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Théorie perfectionnée des poutres droites a parois minces
Erweiterte Theorie der geraden Balken mit dunnwandigem Querschnitt

Improved Theory for Thin-Walled Straight Beams

Ch. MASSONNET
Professeur Ordinaire
Université de Liege
Belgique

RESUME

La théorie classique de la flexion-torsion des pieces a parois minces néglige I'effet des déforma-
tions par cisaillement sur la répartition des contraintes normales. Le mémoire suppose, comme
la Mécanique des Matériaux, que les sections droites sont indéformables, c'est-a-dire que le ma-
tériau élastique est transversalement rigide. On montre alors que la théorie de la flexion-torsion
est rigoureuse pour un moment de flexion quadratiquement variable et un moment de torsion
linéairement variable a condition d'adopter pour les contraintes 7 celles de la Mécanique des
Matériaux et d’ajouter aux contraintes de Navier des contraintes de ‘‘trainage de cisaillement
réparti’’ Ao, qui sont les mémes dans toutes les sections. Les Ao s‘obtiennent aisément et cons-
tituent de bonnes approximations des contraintes de ‘'shear lag’’ discutées dans la littérature.

ZUSAMMENFASSUNG

Die klassische Theorie der Biegung mit Torsion von dunnwandigen Bauteilen vernachlassigt die
Wirkung der Schubverformungen auf die Verteilung der Normalspannungen. Im Beitrag wird
wie in der Festigkeitslehre angenommen, dass sich die Querschnitte in ihrer Ebene nicht verfor-
men oder, gleichbedeutend, dass das elastische Material im Quersinne steif ist. Es wird gezeigt,
dass die Theorie der Biegung mit Torsion fur ein Biegemoment mit quadratischer und ein Tor-
sionsmoment mit linearer Variation unter folgenden Bedingungen streng ist: Verwendung der
Schubspannung wie in der Festigkeitslehre und Korrektur der Normalspannungsverteilung nach
Navier mit Spannungen Acg infolge eines verteilten ‘’shear lag’’, welche in allen Querschnitten
gleich sind. Die Ao sind einfach zu erhalten und bilden eine gute Naherung der in der Literatur
diskutierten "‘shear lag’’-Spannungen.

SUMMARY

The classical theory of bending-torsion of thin-walled members disregards the effect of shear de-
formations on the distribution of normal stresses. The paper assumes, as in the Mechanics of
Materials, that the cross sections do not deform in their plane, or, equivalently, that the elastic
material is transversely rigid. It is then shown that the bending-torsion theory is rigorous for a
bending moment varying quadratically or a torsional moment varying linearly: the shearing
stresses T are those of Mechanics of Materials, but the direct stresses must be corrected by
stresses Ao due to “‘distributed shear lag’” which are the same at all cross sections. These are
easily calculated and represent good approximations of the shear lag stresses discussed in the
literature.
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1. EXAMEN CRITIQUE DE LA THEORIE DE TIMOSHENKO-VLASSOV.

La théorie de la flexion et torsion des poutres élastiques développée au siécle
dernier par NAVIER et SAINT-VENANT a recu au vingtiéme siécle une extension im-
portante, due essentiellement a TIMOSHENKO [1] et VLASSOV [5] et subsidiairement
a WAGNER [2], KAPPUS [3], GOODIER [4] et d'autres (voir par exemple [8] , vol.II
pour 1'exposé des fondements). Cette extension se situe au niveau de la théorie
“technique" des poutres élastiques, dans laquelle on admet les hypothéses suivan-
tes &

a) la poutre est prismatique et se comporte &lastiquement ;

b) la section droite est indéformable dans son plan.

En 1905 [1], TIMOSHENKO a analysé,dans le cas particulier d'une poutre en double
té, le gauchissement en torsion uniforme et il a développé une théorie de 1la
torsion non-uniforme de ces poutres. I1 a obtenu ainsi la loi sectorielle

(pour les notations, boir figure 1.1.).

W= - 6w avec w = wg - wg et w, = [ rds (1.1.)

donnant le déplacement axial w. I1 a postulé que cette expression restait vala-
ble pour une torsion 8 = dy/dz variable avec z(hyp.c). WAGNER a étendu cette
théorie en 1929 aux sections ouvertes de forme quelconque [2] et VLASSOV a édi-
fié une doctrine compléte de la torsion non-uniforme des poutres & parois minces
a section ouverte ou fermée, en supposant que 1'hypothése (c) de TIMOSHENKO énon-
cée ci-dessus €tait valable en général. Ces auteurs déterminent la distribution
des contraintes axiales o par la loi de HOOKE

ow
= E = (1.2.)
a partir des gauchissements w des diverses sections, qui sont supposés varier
proportionnellement @ M_. Ils déduisent des o les t par 1'équation d'équilibre
de 1'élément de paroi ~“(fig. 1.2.)
a(ot) _ a(xt) _
= e = 0, (1:3.)

puis ils évaluent le moment de torsion de gauchissement Mt2 comme résultante de
ces contraintes tangentielles de gauchissement .

T
t
Répartition sur
Gauchissement d'une poutre a Equilibre d'un élément. 1'épaisseur des con-
parois minces. traintes tangentielles.

Figure 1.1. Figure 1.2. Figure 1.3.
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Le caractére approché de cette théorie résulte du fait que les contraintes t pro-
voquent en fait un "trainage de cisaillement" (shear lag), c'est-a-dire influen-
cent la répartition des contraintes axiales o. Les déplacements de gauchissement
w donnés par (1.1.) ne sont donc qu'approchés. D'ailleurs, la théorie de
TIMOSHENKO-VLASSOV se met en contradiction avec elle-méme, puisque la loi secto-
rielle (1.1.) est déduite de ce que t, donc y, est nul dans le feuillet moyen de
la paroi (fig. 1.3.a), tandis que la théorie fournit ensuite par (1.3.) des tde
gauchissement (fig. 1.3.b) qui sont uniformément répartis sur 1'épaisseur (x).

La théorie générale de VLASSOV [5] peut étre résumée par les deux formules sui-
vantes

M M
o = . dxsftysd (1.4.)
y X w
LI Ty HUJ
te = -1 Sy(s) T Sx(s) - T—-Sm (s) (49 )
Y X w
ou N, M, My, M, T, et Ty sont les éléments de réduction classiques, B(z) est

le bi-moment, y 1a coordonnée sectorielle, Iw le moment d'inertie sectoriel prin-
cipal et Hw la dérivée du bimoment B par rapport a la coordonnée longitudinalez .

Ces formules ne tiennent pas compte du "shear lag". En effet, dans le cas parti-
culier de la flexion simple, les formules ci-dessus se réduisent a :
Myx Mxy Tx Ty
o=-4- + 1 tr = - i Sy(s) T Sx(s), {1.6:) [1.7:)
y X y X

c'est-a-dire la théorie "technique" classique des poutres droites élastiques.

2. PRISE EN COMPTE DES DEFORMATIONS PAR CISAILLEMENT ET TRAINAGE DE CISAILLEMENT.

De nombreux auteurs ont essayé de remédier au défaut fondamental de la théorie de
TIMOSHENKO-VLASSOV, mais toutes ces théories, basées sur des hypothéses simplifi-
catrices (cf. [11] a [17]), restent si compliquées qu'on ne peut guére envisager
leur application en Bureau d'Etudes.

Une théorie "technique" éequilibrée doit tenir compte du gauchissement de la sec-
tion associée au cisaillement non-uniforme de la section droite. La prise en
compte de ce cisaillement non-uniforme doit se faire en se basant sur des hypo-
théses simplificatrices ayant, autant que possible, le méme degré d'approximation
que celles de la théorie de TIMOSHENKO-VLASSOV.

Le but du présent mémoire est :

1) de présenter une théorie perfectionnée tenant compte - de maniére approchée -
du phénoméne de trainage de cisaillement dans le cas ol le moment fléchissant
M varie quadratiquement ;

2) d'étendre également la théorie classique de la torsion de SAINT-VENANT au cas
d'un moment de torsion linéairement variable.

(%) 1'auteur ne connait aucune étude systématique de 1'erreur commise par cette
hypothése, autrement dit du degré de validité de la théorie de TIMOSHENKO -
VLASSOV.
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3. THEORIE TECHNIQUE DES POUTRES CONSIDEREE COMME THEORIE ELASTIQUE RIGOUREUSE
POUR UN MATERIAU ORTHOTROPE ADEQUAT.

La théorie simplifiée classique, présentée dans les textes élémentaires de Méca-
nique des matériaux, y compris les développements que lui ont donné TIMOSHENKO
et VLASSOV, différe de la Théorie de 1'Elasticité parce que :

a) elle considére la section droite comme indéformable ;

b) elles ne se préoccupe pas de la répartition détaillée des forces transversales
de surface ou de volume mais envisage uniquement leur résultante, qui est gé-
néralement une force transversale uniformément répartie d'intensité p.

Cette théorie technique a ainsi 1'air de différer significativement de 1'ensemble
de solutions obtenues par SAINT-VENANT pour Tes piéces longues prismatiques sol-
licitées a leurs extrémités. Or, on peut aisément montrer qu'elle est en réaliteé
une théorie élastique rigoureuse pour un certain matériau élastique orthotrope.
Ce fait a 1'avantage de :

1) clarifier les rapports entre la théorie technique de la Mécanique des Maté-
riaux et la Théorie de 1'Elasticité ;

2) permettre d'appliquer rigoureusement & la théorie technique les théorémes va-
riationnels déduits des principes des déplacements et des contraintes virtuel-
les, ainsi que le théoréme d'unicité de KIRCHHOFF, qui affirme que, quand on
a trouvé une solution satisfaisante & toutes les équations de 1'élasticité,
c'est la solution du probléme.

LEKHNITZKII montre que, pour un matériau orthogonalement anisotrope, on peut
prendre les équations constitutives suivantes [6]:
E:..-J...o' —_\_).glc —i:ﬂo'
X E1 X E2 y E3 z

V Vv
V12 1 32
TUE XYE YT %2 (3.1.)
.13 Y3 1
g _Ef'cx 72; %y Fg C2
1

Y S - =T, (3.2.)

= i )
Yyz " Gys Tyz * Yxz G5 Txz > Yxy G, Xy’

Les douze constantes élastiques El’ E2, E3; Gl’ GZ’ G3; Vips Va1 V13> V31> V230
V3o sont reliées par les trois relations de réciprocité :

Eqvoy = Epvpp 3 Epvgp = Bgvpg 5 Egvyg = Eyvgy (3.3.)
ce qui laisse neuf constantes indépendantes.

Pour réaliser 1'hypothése classique de la Mécanique des Matériaux, a savoir 1'in-
déformabilité de la section droite, nous devons choisir les constantes élastiques
de fagon a supprimer toute déformation dans le plan de la section droite ; ceci
entraine

EZX=0 ;€y=0 2 ny=0

et par conséquent E1 = E2 =® § V3) = V3p = Vi3 = Vog = 0 & G12 =0

Comme d'autre part, il n'y a pas de raison de supposer G13 et G23 différents, on
posera 613 = 623 = G et les équations (3.1.) et (3.2.) se réduisent alors aux re-
lations bien connues de la théorie technique :
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.z
€ 2 T
Ty T Ty = O (3.4.)
!
Yzs = G Tzs

Les modules E et G sont & présent entiérement indépendants, ce qui permet d'envi-
sager des matériaux trés déformables par cisaillement et dans lesquels le traina-
ge de cisaillement est particuliérement important. Pour mesurer cette déformabi-
1ité par cisaillement, i1 est commode d'introduire le coefficient non dimension-

nel k appelé taux d'orthotropie :

k = E. (3.5.)

Dans une autre étude [20], 1'auteur a montré que la théorie élastique de la fle-
xion et torsion des barres due a SAINT-VENANT pouvait é€tre généralisée en toute
rigueur respectivement pour un effort tranchant et pour un moment de torsion 1li-
néairement variable.

-

Dans le présent mémoire, 1'auteur n'étudie que les piéces a parois minces dont la
paroi, rapportée aux coordonnées z et s, peut étre considérée comme étant en état
plan de contrainte. Dans ce cas, 1'équation de compatibilité unique s'écrit en
1'absence de forces de volume :

g 2 2

3 €, : d ey . 3 ;s

2 = -
3s 3z az A5

En y remplacant les £4 par leurs valeurs (3.4.) en fonction de o et t, on ob-
tient 1'équation de BELTRAMI-MICHELL (en posant pour simplifier 0,50, T, = T)

(3.6.)

ZS
2 2
3 0 _ 3T
;;? = k T (3:d4)

Toute théorie "technique" satisfaisant aux équations (3.4.) et (3.7.) ci-dessus
sera une théorie élastique (orthotrope) rigoureuse, si elle satisfait aussi
a 1'équation d'équilibre (1.3. ) et aux conditions a la surface.

Sur base de quelques exemples traités plus loin, il est facile de montrer qu'on
est libre d'introduire dans la théorie technique des forces de volume choisies de
maniére & satisfaire rigoureusement aux équations d'équilibre en x et y.

Pour terminer ce paragraphe, notons que 1'énergie potentielle interne associée
au matériau orthotrope "technique" défini dans le présent paragraphe a pour ex-
pression

U = J (02 " T2) v = J (EE2 + GYZ) dv (3.8.)
JEE ikl

Exprimée en fonction des composantes (e,y) du tenseur-déformation, c'est une
fonctionnelle quadratique définie positive des €45 Par conséquent, la démons-

tration du théoréme de KIRCHHOFF relatif a 1'unicité de la solution est applica-
ble a ce matériau. En d'autres termes, si 1'on trouve une solution au probléme,
c'est sa solution unique.
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4. EXAMEN CRITIQUE DES PRINCIPALES RECHERCHES SUR LA THEORIE COMPLETE DES
POUTRES ELASTIQUES A PAROIS MINCES.

Ainsi qu'on 1'a expliqué au paragraphe 1, Ta théorie de TIMOSHENKO-VLASSOV ne
tient pas compte de 1'effet des déformations y dues aux contraintes de cisaille-
ment t. Un progrés considérable a été réalisé en 1947 par ARGYRIS et DUNNE [9].
Dans une série de mémoires, ils développent une théorie technique générale des
tubes cylindriques et coniques soumis a flexion et torsion, qui tient compte du
trainage de cisaillement. Leur approche est basée sur 1'emploi d'une fonction
de contrainte. Comme ils se restreignent aux tubes dont toutes les sections
sont géométriquement semblables, ils peuvent séparer les variables z et s et ob-
tenir une solution. Dans cette solution, le trainage de cisaillement apparait
sous forme de termes correctifs ajoutés aux contraintes de la théorie classique
de NAVIER - SAINT-VENANT, et exprimés sous forme de séries de fonctions propres
orthogonales représentant des états d'autocontrainte. Une discussion claire de
ces états d'autocontrainte est présentée en 1950 par FLUGGE et MARGUERRE [10];
elle permet de déterminer le trainage de cisaillement en torsion.

En 1951, WITTRICK [11] reprend le méme probléme qu'ARGYRIS et DUNNE pour un tube
monocellulaire mais en supposant que la section droite de ce tube varie d'une ma-
niére arbitraire le long de 1'axe. Dans ce cas, une solution par séparation des
variables n'est pas possible et les fonctions propres de ARGYRIS et DUNNE n'exis-
tent pas. La méme année, STUSSI présente [12] une théorie des poutres a parois
minces qui ne tient pas compte des déformations par cisaillement, puis publie en
1952 une théorie plus compléte [13], qui ne se préte pourtant pas aisément a la
determination des contraintes ¢ et t.

I1 faut encore mentionner :
- en 1959, le mémoire de KUBITZKI [14] qui analyse la flexion et torsion des

caissons a parois minces en employant la méthode des forces ainsi que celle
des déplacements ;

- en 1967, le mémoire de SCHROEDER [15], qui résout le probléme du trainage de
cisaillement par une méthode approchée ; les déplacements longitudinaux sont
supposés varier suivant des lois paraboliques dont les paramétres sont déter-

minés par le principe variationnel du minimum de 1'énergie potentielle.

En 1970, ROIK et SEDLACEK proposent une théorie matricielle, adaptée au calcul
sur ordinateur [16], dans laquelle on se donne les distributions des gauchisse-
ments élémentaires sur la base de considérations physiques. On calcule le poten-
tiel total de la poutre et, en appliquant le principe des déplacements virtuels,
on en déduit Tes équations d'EULER associées a ce principe variationnel, qui for-
ment un systéme d'équations différentielles découplées. Cette méthode est déve-
loppée davantage en 1973, par BOGE et ROIK [17] qui idéalisent la poutre par une
série d'éléments finis, en vue du calcul sur ordinateur.

Ces deux derniers mémoires sont importants pour celui qui désire automatiser la
recherche des contraintes o et t dans les poutres @ parois minces continues sur
plusieurs appuis et soumises a des mises en charge complexes.

Notre but étant d'analyser le probléme du trainage de cisaillement "réparti" dans
des cas simples par des formules analytiques, nous ne discuterons pas davantage
les mémoires [14], [15], [16] et [17].

Pour terminer cette revue des recherches existantes, mentionnons encore un mémoi-
re remarquable de VAN DER NEUT, daté de 1970 [18], sur les caissons multicellu-
laires, développé sur la base de considérations physiques simples de nature in-
tuitive, dans 1'ignorance du travail de WITTRICK. Les résultats obtenus par

VAN DER NEUT ne sont pas établis rigoureusement.En effet, 1'@quation de compati-
bilité, dont i1 sera montré plus Toin que ces résultats découlent, n'est méme pas
formulée. Quoiqu'il en soit, VAN DER NEUT retrouve, entre autres, un des résul-
tats fondamentaux de WITTRICK, & savoir que, pour un tube prismatique fléchi et
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tordu, la distribution des contraintes de cisaillement est donnée exactement par
la théorie classique, méme quand 1'effort tranchant et Te moment de torsion va-
rient 1inéairement avec la coordonnée axiale z. La distribution des contraintes
normales subit alors une correction indépendante de z, dont la méme pour toutes
les sections.

5. ETABLISSEMENT PAR UNE METHODE SIMPLE DES PRINCIPAUX RESULTATS
OBTENUS PAR WITTRICK.

5.1. Introduction.

Les résultats obtenus par WITTRICK dans son mémoire [11] & la suite de longs cal-
culs complexes peuvent s'établir trés simplement. En effet, les seules équations
différentielles gouvernant le champ de contraintes sont :

a) 1'équation d'équilibre (1.3.) a(gz) + i;;t) = 3 (5.1.)
2
e . S8 e Bes o 3 0 _ 9 T _E
b) 1'équation de compatibilité (3.7.) ;;2-— k 755 avec k =G - {5:2:)

D'aprés le théoréme d'unicité de KIRCHHOFF, qui, en vertu du paragraphe 3, est
applicable au matériau orthotrope, il suffit d'obtenir une solution du probléme
satisfaisant (5.1.) et (5.2.) pour avoir la solution unique de ce probléme.

Envisageons donc (figure 5.1.), une poutre tubulaire a parois minces chargée de
forces transversales uniformes ayant, par rapport au centre de cisaillement O,
un bras de levier d. Ces forces sont équivalentes & un moment de torsion liné-
airement variable

M, = pdz (5.3.)

a un effort tranchant déduit de la formu-
__d7 . )

le connue p = Hi'et qui vaut :

T=-pz+ TO (5.4.)
ol T0 est 1'effort tranchant dans la sec-

tion z = 0 et enfin & un moment fléchis-
sant :

2
= - _ Pz
Mg, = J T dz = = TO z+C (5.5.)

i ol C est une constante d'intégration égale

y au moment Mx dans la section origine z =0.

Flexion et torsion d'une poutre Comme le principe de superposition est va-
tubulaire. lide dans une théorie élastique du premier

Figure 5.1. ordre, on peut examiner a part la flexion

simple avec effort tranchant et la torsion

5.2. Flexion simple.

Nous allons montrer que les équations (5.1.) et (5.2.) sont satisfaites par
les formules :

Mxy

g = T"‘ Ac(X,Y) (5.6 )
TS

te =2 4 f (%) (5.7.)

(%) fo représente le flux de cisaillement hyperstatique existant au point origine
s = 0.
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c'est-a-dire par les formules classiques de la Mécanique des Matériaux, la pre-
miére d'entre elles étant corrigée par 1'adjonction d'une correction Ac(x,y),
indépendante de z, qui représente ce que nous appellerons les contraintes de
trainage de cisaillement réparti.

En effet, comme Ac ne dépend pas de z, cette correction n'intervient pas dans 1'
équation d'équilibre (5.1.). Dés lors, les contraintes tangentielles sont obte-
nues en se servant de 1'équation d'équilibre ol 1'on remplace o par 1'expression
classique de NAVIER

0 = plxz
I
Comme 1'équation (5.1.) intégrée depuis un bord libre o0l T = 0, a savoir
(S S
Tt | t%4s = I | £ yds (5.8.)
o 92 I o

est identique a la formule é€lémentaire

- IS(y
Tt = 1 + fo (5.9.)

ou S(y) est Te moment statique par rapport a 1'axe neutre de flexion Ox, de la
partie de la section comprise entre le point d'arc s = 0 et Te point d'axe s = s,
on voit que Tes t obéissent & la loi élémentaire classique de Tla Mécanique des
Matériaux.
My TS
Le champ de contraintes élémentaire (o = - > tr = Tt fo) est donc clairement
un champ statiquement admissible. Cependant, i1 n'est pas compatible, sans quoi
ce serait le champ exact que nous cherchons. Pour trouver la correction Ao de
trainage de cisaillement réparti intervenant dans (5.6.), i1 suffit d'exprimer
que (5.6.) et (5.7.) satisfont & 1'équation de compatibilité (5.2.). Comme
2, 2 Mxy

3 /3s” () = 0,

cette équation se réduit a :

2 2 f '
2°(40) oy 2" (IS, ‘o (5.10.)

= = =2
55 9z3s ‘It t

Supposons pour simplifier qu'on prenne comme origine des axes s un point ou le
flux hyperstatique fo s'annule. Si la section est symétrique par rapport a Oy,

on sait que ce point est le point A d'intersecticn de la 1ligne moyenne avec 1'axe
de symétrie (figure 5.1.).

Remarquant de plus que %; = - p, on peut écrire (5.10.) sous la forme plus sim-
ple ‘
ﬂ%l - - P si(s) (5.11
= * = ; ¢ L)

En intégrant deux fois, on trouve successivement, dans le cas ol t est constant
par trongons :

d(a k
fo) - _PK 5(s) 4w (5.12.)
S
o = - P& J S(s) ds + Ms + N. (5.13.)
0

Les constantes M et N se déterminent en exprimant que les Ac sont des auto-
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contraintes, c'est-a-dire que

N(ao) = JA Ao dA = O (5.14.)

M, (a0) = JA poy dh = 0 . (5.15.)

5.3. Torsion sous 1'effet d'un moment de torsion linéairement variable.

Nous allons montrer que, dans ce cas-ci, les équations (5.1.) et (5.2.) sont
satisfaites par les équations

o = Ao (X,Y) (5.16.)
M
tt = ?é (5.17.)

ol S = %— r ds est 1'aire comprise @ 1'intérieur de 1a ligne moyenne de la pa-

roi (figure 6.1.). En effet, comme, par (5.12.), tr = constante, a(xt) . 0 et

3s
a(ggt) = 0, c'est-a-dire Ac indépendant

1'équation d'équilibre (5.1.) entraine

de z, ce qui est conforme a (5.16.). Les corrections Ac de trainage de cisail-
lement réparti sont donc données par 1'équation de compatibilité (5.2.), qui
s'écrit a présent :

aon 82 MZ Mé s ,1
- . BZas (?§f) = k 2S 55‘(T’ (5.18.)

3s
Dans le cas courant ol 1'épaisseur t est constante, 3/3s (%) =0 et (5.18.)
se réduit a

po =As’ +Bs+C . (5.19.)

En exprimant que les Ac sont des autocontraintes, on trouve que la constante C
est nulle a cause de (5.14.). Quant aux constantes A et B, elles se déterminent
par les équations de moment :

f Aoy dA = 0 J Ao x dA = 0 (5.20.)
A A

6. ILLUSTRATION SUR DES EXEMPLES SIMPLES DE LA DETERMINATION DES CONTRAINTES
DE TRAINAGE DE CISAILLEMENT REPARTI.

6.1. Section rectangulaire (figure 6.1.).

Comme,dans le cas actuel, Ao doit étre une fonction
impaire en y, il est avantageux de prendre comme
variable indépendante y plutét que s.

L'équation (5.11.) peut s'écrire, en adoptant cette P
variable L Lllll llll
b

0 X <
b

(o5}

>

Q

1"

1
r—q"c
o X

Q.
alu
< |~

<

y

Section rectangulaire mince.
Figure 6.1.
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Deux intégrations successives donnent respectivement :

3(ao) _ _ pk
Ao = - %% J S(y) dy + My + N . (Bisde)

La fonction Ao devant étre impaire, N = 0. La constante M se détermine en tra-
duisant le fait que les Ao sont des autocontraintes, c'est-a-dire que

M, (80) = O . (6.2.)

La figure montre que le moment statique par rapport a 1'axe Gx de la partie ha-
churée vaut

S(y) = 3 (b

IT en résulte que

2 2
= ¥ ),

[ st ay = § % - )

et’ par (61)
pk (¥ _ 2
b = gy g~ By) * My (6.3.)
Remplacant Ac par cette valeur dans Ta condition d'autocontrainte (6.2.), on
trouve
+b 3 +b 2
b Ib(yT'bZY)de+”'be2dy=Od'oa M = 2pkd

Remplacant M par cette valeur dans (6.3.), nous obtenons 1'expression explicite
des contraintes de "shear lag réparti"

bo (y) = %’% (v° - % b% y) . (6.4.)

.

6.2. Section en té (figure 6.2.).

Conformément aux hypothéses faites par tous les auteurs qui ont analysé ce pro-
bléme (cf. p. ex. [9]1), nous supposons que la section est composée d'une nervure
massive (figure 6.2.) ol les effets de trainage de cisaillement sont négligeables,
et d'une semelle trés large d'épaisseur t et de largeur totale 2a.

s 1l a RN dENINy

n ’ )
p— -2 —-— I

Yy Poutre en té chargée uniformément

Figure 6.2.a. Figure 6.2.b.
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Nous supposons que la poutre en té de Tongueur 21 (figure 6.2.b.) est chargée
de forces transversales uniformes d'intensité p. On a alors par la statique :

2 2
mz) = PU=2) et 1z - M. (6.5.)
Le moment statique de la partie hachurée de la semelle vaut :
S(s) = - std d'od g—g = - td (6.6.)

ol d est la valeur absolue de Ta distance du centre de gravité de la section au
plan moyen de la semelle. La Mécanique des Matériaux donne :

_ TS _ pzstd _ pzsd
(s) = = 5 18 " T - (6.7.)

Les contraintes de trainage de cisaillement sont données par la formule (5.11.),
qui s'écrit ici

=

dZ(Ao) _ _ bk
dsz It

Une premiére intégration dornne :

S'(s) =$ . (6.8.)

d(Ac) _ pkds
ds - T ° Cs
puis une seconde intégration fournit les contraintes de trainage de cisaillement
2
_ Ppkds

Ao (S) o= 4 Cs + C'. {6.9.)

La constante C est nulle parce que Ac(s) doit étre une fonction paire. La
constante C' s'obtient en exprimant que les Ac sont des autocontraintes, dont
la résultante

+a
J Ac ds = 0. (6.10.)
-a

En remplagant Ac par sa valeur (6.9.) dans (6.10.), on trouve la condition

+a +a
%%g J 52 ds + C' J ds = 0,

-a -a
d'od 1'on tire 2
Co- kpda
=~
et, par conséquent,
' so(s) = KP4 (3s% - a?) (6.11.)
6.3. Section en caisson.
[ P
c_H| 's 5 l l l l l I l
bl {{fta ! ta . 0 z
b |
1. L% A | P

y
Poutre en caisson sur deux appuis chargée uniformément.

Figure 6.3.
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Le tube a section rectangulaire représenté a la figure 6.3. est librement appuyé
a ses deux extrémités et chargé de forces transversales uniformes d'intensité p
appliquées dans son plan de symétrie Gy. Le moment et 1'effort tranchant dans
la section courante valent

-2 3 TH2) = - pz (6.12.)

L'épaisseur des parois est t_ pour les semelles AB et CD, t_ pour les ames
BC et DA. 4 a

Par antimétrie, T = 0 aux milieux F et H des semelles. On peut donc couper la
paroi en ces points parallélement & z et considérer le probléme plus simple du
demi-profil en U = FADH, chargé de forces transversales p/2 qui produisent les
€léments de réduction

& 22) s T(z) = - %; . (6.12.)"

Comme, ici encore, Ac doit étre une fonction impaire en y, il y a avantage a
prendre comme variables indépendantes x dans la semelle AF et y dans 1'ame AD.

On trouve pour 1'intégrale J S ds ;

2
. _ X *
Dans la semelle : J Ss dx = tS b % A ] (0 < x < a) (6.13.)
3
Dans 1'ame : J SA dx = (ts ab + ——?——) y-——+ .
Le trainage de cisaillement vaut, par la formule (5.13.) :
pk 2
. _ _ s bx
Dans la semelle : bo, = - > o ¥ Ax + B , ; (6.14.)
L pkA ta b ta y
Dans 1'ame : o, = - ?Tf;’ [(tS ab + > )y - 5 ] + My + N (6.15.)

Les constantes d'intégration A, B, M, N, se déterminent par les conditions sui-
vantes :

1) parité en x de Ac dans la semelle : A =0 (6.16.)
2) imparité en y de Ao dans 1'ame : N=0 (6.17.)
3) continuité de Ac en A (jonction ame-semelle) : (Aos)x=a= (AGA)y=b (6.18.)
4) traduction du fait que les Ao sont des autocontraintes :
M(Ao)'—'ZbJ Acth+J Ao,y t.dy = 0 {5.19.)
X AF S S ap & @
Compte tenu de (6.16.) et _(6.17.), les Ao s'écrivent sous forme simplifiée :
p ks bx
bo, = - —7— + 8B (6.20.)
Pyt pk, b Py
AUA = (_ —ZT t_a ab - T + M)_y +—1—2T y (6.21.)
La condition de continuité (6.18.) s'écrit :
pk_ bal pk, t ok, b3 pk, b°
- B ab® - Rt Wb+ (6.22.)
a

La condition d'autocontrainte (6.19.) s'écrit explicitement :
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a pk b 2 a pkA pkA t2 +b ?
-2 btS J _TI__’X dx + 2b BtS JO dx - (T?T'ts ab + =37 ta - Mta) J-b y dy
pkA +b 4
YT ta J_b y oy o= 0
ce qui se réduit a :
pk_ b2 t_ a3 pk, t_ab pk, b% t 3 pk 5
N Rl S " N o T Reii s Rl P - Y A a2 _
61 S 21 41 a’ 3 121 5
3 2 {6.23.)
En posant ka b pkA b
B = g, M= u (6.24.)

I I
ol B et p sont des facteurs sans dimensions, et en introduisant le paramétre
sans dimensions de MOFFATT et DOWLING :

atS
B = 5f; > (6.25.)
on peut écrire les conditions(6.22)et(6.23.) sous 1la forme non dimensionnelle :
_32+Y+ﬂs 1% kAu=o (6.26.)
a? ks~ Bk K
2 k k k
a 1 A 1 "A 1 1A 1

-EZ--I-Y-B- r-—l—s-r §+§r E]J:O - (6.27.)

S S S

En €liminant p entre ces équations pour en tirer y, qui est seul utile pour
1'évaluation de la largeur effective de la semelle, on trouve :

i} a2§1+8)+i1|z_A . . (6.28.)
(1 +3s) 0 kg T+738

La contrainte primaire de flexion, donnée par la formule de NAVIER,vaut, dans
la section médiane :

_ M _ p 12 b
o = T = T
ol 2
1= B bt +6at) =507t (1+3) (6.29.)

est le moment d'inertie du demi-profil FADH (figure 6.3.) par rapport a 1'axe Gx.

En y ajoutant Ta correction Ac donnée par la formule (6.20.), ol 1'on remplace
B par son expression (6.24.), on trouve pour la répartition des contraintes dans
la semelle FA (figure 6.3.) 1'expression :

2
17 b 2b,?2 2
oo = P (- kg v (P + kg (P (6.30.)
ou y est donné par (6.28.).

Par un raisonnement analogue, on trouve dans 1'dme :

2
2
o, = PhY -k B 1L - -t eun (6.31.)
avec
2 k k
a S S 1 1
u :-—-2— +YT(“ + g + (6'32')
4b E; a 4 6
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6.4. Section en double té (figure 6.4.).

] On voit directement qu'en coupant la section droite
en deux par la ligne moyenne de 1'&me, on retrouve

un profil en U, BFHC (figure 6.4.), identique a
¢ H D celui de Ta figure 6.3., sauf que 1'épaisseur de son
““{EEZZZ ame n'est plus ta’ mais ta/2. IT en résulte qu'en
b t
L Flta s X remplagant ta par ta/Z dans les formules (6.12.) a
b 1(G h (6.31.), on obtient les contraintes de trainage de
’C/E; = cisaillement réparti pour un profil en double te.
B FlA
vy
Figure 6.4.

7. REMARQUE FINALE.

Le nombre de pages attribué au présent article n'a pas permis d'y inclure un
résultat pratique immédiat: des formules simples donnant la largeur effective de
trainage de cisaillement des quatre profils étudiés au paragraphe 6. Pour 1'éta-
blissement de ces formules, Te lecteur peut consulter la référence [21].
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