgo/2)°%4/3 = X352 %4/6 = hy*X, *8,/3h,. (7.6)

hy* Xy is equal to the curvature in the beam when the plastic moment is reached.
Table 1 gives the curvature for time t, and teo for N = 0. The imposed angle is
at time

t0 ﬂ} = 0.0012-2d/hd, (7.7)
and
t, ﬁ} = 0.0015-£d/hd. (7.8)

The imposed angle at ultimate limit state depends only on the beam slenderness
ratio.

(s = safety factor)

| w7
l 8
hg
B (a) mechanism
77
| lg
‘ﬂr X
4 X (b) deflected form
77 N (onset of failure mechanism)
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ML | (c) moment diagram
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|
J
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pd :
l] plastic
|| curvatures
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/] _ il
,'T-'xde WAZ” (d) curvature diagram
pd +
%ﬂ

M=1 mﬁﬂmiﬂﬂmmﬂﬂmmnm” (e) virtual moment

Fig. 19 Mechanism with a Plastic
Hinge in the Edge Column
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8. CONCLUSIONS

Braced reinforced concrete columns in buildings and bridges are primarily loaded
by normal forces., Bending occurs through imposed deformations. In current design
procedures, such a column is usually isolated from the rest of the structure.
The nonlinear interaction of the column with the structure is neglected. Actual-
ly if the maximum flexural resistance due to external loads is reached at a co-
lumn end a plastic hinge will simply be formed which allows further large defor-
mations to occur. The normal force starts to centre itself at the rotated column
end after the maximum flexural resistance has been reached. The column fails
when the deflection within the plastic hinge produces a moment which becomes
equal to the remaining resistance. The imposed end deformation and the applied
normal force are important for the design of the column and not the maximum
flexural resistance.

It is proposed to design these columns by considering the normal forces and the
imposed end deformations. The serviceability and the ultimate limit states of
the columns are verified by comparing the estimated imposed angles at the column
ends with the limit angles of the columns. The latter can be estimated from the
limit strains and curvatures. Results from tests on reinforced concrete columns
under imposed deformations and theoretical considerations make it possible to
define reasonable limits for the possible strains and curvatures:

A compression strain of 2x10”% can be reached at time ty, and 7x107%, after creep,
at time t, without any concrete spalling. Average strains of about 1.1x107° in
tension reinforcement bars lead to small, permissible cracks. The admissible 1i-
mit curvature depends on the level of the applied normal force and is limited

by the two above mentionned strain limits.

A strain of 20x10” % and more can be reached in the compression reinforcement
bars and in the core of reinforced concrete columns with closely spaced (50 to
100 mm) stirrups (diameter 8 to 12 mm) without buckling of the reinforcement
bars nor any significant loss in the resistance of the core concrete. The maxi-
mum limit curvature can be fixed to 20x10~% divided by the distance between the
longitudinal reinforcement of opposite faces.

The proposed method can serve as a basis for a practical design procedure for
reinforced concrete columns under imposed end deformations.

9. ACKNOWLEDGEMENT

This paper was developed in the course of a research project on reinforced con-
crete columns carried out at the Swiss Federal Institute of Technology, Lausanne

(see [3], [8], [10]). The author whishes to express his thanks to Prof. R. Favre,
who supervised the project.

10. REFERENCES

[1] FORD J.S., CHANG D.C. and BREEN J.E., Behavior of Concrete Columns Under
Controlled Lateral Deformation, ACI Journal, Title no. 78-1, Jan-Feb 1981.

[2] SCOTT B.D., PARK R.and PRIESTLEY M.J.N., Stress-Strain Behavior of Concre-
te Confined by Overlapping Hopps at Low and High Strain Rates, ACI Journal,
Title no. 79-2, Jan-Feb 1982,

[3] THURLIMANN C., Bemessung von Stahlbetonstiitzen unter Zwangsverformungen
(Design of R.C. Columns under Imposed Deformations), PhD Dissertation,
Swiss Federal Institute of Technology Lausanne, 1984.



108

IABSE PROCEEDINGS P-77/84 IABSE_PERIODICA 4/1984

(4]

[5]

(6]

[7]

(8]

(9]

[10]

ROSSI M., Unelastisches Verhalten zyklisch verformter Stahlbetonbalken
(Unelastic Behaviour of R.C. Beams Subjected to Cyclic Deformations), PhD
Dissertation, Bericht Nr. 125, IBK, Swiss Federal Institute of Technology
Zurich 1982, Birkhauser Verlag Basel + Boston - Stuttgart.

GRENACHER M., Einfluss von Verschiebungen und verschieden Lagerungen auf
das Tragverhalten von Stahlbetonstutzen (Influence of Deformations and
Different Types of Supports on the Load Capacity of R.C. Columns), PhD
Dissertation, Bericht Nr. 61, IBK, Swiss Federal Institute of Technology
Zurich 1976, Birkhauser Verlag Basel * Boston * Stuttgart.

FURLONG R.W., FERGUSON P.M., Tests of Frames with Columns in Single Curva-
ture, Symposium on Reinforced Concrete Columns, SP-13, American Concrete
Institute, Detroit 1966.

JACCOUD J.-P., FRANCOU B., CAMARA J.-M., Armature minimale pour le contrdle
de la fissuration, Rapport d'essais, IBAP, Swiss Federal Institute of
Technology Lausanne, May 1984.

NAJDANOVIC D., Vérification de 1'état d'utilisation des colonnes en béton
armé sous l'effet de déformations imposées de longue durée, PhD Disserta-
tion, Swiss Federal Institute of Technology Lausanne, to be published in
1985.

CEB MANUAL, Fissuration et déformations, Swiss Federal Institute of Techno-
logy Lausanne, 1983.

FAVRE R., NAJDANOVIC D., SUTER R., THURLIMANN C., A New Design Concept for
R.C. Columns in Buildings, Final Report, 12th Congress IABSE Vancouver,
1984.



	Design of reinforced concrete columns subjected to imposed end deformations

