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Analysis of Asymmetric Structures by Galerkin Technique

Analyse de structures asymeétriques par la méthode Galerkine

Anwendung des Verfahrens von Galerkin auf hohe Bauten
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SUMMARY

The Galerkin method of weighted residuals is employed for the analysis of non-uniform asymmet-
ric tall structures. The governing equations are formulated through the continuum approach
idealizing the structure as a shear-flexure cantilever. Transcendental shape functions are used as
an approximation to the true displacement field. The method is simple yet powerful. The validity
and versatility of the method are exemplifield through several numerical examples where the
results are compared with those obtained from the existing methods.

RESUME

La méthode Galerkine des résidus pondérés est utilisée pour analyser des grandes structures
asymeétriques. Les équations de base découlent de l'idéalisation par une console fléchie com-
posée. Des équations transcendantales servent a approcher |'état de déformation réel. La
méthode est simple et néanmoins puissante. Sa validité est vérifiée par des méthodes existantes
pour certains exemples.

ZUSAMMENFASSUNG

Bei der Berechnung hoher Bauten, auch asymmetrischer und ungleichférmiger, kann die ganze
Tragstruktur als Kontinuum betrachtet und als auf Biegung und Schub beanspruchter Kragarm
behandelt werden. Zur Losung des sich ergebenden Systems gekoppelter Differentialgleichun-
gen wird das Verfahren der gewichteten Residuen von Galerkin angewendet. Sogenannte
Formfunktionen werden dabei als Naherungen flir das wirkliche Verschiebungsfeld benutzt.
Diese Methode ist einfach aber effektvoll. Die Gultigkeit und die Vielseitigkeit dieses Verfahrens
werden mittels mehrerer numerischer Beispiele veranschaulicht. Die Resultate werden mit jenen
anderer Verfahren verglichen.
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1. INTRODUCTION

Tall buildings comprising frames and shear walls properly coupled together is
one of the most efficient and economical structural system. The analysis of
such structures subjected to lateral load can be grouped into two categories.
The first reduces the walls to wide columns and treat each part as a discrete
element[l]. This results in large core storage requirement and long computing
time. The second approach pioneered by CHITTI[2] considers the frame and the
spandrel beams as shear coantributing continua and solve the whole structure as
one problem. The latter is simpler, less expensive and yet provides reasonable
results good enough for preliminary design purposes. In this paper, the
governing equations using the continuum approach are adopted and the Galerkin
method of weighted residuals is employed in the solution of general shear wall
frame structures.

2. ASSUMPTIONS
In order to simplify the analysis certain basic assumptions are made.

(a) The floor slabs of the building are assumed to act as diaphragms which are
infinitely rigid in-plane but very flexible out-of-plane. Rigid body
displacements in the horizontal planes of the whole structure are assumed.

(b) The materials are elastic and homogeneous.

(c) Vlasov's thin-walled beam theory is valid for each individual wall; that
is, the warping stresses are considered, the cross—sectional shape of the
wall remains undistorted and the shear strain in the middle surface of the
section is negligible.

(d) Shear and axial deformations are neglected.

(e) Points of contraflexure are assumed to be at the mid-length of the
connecting beams and columns when the equivalent distributed shear
properties for the frames are computed.

3. GOVERNING EQUATIONS

It is a well-known fact that tall buildings comprising frames and shear walls
coupled together will deform as a shear-flexure cantilever [3-7]. The
governing equations for each element at its principal axis in its principal
directions can be expressed as

iv LI ]

(EIYY) eue - (GAxx)eue = (fx)e

iv T
(EL ) v, = (6A, ) v, = (£),

and  (EI_ ) otV ~ (cJ ) o (£ )

e e ww e e w e

or in a more comprehensive form as

iv v _ o
JORCASEERCWRIUNCHPRERCOIIE S R WX (1)

(EI ¥ %

ii
where

(u,)

j’e

(ueveee)T , the displacements and twist in the element

principal directions;

(£, )

T
i’e [(fx)e (fy)e (fw)e] , the distributed loads and torque

corresponding to L A and ee respectively;
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Gij = Kronecker—-delta function
(EIii)e = D[(Elyy)e (EIxx)e (EIww)e]’ the flexural and warping
resistance diagonal matrix;

(GAii)e = D[(GAXX)e (GAyy)e (Gwa)e]’ the shear and

torsional constant diagonal matrix;

” Note that EL;; are contributed mainly
Yy Ye Ve from the walls and the contribution of
frames on EI,,; is negligible and
usually neglected.

If the local principal system is at the
location (x,y) with an orientation
angle B with respect to a common global
system as shown in Fig. 1, the trans-
formation of the displacement and force
vectors in the two systems are related
as follows:

(uide = Ry3Tyeug

i,j,k = 1,2,3 (2)

(o) REFERENCE POINT

0x,0y  REFERENCE AXES and ) = T5Ry5(£5),
Ex,,Ey_ELEMENT PRINCIPAL AXES i,j,k = 1,2,3 (3)
Fig. 1 Coordinate systems where v, and f; are the global

displacement and force vectors;

cos B sin B 0| , the rotational

R,, = |-sin B cos B O transformation matrix;
ij (4)
0 0 1
and 1 0 9 , the translational
T.. = [0 0 -X transformation matrix

Matrices EIij and GAij in global system can thus be shown as

1,2,3 (6)

I

and GAij = Ty iRk (GAmm)elele i,ji,k,1l,m = 1,2,3 (7

Assembling all n elements comprising the whole building, the final governing
equation becomes

iv '

BI juy - GA = f i,j = 1,2,3 (8)

i i
4. BOUNDARY CONDITIONS

For foundation with translational, rocking and torsional flexibilities, the
static equilibrium at the base requires that
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Ty e

- EI 0
13 (0)

1
(U
ij73
where Kt. and K., represent the equivalent foundation stiffness matrices with
respect Jto the ngobal reference axes. They are formulated from each

individual footing, transformed to the same global system and assembled in the
same manner as the formulation of Elij's matrix.

t
Kijuj(o)

r ' s
Kijua(O) = EI 0) i, 1,2,3 (9)

If S° and M are the applied forces and moments at the top of the building, the

mechanical “boundary conditions are
LA |

A j[uj(h)-uj(O)] = By (h) =

L ]
EI,.u, (h) = M

159 : i,j = 1,2,3 (10)

If the building is fixed on rigid foundation, the geometric boundary conditions
at its base can be expressed as

uj(O) 0

uj(O)

0 j=1,2,3 (11)

If only the rocking flexibility of the ground is considered, then the geometric
boundary conditions become

u;(0) = 0 j=1,2,3

u;(O) -0 (12)

The mechanical boundary conditions at the top of the structure for the last two
cases are the same as those given in Eq. (10).

5. METHOD OF SOLUTION

In the Galerkin's method of weighted residuals, a set of displacement functions
is assumed for each of the independent variables. The errors incurred when the
assumed functions are substituted into the governing equations are minimized in
the averaged sense by using the assumed shape functions as the weighting
functions[8]. Let the assumed set of continuous displacement functions be

uj = stasr¢jr j,s = 1,2,3; r=1,2,...m (13)
where a . are the unknown parameters, and ¢ the shape functions.
Applying Galerkin procedure leads to

M er, vV - cA,u, - £,) 6, 6, dz=0

o ij 3 ij j i ik kr
i,j,k=1,2,3; r=1,2,...m (14)

Integrating by parts and substituting the appropriate boundary conditions yield

Tty 11t

[I (E11]¢Js¢kr GA; b5 ) dz = GA; o, (0) (4 (W)= (0))

) S(O) ¢ (0) + K ¢ (0) s (0)] Gik Ly

_ ¢h o o
= i Wy by dz + M1¢kr(h)51k + 50 (M8

i,j,k,q =1,2,3; r,s = 1,2,..m(15)
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for flexible foundation and

h L Tt L} L}
[7 (B 50500, + GA; 50,0, ) dz6,,8

h
=" w8542
(o] (o]

.a
q] gs
+ (2. (hr) + % (b)) &

{%kr i'kr ik
i,j,k,q=1,2,3; r,s = 1,2,..m(16)

for rigid foundation. Eqgs. (15) or (16) constitutes a set of simultaneous
equations from which the unknown parameters a__ can be determined.

qs
6. NON-UNIFORM BUILDINGS

For non-uniform buildings, the integration is carried out in each sub-regions
and the results are summed up to yield

h LI} L) 1 1 T
[£ (EL; 0550, + GAy30,.0,,) dz = GA 6, (0) (4 (W)-0, (0))

y Il ! t
+ Ry 05,(0) 4y (0) + Ky0,.(0) 4 (0)] 8,8
ns-1
+ I [({(EIL..)
p=1 =

({(ca

.a
q] 98

o1~ (EL DY 65 (g (b))

+

- (GA (h )

137p01 T (PAy0p7 4550y

- {(EI..)

- (EIij)p} ¢js (hp)) ¢kr(hp)] 8,18

. .a
ij7ptl qj gqs

h o, o
= £ Wi dz + Myt () 8y + Sid () 80
i,j,k,q =1,2,3; r,s =1,2,..m(17)

where ns is the number of the segments. The last summation on the left hand
side of Eq. (17) is due to the continuity conditions at the juncture of the
segments. The displacement functions in various segments of different
properties should actually be conceived differently so that this extra term
vanishes. If the continuous function defined in Eq. (13) is used over the
entire domain, the correction is necessary. The effect of this term on the
general results is however insignificant and usually ignored as adopted herein.

7. STRESS RESULTANTS

Once the displacements of the elements are found, the stress resultants for
each element can be determined by taking the appropriate differentials.

For the core and the shear walls, the bending moments in their own local set of
principal axes are given as

(MX) e = (EIyy) Eue

M) (EI_) v
y'e xx'e e

and the bimoments in the core wall as

]

M), = (EI_) 8, (18)

The shear forces in the walls are
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rtee

(Sx)e T (EIyy)eue
re
(Sy)e == (BI_J).Y, (19)
and the corresponding warping and St. Venant torque as
L
(Tw)e T (EIww)eee
1
= 2
(T, = (63 ) 0, (20)
The shear forces in the frame at the kth storey are given by
1
(5,0, = (6A) [{(u) = (u_)) ) /hy = u (0]
|}
(S0 = (A LIV, = (v ) My = v ()] (21)

where hy is the height of the storey concerned; uw, and u,_, are the deflections
at the kth and (k-1)th floor respectively.

The moments in the frame are found by assuming that the points of contraflexure
occur at mid-height of the columns. At the kth storey, they are

(Mxk)e

(

(sxk)ehklz

]

Myk)e (Syk)ehk/Z (22)

8. SHAPE FUNCTIONS

A necessary and sufficient condition in choosing the shape function is that the
function must satisfy the geometric boundary condition. This will lead to a
class of admissible functions. 1If in addition to this condition, the
mechanical boundary conditions are satisfied, then a subset of the admissible
functions, namely the comparison functions are formed. Due to the difficulty
in satisfying the mechanical boundary conditions, the set of comparison
functions is usually limited and normally avoided, despite its advantage of
producing rapid convergent results. A compromise solution between the two is
to introduce the functions which satisfy completely the geometric boundary
conditions and approximately the mechanical boundary conditions.

Considering Eq. (10), if the matrix EL, . is made diagonal by transforming to
its principal axes, the homogeneous boundary conditions at the top of the
structure are

1t
uy (h) =0
] 1
GAijuj(h) - EIiiuj (h) Gij =0 i,j = 1,2,3 (23)
It is difficult to satisfy Eq. (23b) completely, thus a simpler condition is
adopted by dropping all the off-diagonal terms in matrix GA from which Eq.
(23b) becomes
1 e
GAiiuj(h) 6ij - EIiiuj (h) 5ij =0
i,j =1,2,3 (23¢)

Eqs. (23a) and (23c) are the approximate mechanical boundary conditions to be
satisfied by the assumed functions.

In the present study, the mode shapes of a shear-flexure cantilever beam under
free vibration are chosen. For rigid foundation case, they are
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$. = (sin A, z/h-sinh A, z/h) + C, (cos A, z/h-cosh A. z/h) (24)
Jjr jr jr Jjr Jjr jr

where er is determined from equation (23a) as

sin A, + sinh X,
Jjr Jr

er = T Cos X,
jr

+ cosh A,
Jr

j=1)2’3; I‘=1,2,...m

Substituting Eq. (24) into Eq. (23c) leads to three uncoupled equations of the

form

EI..(l+cos A, .cosh A, ) + GA,.sin A, .sinh A. =0
1] jr J] Jr jr

jr

ji=1,2,3; r=1,2,...m (25)

from which ljr can be determined. The
against

a.h (= Y(EIL../GA.. lotted i
j (=v( JJ/ JJ)) are plotted in

values of A,
jr

12 ’ ’ ' ' Fig. 2. It is noted that
A4 Ajr corresponding to higher modes do
n | not vary significantly with ajh.
10t h If the mode shapes of a pure flexure
cantilever are chosen, the values of
9} * GAjj in Eq. (25) will be set to zero
and we obtain
8k Al - (1+cos A hi, )=0 (26)
cos jr.cos je? =
Tt 4 The well-known values of ljr in this
< case are 1.875, 4.694, 7.855, 10,996,
6” - 14-13700|etC¢
Al2 | For flexible foundation, if rocking is
5r allowed an extra term z should be added
for displacements u and v, and if
4L} 1 translation and twisting at the base
are present, the extra rigid body
3t ‘ displacement constant (u;), must be
Ah included.
2t ;
9. ACCURACY AND CONVERGENCE
1 1 L 1 1 1

Fig. 2 Shape function parameter

By using the admissible functions,
uniform convergence can be obtained for
zero and first derivatives and
convergence in the mean sense for the
second differentials. The convergence
of the third differentials especially
at the boundary is not assured [9].

Using the proposed approximate comparison functions may assist convergence to
an approximate value at the boundary for the third differential. Convergence
in the domain is also better with the improved functions. The degree of
accuracy is dependent on the choice of the functions, the number of terwms, the
layout and properties of the building and the complexity of the loadings. It
is found that generally, five terms are sufficient to ensure good results for
preliminary design purposes.
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10. NUMERICAL EXAMPLES

Several examples are presented to demonstrate the accuracy and simplicity of
the proposed method for the static analysis of frame shear wall structures.

10.1 Example 1

A l6-storey building used by several authors [1,3] in the study of asymmetrical
multi-storey building is solved by the method presented. The structural plan
is shown in Fig. 3 and the floor-to-floor height is 3 metres. The base is
fixed and the structure has uniform_properties along the height with an assumed
modulus of elasticity of 20000 MN/m“. The lateral load which acts on the
structure is uniformly distributed with a magnitude of 40 kN per metre of
height acting in the positive y direction.

_@

-@®

_@
0L110m

?
PP290€@

! ! :
&) —— - u—-—@
~ k=1.2348m
'_ e - e
E E 3 £
o P-4 @
E L 8 = (@) ——-x
=2 i & E o
' ) - S .
,,_..__'_w ls=12348mb Q
O e e . .—@
o~ - . 9
] 8 AT 4.0=320m I
1 } 1
153158 10°m® Ig=1.8985 x10° m"
Fig. 3 Structural plan of example 1
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Fig. 4 Convergence study for uniform loading (Eq. 25)
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Figs. 4 and 5 show that for uniform load, the results converge fast and four
terms for each set of displacement functions are sufficient for practical

purposes.

The discrepancies between the two types of functions used is only

obvious in the shear force at the top of the wall where the third differential

i

s involved.

two storeys are affected by the inaccuracies.

»
Y

In Fig. 5e the shear force at the top of the wall is zero as it
is forced to be so when Eq. (26) is satisfied.

However, only the top one or

i

1

L

i

1

= s

A

=——? TERMS
e—es a3 TERMS
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== =] TERMS
x  PUBLISHED
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(31
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Fig. 5 Convergence study for uniform loading (Eq. 26)

0 2 4 6 8
DEFLECTION V AT 1(cm)

-100

=50

TWIST (x 10

0
5

rad)

50 0

0

100

150 0

5

10

15

20

0

SHEAR IN FRAME 2(kN) MOMENT IN WALL 1 (MNm) SHEAR IN WALL 1 (kN)

Fig. 6 Wall frame interaction effect
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Fig. 7 Convergence study for point loading (Eq. 25)

The rotation of the structure changes sign along the height. This is due to
the different behaviour of the wall and the frame and their non-symmetrical
layout of the structural elements. At the lower storeys, the frames deflect
more whereas the group of walls on the right deflect less, giving rise to a
tendency towards negative rotation. The reverse behaviour at the upper storeys
results in a positive rotation. If the group of frames are sufficiently stiff,
then positive rotation throughout the height of the building will be

observed. The opposite also holds true. These observations are verified by
analysing the problem using different relative stiffnesses. As shown in Fig.
6, the attraction of forces depends on the relative location and stiffnesses of
the walls and frames. When the frames are relatively more flexible than the
walls, the walls will attract more forces whereas if the frames are stiffer,
greater frame action is exhibited. Hence by adopting an optimal layout and
using an appropriate ratio of wall and frame stiffnesses, an efficient
structural system can be obtained.

The convergence study was also carried out for structure under point load of 40
KN acting at the top of the structure in the positive y-direction. The results
are compared with the values obtained from the computation using tables
proposed in reference [7] and depicted ir Fig. 7. It is shown that only five
terms are necessary to produce reasonably accurate results.

10.2 Example 2

A 16 storey building completely asymmetric in plan with uniform properties
along the height shown in Fig. 8 is investigated. The base is assumed to be
fixed and the floor-to-floor height is 3 metres. A uniformly distributed
lateral load of 1 kN per metre square acts in the positive y-direction and the
modulus of elasticity is 20000 MN/m“. The sectional properties and the
location of the elements are given in Table 1.



IABSE PERIODICA 3/1984

IABSE PROCEEDINGS P-76/84

£ 1
fegE le*_ .
_— _‘»L
Ex4m
Fig. 8 Structural plan for example 2
Wall Properties
No.
x(m) | y(m) | B(degrees) | 1 (o*) | 1,.(a* | 1_.(a®) | Gi/E(®)
XX vy wW
1 0.0 0.0 0.0 - 5.72 — -
2 4.0 0.0 0.0 - 2.08 - -
3 8.0 0.0 0.0 - 2.08 - =
4 6-0 405 000 1023 - = =
5 6.0 -4.5 0.0 1.23 = = =
6 | 23.74 6.74 15.0 4.28 1.24 1.87 0.010
7 25.50 0.5 15.0 2.08 = - -
8 | 27.19 -5.81 15.0 21.7 3.40 21.30 0.051
9 | 36.93 6.5 30.0 - 5.72 - -
Frame Properties

No. x(m) y(m) B(degrees)

1 12.0 0.0 0.0

2 16.0 0.0 0.0

3 20.0 0.0 0.0

4 30.0 2.5 30.0

5 33.46 4.5 30.0

For all frames GJ/E = 0.0273 n?

Table 1

Data for example 2




84 IABSE PROCEEDINGS P-76/84 \ABSE PERIODICA 31984 A&

1]
WARPING
DEFLECTON e\ PPR O X.COMP TORQUE — 1 ERAME
= = = ADMISSIBLE /|| SHEAR |
TWIST I’
12t SIVENANT -
TORQUE
[+ 4
& BMOMENT
3 af !
Zz
5
w
[+ 4
o
-
["2]
L -
A i i i i 1 1 i i i s i i e i
0 5 0 5 0 1 2 3 & 0 100 200 -6 -4 -2 0 0 0 100 10

DEFLECTION V AT W1 (mm) MOMENT IN CORE 8(MNm) SHEAR IN CORE 8 (kN) TORQUE IN CORE B(kNm) SHEAR IN FRAME 1(kN)

| | S S— S
2 6 4 -05 0 -0 -100 -0 0 50
TWIST (x16%r ad) BIMOMENT IN CORE 8 (kNm2)

Fig. 9 Results of example 2

The results using five terms in displacement field as shown in Fig. 9 again
show that functions satisfying Eq. (25) perform better than those satisfying
Eq. (26). The core-frame interaction effect is again exemplified in the
direction of twist which will change along the height of the building depending
on the relative stiffnesses and the location of the elements. If the three
frames on the left of the building are conceived to be stiffer than those on
the right, the rotation will increase and depending on the flexibility of the
right group, a positive rotation may be obtained at the top. These
observations have already been verified in example 1.

10.3 Example 3

A building of non-uniform properties along the height investigated earlier by
the discrete approach [1] is re-analysed. The height of the first storey is
3.5 metres and the other 19 storeys are 3 metres each. The properties of the
structural components_are given in Table 2 and the uniformly distributed load
of intensity 150 kg/m“ is assumed to act on the structure in the positive y
direction. The structural plan is shown in Fig. 10.

The building is treated as a three segment problem. The first covers only the
first storey to take care of the difference in storey height. The second and
third portions arise from the change in sectional properties at the tenth
storey. The convergence study shows that five terms are sufficient. The
results are plotted and compared with those presented in reference [1] in Fig.
11. They show good agreement.
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STOREY NUMBER
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Fig. 10 Structural plan of example 3
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Fig. 11 Results of example 3 using approximate comparison function
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A

Storey 1-10

11-20

Frame

4
Ig(m™)

1.9 x 1073

Ig(m4> Ig(m4>

5.22 x 1073 1.9 x 1073

Shear Wall

Is(m

21.22

) t(m) I (a*)

0.2 14.15

Table 2

16

STOREY NUMBER
™

L

FOUNDATION STIFFNESS, Ky

RIGID
10x10%y
10x10"
0.5%10"
0.2x10"

10%10'0

mjrd

1

0

5 10 B 20 25 0
DEFLECTION V(cm)

Fig, 12 Results of example 4

Structural properties of building of example 3

10.4 Example 4

The building described in Example 1 is now

assumed to be built on elastic foundation
with rocking flexibility. A range of
rocking stiffnesses are investigated to
study the effect on the displacements and
stresses for this particular structure.
The results obtained by using five terms
in displacement field are plotted in Fig.
12. As the foundation becomes more
flexible, the deflection in the y-
direction increases due to the rigid body
rotation at the base. However, the
stresses in the structure are not
affected.
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11. CONCLUSIONS

The Galerkin method of weighted residuals used here for solving the governing
coupled differential equations of non-uniform asymmetric shear wall frame
buildings proves to be powerful. The method is simple and easy to apply. The
effects of ground flexibility and buildings with complex loadings and
properties that vary with height can be easily incorporated, indicating its
versatility. In this study, the free vibration mode shapes of a cantilever are
chosen as the assumed displacement functions. Numerical comparisons with
existing methods show the results to be sufficently accurate for practical
purposes. As the amount of core storage and computing time required is
minimal, the method is suitable for preliminary design purposes using a micro-
computer.

NOTATIONS

a displacement parameters

EIij global flexural stiffness matrix

(EIxx)e’(EIyy)e flexural rigidity about local centroidal

(EIWW)e warping stiffness about local principal pole

f distributed load vector

GAij global shear stiffness matrix

(GA ) ,(GA ) shear stiffness of element in the local x and y axes

xx’ e yy'e

respectively

(G torsional stiffness about local principal pole

h total height of building

hk height of the kth storey

K;j translational stiffness matrix of the foundation mass

Kij rocking stiffness matrix of the foundation mass

Mg applied moment vector at the top

(Mx)e’(My)e bending moments about local y and x directions respectively

(Mw)e bimoments in each wall

(Mxk)e’(Myk)e moments in the frame about the local y and x directiouns at
the kth storey respectively

Sg applied shear vector at the top

(Sxk)e’(syk)e shear force in each frame in the local x and y directions at
the kth storey respectively

(Sx)e’(sy)e shear force in each frame in the local x and y directions

(Tw)e,(Ts)e warping and St-Venant torques in the wall

u. global displacement vector

J
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u,v,0 displacement in the X,y and about the z directions
respectively

X,y coordinates of the shear centre of the element with respect
to the global axes

a sqrt(GA/EI)

8 orientation of the local axes to the global axes

8 Kronecker-delta function

® displacement shape function

A frequency of mode shape of transcedental function

ver dv first, second, third and fourth derivatives with respect

to z respectively
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