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Analytical Models of Tubulär Beam-Columns

Modeles d'analyse de poutres-colonnes tubulaires

Analytische Modelle für die Berechnung von Stahlrohrstützen
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SUMMARY
Four analytical modeis describing the behaviour of fabricated tubulär steel columns are
developed based on an assumed deflection approach. The moment-curvature relationship is

idealized in various manners. It has been found that the method of combining the exact moment-
curvature relation with an elastic deflection for elastic-plastic columns strikes the good balance
between the requirement for realistic representation of tubulär column behaviour and the
requirement for simplicity in use. Other conclusions are also made.

RESUME

Quatre modeles, utilisant une hypothese de deformation, ont ete developpes pour l'analyse du

comportement de colonnes tubulaires fabriquäes en acier. Divers cas de relations moment-
courbure sont consideres. L'article montre que la methode combinant la fonction exacte
moment-courbure avec une fleche Elastique, dans le cas d'un comportement elasto-plastique,
donne une representation realiste — et simple ä l'emploi — du comportement d'une colonne
tubulaire. D'autres conclusions sont egalement presentees.

ZUSAMMENFASSUNG
Das Verhalten von Stahlrohrstützen wird mit vier verschiedenen Berechnungsmodellen
beschrieben. Sie basieren auf angenommenen Verformungskurven. Die Momenten-Krümmungs-
Beziehung wird in verschiedener Weise idealisiert. Es wurde gefunden, dass die Kombination
der exakten Momenten-Krümmungs-Beziehung mit der elastischen Mittenauslenkung für die
Beschreibung des elastoplastischen Verhaltens von Rohrstützen eine gute Übereinstimmung und
einen einfachen Bemessungsansatz ergibt. Weitere Ergebnisse der Studie werden ebenfalls
aufgezeigt.
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1. INTRODUCTION

The ultimate strength study of structures has been a subjeet of research in
structural engineering for many years. The huge structures such as offshore
oil platforms in deep water are designed against extreme environmental
conditions rather than normal loadings. For example, the design of an
offshore platform is controlled by earthquake or wave force rather than by
its own weight and working loads which must be sustained by the structure
during normal Operation. Since these design extreme environmental loads
occur infrequently during the life of the structure, it is therefore important
for the designer to ensure that the structure is adequately designed against
collapse under extreme loading conditions for the planned location. Thus,
offshore structures are often designed by their ultimate strength.
To investigate the ultimate strength of structures, one must know first the
precise behavior of its components. This includes the member behavior under
axial and/or lateral loads, and the connection behavior under various load
conditions. In modelling the load deformation behavior of members, simplified
methods are frequently used. Among various simplifications, the so-called
assumed deflection method is found most populär. This method of analysis is
found not only simple to use but also gives a reasonably accurate Solution for
practical use [1].
In this paper, four simple mathematical modeis for fabricated tubulär steel
columns are developed based on three types of assumed deflected shape of
column combined with three types of moment-curvature idealization for tubulär
cross section, ranging from an almost exaet Solution to a rather crude
approximation. These four simple analytical modeis are based on different
combinations of assumed deflection shape with moment-curvature relationships.
The basic features of the four modeis considered are summarized in Table 1,
consisting of (1) plastic hinge method, (2) modified plastic hinge method,
(3) average flow moment method; and (4) exaet moment-curvature method.

The behavior of a beam-column can be described either in terms of axial
load-lateral deflection relation or axial load-axial shortening relation.
A precise load-deflection relation is required for the development and study
of load-shortening behavior. These will be described in the present paper.

Numerical studies based on these four modeis are carried out for a pipe
having dimensions and material properties shown in Table 2.

Table 2. Pipe Used in Numerical Studies

Pipe Dimensions Material Properties

Diameter 4.5 in.
Thickness 0.09375 in.

2

Yield Stress

Younq's Modulus

Area 1.30 in.

36 ksi

30000 ksi

Radius of Gyration
1.56 in.

2. ASSUMED DEFLECTION METHOD

The deflected shape of an elastic-plastic beam-column is generally quite
complex, and requires numerical procedure for a Solution. However, if we

assume the deflected shape of a column to be a certain function and this
general function or shape is assumed not to alter during further loading
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but merely changes its magnitude as the axial load increases, then, the beam-
column problem is simplified drastically to a one-degree-of-freedom problem [3].
In this approach, we need to consider the equilibrium between external loads
and internal resistance of a member only at one critical section of the column.
For a symmetrically loaded column, this critical section is at the mid-length of
the column. This simplifies drastically the beam-column analysis and is found
to be most efficient for parametric studies and analytical modelling of the
behavior and strength of beam-column problems among many analysis methods
available. Further, most of these existing methods can only trace the behavior
of the column up to ultimate load (buckling), excluding the post-buckling
branch of the load-deflection curve.
2.1 Deflection Functions

It is obvious that a proper choice of deflection shape is one of the key factors
in the present analysis. The assumed deflection function should be as close to
actual deflected shape as possible. Its closeness will reflect the accuracy of
the Solution. In the present work, reasonable functions are sinusoidal
function [1], linear function [5,6] and polynomial function.
Since sinusoidal function is the exaet shape for an axially loaded column with
pin-ends, it gives the exaet Solution for an axially loaded beam-column in the
elastic ränge. Hence, this function is chosen for elastic as well as elastic-
plastic analysis of beam-column up to ultimate load. Near and beyond the
ultimate load ränge, plastic hinges will form at critical sections, and a two-
bar linkage type of mechanism will develop. This mechanism which consists of
two straight lines knuckled at the plastic hinge locations, contributes mainly
to the additional deflection of a beam-column in the fully plastic ränge.
Hence, the two-straight-line deflection shape will also be chosen in the
present analysis, and its results will be compared with those of sinusoidal
shape.

The polynomial function is the type of deflection shape for an elastic beam

subjected to lateral loads or end moments. Hence, it is suitable for beam-
columns with large lateral loads or end moments. Herein, this function is
used only for the calculation of initial shape of a beam-column resulted from
the application of lateral loads or end moments but before the axial load is
applied.
3. GENERAL BEHAVIOR OF BEAM-COLUMN

To investigate the general behavior of an isolated beam-column with initial
imperfection w., let us consider a simply supported beam-column subjected to
axial load P (see Fig. la). The deflection at mid-span w will be

amplified as the axial load increases. Since we consider
only the overall equilibrium of the column at a Single point, the equilibrium
condition for this column is now reduced to the finding of intersections of
two curves resulted from external equilibrium consideration of the member and
the internal resistance consideration of the cross section (Fig. 1b). The
moment at mid-length induced by external force has the linear form:

M P (w. + w (1)ext l nr
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Since a deflection function is assumed in the present analysis, the curvature
at mid-length $ is therefore directly related to the deflection at mid-
length w Hence, a linear relation between M and $ also exists.
This linear relation is shown in Fig. Ib.
The internal resistance of a member follows of course the M-P-$ curve. This
nonlinear relation is also shown in Fig. Ib. In general, there are two
intersecting points A and B in Fig. lb, and they correspond to two points in the
(P-w curve; one in the pre-buckling branch of the curve and the other in
the post-buckling branch respectively, as shown in Fig. lc.
When the applied load is increased, the equilibrium line corresponding to
external force P in Fig. lb will move upward, while the moment-curvature curve
for the internal resistance of the member moves downward. As a result, there
exists a critical value of P at which the external force line will be tangent
to the M-P-0 curve. This critical value of P defines the ultimate strength of
a column.

If we simplify the moment-curvature relation to the elastic-perfectly plastic
type as shown by the dotted lines in Fig. lb, then, it is obvious that such
an idealization will result in a much higher prediction of the ultimate strength
of a column. This is further illustrated in Fig. lc where a sharp peak of the
load-deflection curve (dotted line) is apparent. Since the exaet M-P-$
relation is smooth, its load-deflection behavior for column tends to have a
round peak. In the elastic and füll Dlastic regions, however, exaet and
idealized moment-curvature relations give essentially the same result.
To obtain these equilibrium points A and B between external force and internal
resistance, the following numerical procedures may generally be followed:
first, a trial deflection (or curvature $,) marked as point "0" in Fig. 2 is
assumed, and corresponding moment M, at the mid-length, the corresponding
internal curvature $? can be obtained. If $, and $? are not close enough,
new cycle of iteration is necessary. Througn this procedure, the elastic
deflection point "A" in Fig. 2 corresponding to a point in the pre-buckling
branch of the load-deflection curve is determined (Fig. lc). To locate the
point "B" in the post-buckling branch of the curve, we calculate the internal
moment M„ from the trial curvature <S>, (Fig. 2). If M, and M„ are not
sufficiently close, a new deflection (or curvature) can be calculated from
M„, from which further cycle of iteration can be made.

It should be noted, however, that if the initial point for the curvature $,
is assumed outside the ränge of the two intersection points A and B, then
the iteration procedure will only converge to one of the two Solutions, and
the other can not be obtained.

If we approximate the M-P-$ curve by closed form expressions, then, this
iterative procedure is not necessary. Instead, analytical expressions for
lateral deflection and axial shortening of a beam-column can be derived.

4. ELASTIC ANALYSIS - BEFORE BUCKLING

4.1 Load-Deflection Relation (P-w Curve)

In this paper, the total deflection is considered to have three components as
shown in Fig. 3. Firstly, the initial imperfection w. produces no internal
moment and therefore should be exeluded from M-P-$ calculations. Secondly,
the deflection due to end moment and/or lateral load w„ can be expressed in
terms of polynomial functions based on conventional elastic beam theory.
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Finally, the deflection w amplified by the axial force P is assumed to be a

sinusoidal function.
The term "elastic" implies that the internal resisting moment must remain in
the straight line portion of the M-P-$ curve (see Fig. lb). Therefore, in
the elastic ränge, the Solution to the problem is reduced to simply obtaining
the intersection of two straight lines representing the moment equilibrium
condition of the column. For an elastic-perfectly plastic type of idealization

for M-P-$ relation, the present analysis is valid until the internal
resisting moment reaches the flow moment. This elastic limit condition will
be discussed further in each of the four modeis to be described later.
Taking the equilibrium condition at mid-span between the external and internal
moments, the deflections due to axial load for both pin-ended and fix ended
beam-columns can be solved as follows [3]:

(2)

PW
rw0

<V-EL
M.

_,_
M

i + op
P - P

cr

where p - *2EI
cr (KL)2

M. PW., M
1 l op

and W

0

_MoL2 +QL3
8EI 48EI for pin-end

QL3

192 for fix-end

Load-Shorteiiinq Relation (P -A Curve)4.2
The axial shortening of a beam-column consists of two parts: the axial
shortening due to axial compressive strain and the axial shortening due to
lateral deflection. The axial shortening due to lateral deflection can be
derived directly from the assumed shape of the column which here is assumed
to be a sine shape. Thus, in the elastic ränge, the total shortening can be

expressed by

pi ^(Wn + WJ2
(Al Pk + ° E— (3)1AjEL EA 4L lJj

A more detailed description of the elastic analysis is given in Ref. 3.

5. INELASTIC ANALYSIS - POST-BUCKLING

5.1 Plastic Hinge Method

Here, the moment-curvature relation is idealized as elastic-perfectly plastic
with plastic hinge moment M at which the curvature increases indefinitely.
The value Mis known as p£he füll plastic moment including the effect of
axial load pc P.

In the elastic ränge, the Solutions presented previously are applicable. In
the elastic-plastic ränge, plastic hinges will be formed successively at
critical sections of the member. When sufficient number of plastic hinges
are formed, a collapse mechanism will be developed, and the segment between
plastic hinges will now behave as a rigid body. The additional deflection
beyond this stage of loading consists of two straight lines knuckled at
center (Fig. 4). This mechanism approach for deriving load-deflection
relation is good when the deflection becomes large [5,6]. However, in the
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elastic-plastic transition ränge, appreciable errors must be expected for
columns near initial elastic-plastic ränge of loading where the peak or
maximum load usually occurs. Nevertheless, this type of simplification is
very appealing and worth pursuing. This will be described here.

Load-Deflection Relation (P-w Curve)

A. Pin-Ended Beam-Column

The column will be capable of resisting external loads until the maximum
moment at the center of a column is equal to the füll plastic moment M

Solving the equilibrium equation for mid-span deflection, we have

(w )D1 l (M - M - %) - w. - w (4)v m'PL P pc o 4 l o

The definition for each term is given in Figs. 3 and 4.

The füll plastic moment M of a tubulär section with axial load has been
developed in Reference 8 p in the form non-dimensionalized by the yield
values, M and P which is

y y
m 1.273 (1 - 1.18 p2) for 0 < p < 0.65

pc

1.82 (1 - p) for 0.65 < p< 1.0
(5)

M' 'nr P
where m Tf— p -t- (P yield axial force a A)

pc M ' K P v
y J y '

The mid-span deflection (w )p| in the plastic ränge can be calculated from
Eq. (4) using Eq. (5). m

Equation (4) describes the post-peak branch
of load-deflection relation where for given loads the elastic deflection
as calculated from Eq. (2) is smaller than that of the plastic one:

(w )_. < (w )„. (6)v m'EL — v m'PL v '

B. Fix-Ended Beam-Column

For a fix-ended beam-column, a mechanism will be developed when plastic
hinges are formed at ends and at the center of a beam-column. In this
case, the equilibrium at the center of the beam-column gives

(w )m l (2 M - 9k) - w. - w (7)v m'PL P pc 4 ' l o

Using Eqs. (5) and (7), the mid-span deflection for a fix-ended beam-
column in the plastic ränge can be calculated. Equation (6) determines
the ränge of validity of Eqs. (2) and (7).
Load-Shortening Relation (P-A Curve)

For an elastic-perfectly plastic M-P-$ relation, it needs to consider only
elastic axial strain for the axial shortening of a beam-column throughout
the entire ränge of loading including post-peak unloading. Further, the
axial shortening due to lateral deflection can be calculated directly from
the two-straight-line deflection shape in the plastic as well as the elastic
ränge. This is probably a good approximation since the lateral deflection
in the elastic ränge is generally small.
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Based on these simplifications, the total axial shortening of the beam-
column can be expressed in the form (see Fig. 4).

m 2w. 2(w. + w + w
A IK + [cos T1 " cos —'~X^ ~] L (8)

The first term in the right-hand side of this equation is the contribution
to axial shortening due to axial strain, and the second represents the
contribution from lateral deflection.
Numerical results of the present method are shown in Figs. 6 through 8.
Also shown are the results using sine curve for deflection shape. This
later method is called modified plastic hinge method and will be discussed
further in the forthcoming (Fig. 5).
For beam-columns with a bi-linear type of moment-curvature relation, it can
be seen that the maximum or peak load corresponds to the attainment of
plastic hinge moment at the center of the pin-ended case or plastic hinge
moments at the center and two ends of the fix-ended case. There is a sharp
drop of load corresponding to the formation of mechanism. It will be seen
that the more pronounced the nonlinearity of the moment-curvature relation
is, the more smooth is the load-deflection curve in the region close to the
peak of the curve. The above is, of course, an extremely simplified
approach to the problem; nevertheless, the general behavior illustrated in
the load-deflection or -shortening diagrams of Figs. 6 to 8 is valid. A

more refined method of analysis to be described later uses the exaet
moment-curvature relation.
5.2 Modified Plastic Hinge Method

The deflection shape in the plastic ränge is assumed here to be a sine or
a cosine type of curve as shown in Fig. 5 [1]. Here, we extend the usage
of the shape of an elastic deflection into the plastic ränge. As in the
plastic hinge method, the elastic-perfectly plastic type of M-P-* curve is
used here, and the plastic hinges are assumed to develop at mid-span for
the pin-ended case, and at mid-span and ends for the fix-ended case.

Load-Deflection Relation (P-w Curve)

For an elastic-perfectly plastic M-P-$ relation, the maximum internal bending
moment at the critical sections is always equal to the füll plastic moment
M The moment induced by external loads at the critical section is, of

p course, not affected by the particular type of deflection shape assumed.
Therefore, the same load-deflection equations as developed for the plastic
hinge method can be used here (Eqs. 4 and 7).
Load-Shortening Relation (P-A Curve)

Here, as in the plastic hinge method, only the elastic axial strain is needed
to compute the axial strain shortening of a beam-column. The shortening due
to lateral deflection can be calculated on the basis of the assumed deflection
shape as shown in Fig. 5. Thus, the total axial shortening due to applied
forces is approximated by the same equation for the elastic ränge, Eq. 3. It
has the same form for both the pin-ended case and fix-ended case.
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Numerical Results

Numerical results using the modified plastic hinge method are also shown in
Figs. 6 through 8 in comparison with the results obtained by the plastic
hinge method. Column lengths of L/r=80, 120 and support conditions with
pin-ended and fix-ended supports are used in the calculations. As expected,
the load-deflection relations in these figures are same for both methods.
Further, the difference in load-axial shortening relation between these
two analyses is not significant.
It should be noted that the effective column length for the fix-ended beam-
column of Fig. 8 is the same as that of pin-ended case in Fig. 6. The
general behavior in these two figures is seen to be quite similar, but for
a given load, the fix-ended case has a much larger value of lateral
deflection and axial shortening than that of pin-ended case. This is
because the fix-ended case has a much longer actual column length.
5.3 Exaet Moment-Curvature Method

The method of analysis described herein is intended to trace out the load-
deflection response of a beam-column from zero load upwards as exactly as
possible within the limitation of using an assumed deflection function.
The present analysis is essentially the same as that of the elastic analysis
in that polynomial function is used for the deflection induced by lateral
load or bending moment, and sinusoidal function is used for the additional
deflection amplified by the axial load. Here, unlike the earlier analysis,
we take an accurate account of the moment-curvature relation and momentaxial

strain relation.
In order to save Computer time, closed form expressions are employed to
approximate closely the exaet M-P-* and M-P-e.. relations. The present
method is rigorous and can be used to assess the consequences of
simplification made previously for moment-curvature relation and moment-axial
strain relation. Thus, if this simplified relations are acceptable,
analysis and design of tubulär member can be based on a consideration of
the elastic deformed shape with either elastic or plastic hinge condition
at critical sections.
The general pattern of curvature distribution for an elastic-plastic pin-
ended beam-column is shown as the solid line in Fig. 9a. Formal mathematical

treatment of this problem by integrating the exaet curvature distribution
along the length will yield an exaet equation for the bent shape.

Taking the conservative triangulär curvature distribution with the maximum
curvature at center $ and integrating it, we have the mid-span deflection
w $ L2/12. This m value may be considered as a lower bound. If we take

the unconservative rectangular curvature distribution with the
constant curvature * the corresponding w will be ($ L2/8). This may be
considered as an upper bound. It is piain, m therefore, that a

reasonable estimate of w certainly suitable for design purposes, would be
to take it as an average value of $ L2/10. Reference 4 reported that this
simplification results in a good agreement with the test results in the
case of reinforced concrete columns. Consider now the assumed deflection
shape here, a half sine curve for a pin-ended beam-column. The deflection
at mid-span is w $ L2/ir2 (Fig. 9b), which is very close to the average
deflection m m described above.

Formulations of the exaet moment-curvature method based on assumptions
described above are given in Reference 3.
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Numerical Results

Numerical results for pin-ended columns using the exaet moment-curvature
method are shown in Figs. 10 and 11 for two column lengths, L/r=80 and 120.
Also shown are the results by the modified plastic hinge method. Initial
imperfection is assumed to be 0.001 L in both analyses. It can be seen from
the figures that the ultimate strengths of beam-columns by the exaet moment-
curvature method are significantly lower than those obtained by the modified
plastic hinge method. This is because the nonlinear part of the M-P-$ curve
results in a smooth transition curve near the peak portion of P-w curve. It
is piain that the more pronounced the nonlinearity of the moment-curvature
relation, the smoother, and thus the less peak load, the load-deflection curve
is likely. Thus, if bi-linear moment-curvature relation is accepted as a

simplification for practical analysis, the ultimate strength of a tubulär
member may be considerably overestimated.

Figures 12 through 14 show the comparison of the exaet moment-curvature
method with Newmark's method (exaet Solution) [3,8] for L/r=80 and 120 varying
the end moment or the lateral load. Both initial imperfection of 0.001 L and
the residual stresses are considered here. It can be seen that the exaet
moment-curvature method gives a little conservative values for the ultimate
strength but generally agrees well with the exaet Solution. Also, it is
found that the column behavior with end moment is closer to the exaet Solution
than that of lateral load (Fig. 14). This is because the curvature distribution

due to the end moment is closer to the assumed curvature distribution.
5.4 Average Flow Moment Method

The bi-linear moment-curvature relation has been used in both the plastic
hinge method and the modified plastic hinge method. The Solutions based
on the exaet moment-curvature method indicate that this simplified relation
is a reasonable idealization for predicting the response of beam-columns in
the initial elastic region and in large post-buckling region, but it grossly
overestimates the intermediate transition region which is probably the most
important region for the ultimate strength of structures. In order to
improve this prediction near the peak load but still using the bi-linear
moment-curvature simplification, the concept of an average flow moment may
be applied. The application of this concept to beam-columns of wide flange
cross section has resulted in an accurate prediction of the maximum load
carrying capacity of all beam-columns studied [2].
Average Flow Moment

Turning now to the elastic-perfectly plastic moment-curvature relation (Fig. 15),
it is obvious that the elastic-fully plastic moment-curvature relation will give
an upper bound Solution (see Fig. 15), and the elastic-initial yield moment-
curvature relation will result in a lower bound. Therefore, the true response
of a beam-column must lie between these two extreme idealizations. Hence, if
the elastic-average flow moment-curvature relation is introduced, plastic
hinge type of analysis based on a consideration of an elastic deformed shape
corresponding to an average flow moment condition being presented at the
critical cross sections will be much improved.
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The normalized average flow moment m M M can be written in the form [2]3 mc mc y L J

m =m -f(m -m) (9)
mc pc

v
pc yc' v '

M

where m tj^— normalized initial yield moment, and f parameter function.
yc M J r

y

It can be seen that when the parameter function f takes the extreme values,
zero and one, the corresponding average flow moment is reduced to m and m

respectively. The parameter function may be a function of thrust ^ ^
P P/PV! slenderness ratio L/r and the boundary conditions of a beam-column.
Herein, the parameter function is assumed to have the form

f f, (J f?(b f-(B.C) (10)
BÜCK J

p
where f-, („ the parameter depending on axial force

lBUCK

f? (—) the parameter depending on slenderness ratio

f_ (B.C.) the parameter depending on boundary conditions
For a tubulär beam-column, the parameters f., f„ and f, are assumed to have
the simple forms

f' (W" •,n X^> (»)

f — - (12)T2 70 r u ;

1.0 for pin-ends
f (13)

0.5 for fix-ends
where PR,,rK ¦ the ultimate strength (buckling load) of a column by the

plastic hinge type of analysis using the füll plastic moment M

pc
M

m jp normalized applied moment at ends,
y

q or— normalized lateral load at center, and r radius of gyration.
y

PR||rk. is the maximum load of a beam-column when the füll plastic moment M is
attained at critical sections. This value can be determined p

simply by equating the lateral deflection from the elastic branch of the
load-deflection curve to that of the plastic branch and solving for the
maximum axial force. For example, for the case of pin-ended beam-column,
equate Eq. (2) to Eq. (4) and solve for P. For the fix-ended case, equate
Eq. (2) to Eq. (7) and solve for P.
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Load-Deflection Relation (P-w Curve)

Since the present analysis is identical to that of the modified plastic hinge
method except that we use the average flow moment, it follows that we can use
the same equations by simply substituting the füll plastic moment M by the
average flow moment My mc
For a pin-ended beam-column, we have

(w )_. l (M - M - Sk) - w. - w (14)v
m PL P mc o 4 i o

and for a fix-ended beam-column, we have

w. - w (15)10
6)

To take account of the effect of the development of plastic strain near
critical sections along the length of a column throughout most of the loading
ränge on the column axial stiffness, the concept of effective axial stiffness
is introduced here for the calculation of axial shortening due to axial strain.
The effective axial stiffness may take the following form by dividing the
column into elastic and plastic portions:

E,, =hE+gE (16)eff
where h a constant for elastic portion of the column (=0.5), and g plastic
reduction factor depending on axial force. The following function for the
plastic reduction factor g was found suitable for tubulär columns:

g 0.5 (£ (17)
BÜCK

Thus, the axial shortening due to axial strain can be calculated using the
effective axial s1

Numerical Results

(wm}PL
1 (2 M
P v

mc
- *»-.

val ic I for Khi * ("mJpL

Load- Shortening Relation (P-¦L Curve)

effective axial stiffness AE -- in Eq. (3)

Typicai numerical results using an average flow moment are shown in Figs. 16

and 17 for L/r=80 and 120, respectively. Also shown are the results by the
exaet moment-curvature method. It can be seen that for a more slender column
(say, L/r over 90), the average flow moment method agrees well with the exaet
moment-curvature method (Fig. 17). However, when the beam-column is relatively
short while lateral load is large, the average flow moment method shows some

errors. It should be noted that where a bi-linear moment-curvature relation
is used, the load-deflection response of a beam-column will always show a sharp
peak at the ultimate strength. This is unavoidable for this type of idealized
moment-curvature relation.
6. SUMMARY AND CONCLUSIONS

Four analytical methods based on assumed deflection shapes and M-P-$ relations
have been studied in this paper. This includes (1) the plastic hinge method;
(2) the modified plastic hinge method; (3) the exaet moment-curvature method;
and (4) the average flow moment method. In the elastic ränge, all these
methods use the same conventional elastic beam-column analysis [7].
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In the plastic ränge, only the plastic hinge method used the two-straight-
line deflected shape (Fig. 4), and the other analyses assumed the deflection
shape to be a sinusoidal function throughout the entire loading ränge (Fig. 3).
As for the M-P-$ relation, only the exaet moment-curvature method used the
exaet M-P-$ curves, and the others used the elastic-perfectly plastic type of
bi-linear relation (Fig. 15) where the average flow moment method modified the
füll plastic moment to a somewhat averaged value.
The conclusions made from these studies are as follows:
1) The exaet moment-curvature mehtod is most suitable among the assumed deflec¬

tion methods studied in this paper. This method enables designers to
assess in a simple manner the behavior of beam-columns up to ultimate load
including post-buckling behavior.

2) The general validity of the exaet moment-curvature method has been demon¬

strated by comparisons with other analytical procedures as well as
available test data [3].

3) Although solving a eubie equation is required in the exaet moment-curvature
method, computational time required by a Computer is found to be very
reasonable [3].

4) The exaet moment-curvature method strikes the balance between the require¬
ment of realistic representation of column behavior and the requirement
for simplicity in use. It is considered that in both these respect, the
method is most satisfactory.

5) The elastic-perfectly plastic type of M-P-$ simplification with füll plas¬
tic flow moment always overestimates the ultimate strength of a beam-column.

6) The average flow moment method improves the ultimate strength prediction
for a beam-column using the elastic-perfectly plastic type of moment-
curvature relation, especially for the case of long columns.

7) Formal mathematical treatment of the beam-column problem will yield an
exaet equation for the bent shape of a beam-column. However, the exaet-
ness of this bent shape is found to be not significant in affecting the
overall behavior and strength of tubulär beam-columns. The shape of the
moment-curvature relation is found to play the key role in the present
study.
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