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Theorie perfectionnöe des poutres droites ä parois minces

Erweiterte Theorie der geraden Balken mit dünnwandigem Querschnitt

Improved Theory for Thin-Walled Straight Beams

Ch. MASSONNET
Professeur Ordinaire

Universite de Liege
Belgique

RESUME

La theorie classique de la f lexion-torsion des pieces ä parois minces neglige l'effet des deformations

par cisaillement sur la repartition des contraintes normales. Le memoire suppose, comme
la Mecanique des Materiaux, que les sections droites sont indeformables, c'est-ä-dire que le
materiau elastique est transversalement rigide. On montre alors que la theorie de la flexion-torsion
est rigoureuse pour un moment de flexion quadratiquement variable et un moment de torsion
lineairement variable ä condition d'adopter pour les contraintes t Celles de la Mecanique des

Materiaux et d'ajouter aux contraintes de Navier des contraintes de "tralnage de cisaillement
reparti" Aa, qui sont les memes dans toutes les sections. Les Aa s'obtiennent aisement et cons-
tituent de bonnes approximations des contraintes de "shear lag" discutees dans la litterature.

ZUSAMMENFASSUNG
Die klassische Theorie der Biegung mit Torsion von dünnwandigen Bauteilen vernachlässigt die
Wirkung der Schubverformungen auf die Verteilung der Normalspannungen. Im Beitrag wird
wie in der Festigkeitslehre angenommen, dass sich die Querschnitte in ihrer Ebene nicht verformen

oder, gleichbedeutend, dass das elastische Material im Quersinne steif ist. Es wird gezeigt,
dass die Theorie der Biegung mit Torsion für ein Biegemoment mit quadratischer und ein
Torsionsmoment mit linearer Variation unter folgenden Bedingungen streng ist: Verwendung der
Schubspannung wie in der Festigkeitslehre und Korrektur der Normalspannungsverteilung nach
Navier mit Spannungen Aa infolge eines verteilten "shear lag", welche in allen Querschnitten
gleich sind. Die Aa sind einfach zu erhalten und bilden eine gute Näherung der in der Literatur
diskutierten "shear Iag"-Spannungen.

SUMMARY
The classical theory of bending-torsion of thin-walled members disregards the effect of shear
deformations on the distribution of normal stresses. The paper assumes, as in the Mechanics of
Materials, that the cross sections do not deform in their plane, or, equivalently, that the elastic
material is transversely rigid. It is then shown that the bending-torsion theory is rigorous for a

bending moment varying quadratically or a torsional moment varying linearly: the shearing
stresses t are those of Mechanics of Materials, but the direct stresses must be corrected by
stresses Aa due to "distributed shear lag" which are the same at all cross sections. These are
easily calculated and represent good approximations of the shear lag stresses discussed in the
literature.
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1. EXAMEN CRITIQUE DE LA THEORIE DE TIMOSHENKO-VLASSOV.

La theorie de la flexion et torsion des poutres elastiques developpee au siecle
dernier par NAVIER et SAINT-VENANT a recu au vingtieme siecle une extension im-
portante, due essentiellement ä TIMOSHENKO [1] et VLASSOV [5] et subsidiairement
ä WAGNER [2], KAPPUS [3], GOODIER [4] et d'autres (voir par exemple [8] vol.II
pour 1'expose des fondements). Cette extension se situe au niveau de la theorie
"technique" des poutres elastiques, dans laquelle on admet les hypotheses suivan-
tes :

a) la poutre est prismatique et se comporte elastiquement ;

b) la section droite est indeformable dans son plan.
En 1905 [1], TIMOSHENKO a analyse,dans le cas particulier d'une poutre en double
te, le gauchissement en torsion uniforme et il a developpe une theorie de la

de ces poutres. II a obtenu ainsi la loi sectorielle
boir figure 1.1.).

rS

torsion non-uniforme
(pour les notations,

avec u et rds (l.i.:
donnant le deplacement axial w. II a postule que cette expression restait vala-
ble pour une torsion e dijj/dz variable avec z(hyp.c). WAGNER a etendu cette
theorie en 1929 aux sections ouvertes de forme quelconque [2] et VLASSOV a edi-
fie une doctrine complete de la torsion non-uniforme des poutres ä parois minces
ä section ouverte ou fermee, en supposant que l'hypothese (c) de TIMOSHENKO enon-
cee ci-dessus etait valable en general. Ces auteurs determinent la distribution
des contraintes axiales o par la loi de HOOKE

o E _flv
3Z (1.2.;

ä partir des gauchissements w des diverses sections, qui sont supposes varier
proportionnellement ä Mf. Ils deduisent des o les x par l'equation d'equilibre
de 1'element de paroi (fig. 1.2.)

a(at) _ a(-rt)
3Z 3S

o, ;i.3.)
puis ils evaluent le moment de torsion de gauchissement M.„ comme resultante de
ces contraintes tangentielles de gauchissement t.

n

^^^
b(Tt) dzdtdco tP dz

V.
ds

&-

TA^A^O

/ I

Gauchissement d'une poutre ä

parois minces.

Figure 1.1.

Repartition sur
Equilibre d'un element. l'epaisseur des con¬

traintes tangentielles.
Figure 1.2. Figure 1.3.
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Le caractere approche de cette theorie resulte du fait que les contraintes t pro-
voquent en fait un "trainage de cisaillement" (shear lag), c'est-ä-dire influen-
cent la repartition des contraintes axiales a. Les deplacements de gauchissement
w donnes par (1.1.) ne sont done qu'approches. D'ailleurs, la theorie de
TIMOSHENKO-VLASSOV se met en contradiction avec elle-meme, puisque la loi secto-
rielle (1.1.) est deduite de ce que -r, done y, est nul dans le feuillet moyen de
la paroi (fig. 1.3.a), tandis que la theorie fournit ensuite par (1.3.) des tde
gauchissement (fig. 1.3.b) qui sont uniformement repartis sur l'epaisseur (x).
La theorie generale de VLASSOV [5] peut etre resumee par les deux formules sui-
vantes

M
M M „

o ä-/x +ry + r"u (1-4-)
y x in

tT "-pS (s) -J-S (s) -f-S (s) (1.5.)
y y x ui

oü N, M M M T et T sont les elements de reduction classiques, B(z) est
x y z x y

le bi-moment, ai la coordonnee sectorielle, I le moment d'inertie sectoriel prin-
0)

cipal et H la derivee du bimoment B par rapport ä la coordonnee longitudinalez
Cü

Ces formules ne tiennent pas compte du "shear lag". En effet, dans le cas
particulier de la flexion simple, les formules ci-dessus se reduisent ä :

M x M y T T

a=-y+* U - * S (s) +/ S (s), (1.6.) (1.7.)
y x y y x

c'est-ä-dire la theorie "technique" classique des poutres droites elastiques.

2. PRISE EN COMPTE DES DEFORMATIONS PAR CISAILLEMENT ET TRAINAGE DE CISAILLEMENT.

De nombreux auteurs ont essaye de remedier au defaut fundamental de la theorie de
TIMOSHENKO-VLASSOV, mais toutes ces theories, basees sur des hypotheses simplifi-
catrices (cf. [11] ä [17]), restent si compliquees qu'on ne peut guere envisager
leur application en Bureau d'Etudes.
Une theorie "technique" equilibree doit tenir compte du gauchissement de la
section associee au cisaillement non-uniforme de la section droite. La prise en
compte de ce cisaillement non-uniforme doit se faire en se basant sur des
hypotheses simplificatrices ayant, autant que possible, le meme degre d'approximation
que Celles de la theorie de TIMOSHENKO-VLASSOV.

Le but du present memoire est :

1) de presenter une theorie perfectionnee tenant compte - de maniere approchee -
du phenomene de trainage de cisaillement dans le cas oü le moment flechissant
M varie quadratiquement ;

2) d'etendre egalement la theorie classique de la torsion de SAINT-VENANT au cas
d'un moment de torsion lineairement variable.

(x) l'auteur ne connatt aucune etude systematique de l'erreur commise par cette
hypothese, autrement dit du degre de validite de la theorie de TIMOSHENKO -
VLASSOV.
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3. THEORIE TECHNIQUE DES POUTRES CONSIDEREE COMME THEORIE ELASTIQUE RIGOUREUSE
POUR UN MATERIAU ORTHOTROPE ADEQUAT.

La theorie simplifiee classique, presentee dans les textes elementaires de
Mecanique des materiaux, y compris les developpements que lui ont donne TIMOSHENKO

et VLASSOV, differe de la Theorie de l'Elasticite parce que :

a) eile considere la section droite comme indeformable ;

b) elles ne se preoccupe pas de la repartition detaillee des forces transversales
de surface ou de volume mais envisage uniquement leur resultante, qui est
generalement une force transversale uniformement repartie d'intensite p.

Cette theorie technique a ainsi l'air de differer significativement de l'ensemble
de Solutions obtenues par SAINT-VENANT pour les pieces longues prismatiques sol-
licitees ä leurs extremites. Or, on peut aisement montrer qu'elle est en realite
une theorie elastique rigoureuse pour un certain materiau elastique orthotrope.
Ce fait a 1'avantage de :

1) clarifier les rapports entre la theorie technique de la Mecanique des Mate¬
riaux et la Theorie de l'Elasticite ;

2) permettre d'appliquer rigoureusement ä la theorie technique les theoremes va-
riationnels deduits des principes des deplacements et des contraintes virtuelles,

ainsi que le theoreme d'unicite de KIRCHHOFF, qui affirme que, quand on
a trouve une Solution satisfaisante ä toutes les equations de 1'elasticite,
c'est la Solution du probleme.

LEKHNITZKII montre que, pour un materiau orthogonalement anisotrope, on peut
prendre les equations constitutives suivantes [6]:

(3.1.

Yxy G^Txy <3-2-)

Les douze constantes elastiques E-,, E?, E,; G,, G?, G,; v,?, v«., ^io» v,-,, v?o,
v™ sont reliees par les trois relations de reciprocite :

Elv21 E2V12 ; E2V32 E3V23 ; E3V13 Elv31 (3-3-}
ce qui laisse neuf constantes independantes.

Pour realiser l'hypothese classique de la Mecanique des Materiaux, ä savoir l'in-
deformabilite de la section droite, nous devons choisir les constantes elastiques
de facon ä supprimer toute deformation dans le plan de la section droite ; ceci
entraine

Ex ° • ey ° > ^xy °

et par consequent E, E? » ; v.,, v„ v,, v«, =0 ; G,? 0

Comme d'autre part, il n'y a pas de raison de supposer G,^ et G03 differents, on

posera G,, G?, G et les equations (3.1.) et (3.2.) se reduisent alors aux

relations bien connues de la theorie technique :

£x
1 "21

h "°y "¦
w31

ey
v12

°x +
1 v32

"
E3 az

£z
v13

cx -
v23 >i az

V 1
"

G23
1

yz
5 Yxz

1

G13
1

xz
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'z

e e Y =0 (3.4.)x y 'xy '
1

Yzs G Tzs

Les modules E et G sont ä present entierement independants, ce qui permet d'envi-
sager des materiaux tres deformables par cisaillement et dans lesquels le traina-
ge de cisaillement est particulierement important. Pour mesurer cette deformabi-
lite par cisaillement, il est commode d'introduire le coefficient non dimension-
nel k appele taux d'orthotropie :

k - | ¦ (3.5.)

Dans une autre etude [20], l'auteur a montre que la theorie elastique de la
flexion et torsion des barres due ä SAINT-VENANT pouvait etre generalisee en toute
rigueur respectivement pour un effort tranchant et pour un moment de torsion li-
neairement variable.
Dans le present memoire, l'auteur n'etudie que les pieces ä parois minces dont la
paroi, rapportee aux coordonnees z et s, peut etre consideree comme etant en etat
plan de contrainte. Dans ce cas, l'equation de compatibilite unique s'ecrit en
1'absence de forces de volume :

i

(3.6.)

En y remplacant les e.. par leurs valeurs (3.4.) en fonction de o et t, on ob-

tient l'equation de BELTRAMI-MICHELL (en posant pour simplifier a =a, t t)

§ k asl- (3-7-)

Toute theorie "technique" satisfaisant aux equations (3.4.) et (3.7.) ci-dessus
sera une theorie elastique (orthotrope) rigoureuse, si eile satisfait aussi
ä l'equation d'equilibre (1.3. et aux conditions ä la surface.
Sur base de quelques exemples traites plus loin, il est facile de montrer qu'on
est libre d'introduire dans la theorie technique des forces de volume choisies de
maniere ä satisfaire rigoureusement aux equations d'equilibre en x et y.
Pour terminer ce paragraphe, notons que l'energie potentielle interne associee
au materiau orthotrope "technique" defini dans le present paragraphe a pour
expression

2 2
8 e. 3 E 3 Y,,z

+ y 'zs
3Z 3S

3S 3Z

u f 4+ydv
2 2

{H- + H-) dV (3.8/
V

c c

Exprimee en fonction des composantes (e,y) du tenseur-deformation, c'est une
fonctionnelle quadratique definie positive des e... Par consequent, la demons-

tration du theoreme de KIRCHHOFF relatif ä l'unicite de la Solution est applicable
ä ce materiau. En d'autres termes, si l'on trouve une Solution au probleme,

c'est sa Solution unique.
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4. EXAMEN CRITIQUE DES PRINCIPALES RECHERCHES SUR LA THEORIE COMPLETE DES

POUTRES ELASTIQUES A PAROIS MINCES.

Ainsi qu'on l'a explique au paragraphe 1, la theorie de TIMOSHENKO-VLASSOV ne
tient pas compte de 1'effet des deformations y dues aux contraintes de cisaillement

t. Un progres considerable a ete realise en 1947 par ARGYRIS et DÜNNE [9].
Dans une serie de memoires, ils developpent une theorie technique generale des
tubes cylindriques et coniques soumis ä flexion et torsion, qui tient compte du

trainage de cisaillement. Leur approche est basee sur l'emploi d'une fonction
de contrainte. Comme ils se restreignent aux tubes dont toutes les sections
sont geometriquement semblables, ils peuvent separer les variables z et s et ob-
tenir une Solution. Dans cette Solution, le trainage de cisaillement apparait
sous forme de termes correctifs ajoutes aux contraintes de la theorie classique
de NAVIER - SAINT-VENANT, et exprimes sous forme de series de fonctions propres
orthogonales representant des etats d'autocontrainte. Une discussion claire de
ces etats d'autocontrainte est presentee en 1950 par FLÜGGE et MARGUERRE [10];
eile permet de determiner le trainage de cisaillement en torsion.
En 1951, WITTRICK [11] reprend le meme probleme qu'ARGYRIS et DÜNNE pour un tube
monocellulaire mais en supposant que la section droite de ce tube varie d'une
maniere arbitraire le long de l'axe. Dans ce cas, une Solution par Separation des
variables n'est pas possible et les fonctions propres de ARGYRIS et DÜNNE n'exis-
tent pas. La meme annee, STÜSSI presente [12] une theorie des poutres ä parois
minces qui ne tient pas compte des deformations par cisaillement, puis publie en
1952 une theorie plus complete [13], qui ne se prete pourtant pas aisement ä la
determination des contraintes a et t.
II faut encore mentionner :

- en 1959, le memoire de KUBITZKI [14] qui analyse la flexion et torsion des
caissons ä parois minces en employant la methode des forces ainsi que celle
des deplacements ;

- en 1967, le memoire de SCHROEDER [15], qui resout le probleme du trainage de
cisaillement par une methode approchee ; les deplacements longitudinaux sont
supposes varier suivant des lois paraboliques dont les parametres sont determines

par le principe variationnel du minimum de l'energie potentielle.
En 1970, ROIK et SEDLACEK proposent une theorie matricielle, adaptee au calcul
sur ordinateur [16], dans laquelle on se donne les distributions des gauchisse-
ments elementaires sur la base de considerations physiques. On calcule le poten-
tiel total de la poutre et, en appliquant le principe des deplacements virtuels,
on en deduit les equations d'EULER associees ä ce principe variationnel, qui for-
ment un Systeme d'equations differentielles decouplees. Cette methode est deve-
loppee davantage en 1973, par BÖGE et ROIK [17] qui idealisent la poutre par une
serie d'elements finis, en vue du calcul sur ordinateur.
Ces deux derniers memoires sont importants pour celui qui desire automatiser la
recherche des contraintes a et x dans les poutres ä parois minces continues sur
plusieurs appuis et soumises ä des mises en Charge complexes.

Notre but etant d'analyser le probleme du trainage de cisaillement "reparti" dans
des cas simples par des formules analytiques, nous ne discuterons pas davantage
les memoires [14], [15], [16] et [17].
Pour terminer cette revue des recherches existantes, mentionnons encore un memoire

remarquable de VAN DER NEUT, date de 1970 [18], sur les caissons multicellu-
laires, developpe sur la base de considerations physiques simples de nature
intuitive, dans l'ignorance du travail de WITTRICK. Les resultats obtenus par
VAN DER NEUT ne sont pas etablis rigoureusement.En effet, l'equation de compati-
bilite, dont il sera montre plus loin que ces resultats decoulent, n'est meme pas
formulee. Quoiqu'il en soit, VAN DER NEUT retrouve, entre autres, un des resultats

fondamentaux de WITTRICK, ä savoir que, pour un tube prismatique flechi et



IABSE PERIODICA 4/1982 IABSE PROCEEDINGS P-55/82 87

tordu, la distribution des contraintes de cisaillement est donnee exactement par
la theorie classique, meme quand l'effort tranchant et le moment de torsion va-
rient lineairement avec la coordonnee axiale z. La distribution des contraintes
normales subit alors une correction independante de z, dont la meme pour toutes
les sections.

5. ETABLISSEMENT PAR UNE METHODE SIMPLE DES PRINCIPAUX RESULTATS
OBTENUS PAR WITTRICK.

5.1. Introduction.
Les resultats obtenus par WITTRICK dans son memoire [11] ä la
culs complexes peuvent s'etablir tres simplement. En effet, 1

differentielles gouvernant le champ de contraintes sont :

suite de longs
es seules equa

a) l'equation d'equilibre (1.3.)

b) l'equation de compatibilite (3.

Mit)
3S

32o

SS

»(at)
3Z,
3 T

3Z3S

0

avec

D'apres le theoreme d'unicite de KIRCHHOFF, qui, en vertu du p

applicable au materiau orthotrope, il suffit d'obtenir une sol
satisfaisant (5.1.) et (5.2.) pour avoir la Solution unique de

Envisageons done (figure 5.1.), une poutre tubulaire ä parois
forces transversales uniformes ayant, par rapport au centre de
un bras de levier d. Ces forces sont äquivalentes ä un moment
airement variable

aragraphe 3, e
ution du probl

ce probleme.

minces chargee
cisaillement
de torsion li

cal-
tions

1.)

2.)

st
eme

de

0,
ne-

M, p dz

To

Flexion et torsion d'une poutre
tubulaire.
Figure 5.1.

(5.3.)
ä un effort tranchant deduit de la formu-

dT
p - -t— et qui vaut :le connue

T - P (5.4.)
oü T est l'effort tranchant dans la
section z

sant :

V

0 et enfin ä un moment flechis-

2

T dz £* + T z + C
2 o (5.5.)

oü C est une constante d'Integration egale
au moment M dans la section oriqine z=0.

x 3

Comme le principe de superposition est va-
lide dans une theorie elastique du premier
ordre, on peut examiner ä part la flexion
simple avec effort tranchant et la torsioa

5.2. Flexion simple.
Nous allons montrer que les equations (5.1.) et (5.2.) sont satisfaites par
les formules :

M yxz

TStt --
Aa(x,y)

(*)
[5.6.)

[5.7.)
(*) f represente le flux de cisaillement hyperstatique existant au point origine

0
s 0.
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c'est-ä-dire par les formules classiques de la Mecanique des Materiaux, la
premiere d'entre elles etant corrigee par l'adjonction d'une correction Aa(x,y),
independante de z, qui represente ce que nous appellerons les contraintes de

trainage de cisaillement reparti.
En effet, comme Aa ne depend pas de z, cette correction n'intervient pas dans 1'
equation d'equilibre (5.1.). Des lors, les contraintes tangentielles sont obte-
nues en se servant de l'equation d'equilibre oü l'on remplace a par 1'expression
classique de NAVIER

M y
o —

Comme l'equation (5.1.) integree depuis un bord libre oü x 0, ä savoir

x t | t|| ds l f t y ds (5.8.)
•'o Jo

est identique ä la formule elementaire

t f. [5.9.)TS(y)
I o

oü S(y) est le moment statique par rapport ä l'axe neutre de flexion Ox, de la
partie de la section comprise entre le point d'arc s 0 et le point d'axe s s,
on voit que les x obeissent ä la loi elementaire classique de la Mecanique des
Materiaux. „H y jf.Le champ de contraintes elementaire (o —y— tx -*- + f est done clairement
un champ statiquement admissible. Cependant, il n'est pas compatible, sans quoi
ce serait le champ exaet que nous cherchons. Pour trouver la correction Aa de

trainage de cisaillement reparti intervenant dans (5.6.), il suffit d'exprimer
que (5.6.) et (5.7.) satisfont ä l'equation de compatibilite (5.2.). Comme

q> o M y2 2 vJ
3V3S" (-j-) 0,

cette equation se reduit ä

3 (Aa) TS
k

3Z3S Mt
IS

(5.10.)

Supposons pour simplifier qu'on prenne comme origine des axes s un point oü le
flux hyperstatique f s'annule. Si la section est symetrique par rapport ä Oy,

on sait que ce point est le point A d'intersection de la ligne moyenne avec l'axe
de symetrie (figure 5.1.).

3T
Remarquant de plus que
ple

?,z p, on peut ecrire (5.10.) sous la forme plus sim-

4-W -Ö S'(s).
ds^

(5.11.)

En integrant deux fois, on trouve successivement, dans le cas oü t est constant
par troncons :

(5.12.)

(5.13.)

Les constantes M et N se determinent en exprimant que les Aa sont des auto-

d(Aa)
ds -f| S(S) + M.

Aa - f£ S(s) ds + Ms + N
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contraintes, c'est-ä-dire que

N(Ao) Ao dA 0
JA

Mx (Aa) Aa y dA 0

[5.14.)

[5.15.)

5.3. Torsion sous 1'effet d'un moment de torsion lineairement variable.
Nous allons montrer que, dans ce cas-ci, les equations (5.1.) et (5.2.) sont
satisfaites par les equations

Aa
M

(x,y)

t T
z

2"S

[5.16.;

[s.u.:
oü S -r i) r ds est l'aire comprise ä l'interieur de la ligne moyenne de la pa-

ri I t 1

roi (figure 6.1.). En effet, comme, par (5.12.), tx constante, \ ' 0 et
3S

l'equation d'equilibre (5.1.) entraine 3^° ' 0, c'est-ä-dire Aa independant
3 Z

de z, ce qui est conforme ä (5.16.). Les corrections Aa de trainage de cisaillement

reparti sont done donnees par l'equation de compatibilite (5.2.), qui
s'ecrit ä present :

2
3 Ao
~2~
3S

3Z3S

Mz

v?St(wf) - k
Mz j_
TS 3s

Dans le cas courant oü l'epaisseur t est constante, 3/3S
se reduit ä

Aa

(5.18.;

0 et (5.18.)

A s + Bs + C (5.19.)
En exprimant que les Ao sont des autocontraintes, on trouve que la constante C

est nulle ä cause de (5.14.). Quant aux constantes A et B, elles se determinent
par les equations de moment :

Aa y dA 0 Aa x dA 0 (5.20.)

6. ILLUSTRATION SUR DES EXEMPLES SIMPLES DE LA DETERMINATION DES CONTRAINTES
DE TRAINAGE DE CISAILLEMENT REPARTI.

6.1. Section reetangulaire (figure 6.1.).
Comme,dans le cas actuel, Aa doit etre une fonction
impaire en y, il est avantageux de prendre comme
variable independante y plutöt que s.

L'equation (5.11.
variable :

peut s'ecrire, en adoptant cette

32(Ao)

1/ _
pk dS(y)
It dy

^t

ilillllllll
^LB

Section reetangulaire mince.

Figure 6.1.
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Deux integrations successives donnent respectivement :

»M - - g S(y) + M
sy

Aa "Tt S(y) dy + My + N (6.1.)

La fonction Aa devant etre impaire, N 0. La constante M se determine en tra-
duisant le fait que les Aa sont des autocontraintes, c'est-ä-dire que

Mx (Aa) 0 [6.2.

La figure montre que le moment statique par rapport ä l'axe Gx de la partie ha-
churee vaut

t /k2 2,
1 (b - y ;S(y)

II en resulte que

S(y) dy (b^y - ^-]

et, par (6.1.)

2

Ao
pk ,y
TT (3 b y) + My [6.3.'

Remplacant Aa par cette valeur dans la condition d'autocontrainte (6.2.), on
trouve

— f Ott - b2y) y dy + M f y2 dy 0 d'oü M ^- •TT

Remplacant M par cette valeur dans (6.3.), nous obtenons l'expression explicite
des contraintes de "shear lag reparti"

[6.4.)Aa (y) |jf (y3 - | b2 y)

6.2. Section en te (figure 6.2.).
Conformement aux hypotheses faites par tous les auteurs qui ont analyse ce
probleme (cf. p. ex. [9]), nous supposons que la section est composee d'une nervure
massive (figure 6.2.) oü les effets de trainage de cisaillement sont negligeables,
et d'une semelle tres large d'epaisseur t et de largeur totale 2a.

-b=~Hda^i—

LLilLLLLU

cjn

^—^— z
0

'y Poutre en te chargee uniformement

Figure 6.2.a. Figure 6.2.b.
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Nous supposons que la poutre en te de longueur 21 (figure 6.2.b.) est chargee
de forces transversales uniformes d'intensite p. On a alors par la statique :

M(z) ¦ PH' - z') - — dM
et T(z) dz pz

Le moment statique de la partie hachuree de la serielle vaut :

S(s) - std d'oü i| - td
o s

oü d est la valeur absolue de la distance du centre de gravite de la section au
plan moyen de la serielle. La Mecanique des Materiaux donne :

[6.5/

'6.6.'

TS
TS

It
pzstd _ pzsd
It I (6.7.)

Les contraintes de trainage de cisaillement sont donnees par la formule (5.11.),
qui s'ecrit ici :

d2(Ao) pk .i/o _ PM
It 3 Kh) ' I (6.8.)

Une premiere integration donne :

d(Acr) _ pkds r
ds I L'

puis une seconde integration fournit les contraintes de trainage de cisaillement
2

+ Cs + C. (6.9.)Aa(s) P^
La constante C est nulle parce que Ao(s) doit etre une fonction paire. La
constante C s'obtient en exprimant que les Aa sont des autocontraintes, dont
la resultante

f+a
Aa ds 0. (6.10.)

¦'-a

En remplagant Aa par sa valeur (6.9.) dans (6.10.), on trouve la condition

kpd
TT

d'oü 1 'on tire
C

+a
s ds + C

+a
ds 0,

kpda
—Biet,

par consequent,

/ kpd ,- 2 2,Aa(s) -^- (3s - a
61 (6.11.)

6.3. Section en caisson.

h| [ts p

bT-fi^~r iii
ly

Poutre en caisson sur deux appuis chargee uniformement.

Figure 6.3.
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Le tube ä section reetangulaire reDresente ä la figure 6.3. est librement appuye
ä ses deux extremites et Charge de forces transversales uniformes d'intensite p

appliquees dans son plan de symetrie Gy. Le moment et l'effort tranchant dans
la section courante valent

M*(z) =J (l2 - z2) ; Tx(z) - pz (6.12.)

L'epaisseur des parois est t pour les semelles AB et CD, t pour les ämes
BC et DA.

s

Par antimetrie, x 0 aux milieux F et H des semelles. On peut done couper la
paroi en ces points parallelement ä z et considerer le probleme plus simple du

demi-profil en U FADH, Charge de forces transversales p/2 qui produisent les
elements de reduction

M(z) P (l2 - z2) ; T(z) - J* (6.12.)'

Comme, ici encore, Aa doit etre une fonction impaire en y, il y a avantage ä

prendre comme variables independantes x dans la semelle AF et y dans l'äme AD.

On trouve pour 1'integrale S ds ;
2

Dans la semelle : S dx t b 4- + A* (0 < x < a) (6.13.)
J S S L r,

i t b t yJ
Dans 1 'äme : SA dx (tg ab + -^—) y - -2g— + M

Le trainage de cisaillement vaut, par la formule (5.13.) :

pk 2

Dans la semelle : Aa - X- ^- + Ax + B (6.14.)
pk. t b t y

Dans Tarne : hca ' TTT [(t$ ab +-^—)y - -^—] + My + N (6.15.)
a

Les constantes d'integration A, B, M, N, se determinent par les conditions sui-
vantes :

1) parite en x de Ao dans la semelle : A 0 (6.16.)
2) imparite en y de Aa dans Tarne : N 0 (6.17.)
3) continuite de Aa en A (jonction äme-semelle) : (Ao<.) (Aa.) (6.18.)

o X-a M y — D

4) traduetion du fait que les Ao sont des autocontraintes :

Aa v t dy 0 (6.19.)
AD

a a
M (Ao) 2 b Aa t dx +

JAF ss
Compte tenu de (6.16.) et (6.17.), les Ao s'ecrivent sous forme simplifiee :

p k bx2

Aos |j + B (6.20.)
2

pk. t pk. b p k.
3

a

La condition de continuite (6.18.) s'ecrit :

pk ba pk. t o pk. b pk. b

-—j. + B -^^ab' --{p- + Mb *-^— (6.22.)
a

La condition d'autocontrainte (6.19.) s'ecrit explicitement :
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2 bt
¦a pk b

p

~4T x dx + 2b Bt,
pk pk t

dx (^A tg ab + _A_ ^ Mt,
+b

2
y dy

pkA
+ ~T7T *a

+b
4

y dy

ce qui se reduit ä :

2 3 2
pk b t a pk. t ab pk. b t

-
S

6IS + 2abts B - (-V- + -V-1
En posant pks b~

M
pkAb

Mt
2b!

+
PkA ^ 2b!

onV 3 121 5
u

(6.23.)

(6.24.)j j
oü ß et y sont des facteurs sans dimensions, et en introduisant le parametre
sans dimensions de MOFFATT et DOWLING :

at
(6.25.:s

^a~

on peut ecrire les conditions(6.22) et(6.23.) sous la forme non dimensionnelle
2 k„

a A

4b
Y

1 kA kA

6T- Tvs s

0.

12b

1 kA

~5 T^
"

TFT^"
1 kA 1 1 kA 1

0

(6.26.)

(6.27.)

En eliminant y entre ces equations pour en tirer y, qui est seul utile pour
Tevaluation de la largeur effective de la semelle, on trouve :

Y
ä (1 + B)

4b2(l + 3ß)

1J^ kA

30 TT 1 + 3ß
' [6.28.)

La contrainte primaire de flexion, donnee par la formule de NAVIER.vaut, dans
la section mediane :

Mb p l2 b
a x —W

oü 2b'
at. § b3 t, (1 + 3B) [6.29.I X- (bt + 6 _3 v a s' i a

est le moment d'inertie du demi-profil FADH (figure 6.3.) par rapport ä Taxe Gx.

En y ajoutant la correction Ao donnee par la formule (6.20.), oü Ton remplace
B par son expression (6.24.), on trouve pour la repartition des contraintes dans
la semelle FA (figure 6.3.) Texpression :

P ]" b n - b /2b,2 + k ,x.2,[1 " ks y (i ks ^V's "47
oü y est donne par (6.28.).
Par un raisonnement analogue, on trouve dans Tarne

avec
ca

_ P i2y
41 {1 ¦ • kA

u -
a2

4b7
%?

k
s

Y1T
a

2b.2 1 ,y 2
_

1

T> X Xl 7 + li])
1

7
1

(6.30.)

(6.31.)

(6.32.)
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6.4. Section en double te (figure 6.4.).

c H D

\//)>)\/////
b __»: ».

- tfl X

b
F i

G
1

\; j >rs;'/s.
B

•

1 A
1 *

ty

Figure 6.4.

On voit directement qu'en coupant la section droite
en deux par la ligne moyenne de Tarne, on retrouve
un profil en U, BFHC (figure 6.4.), identique ä

celui de la figure 6.3., sauf que l'epaisseur de son
äme n'est plus t maisa' V2- II en resulte qu'en

äremplagant t par t/2 dans les formules (6.12.a a

(6.31.), on obtient les contraintes de trainage de
cisaillement reparti pour un profil en double te.

7. REMARQUE FINALE.

Le nombre de pages attribue au present article n'a pas permis d'y inclure un
resultat pratique immediat: des formules simples donnant la largeur effective de

trainage de cisaillement des quatre profus etudies au paragraphe 6. Pour Teta-
blissement de ces formules, le lecteur peut consulter la reference [21].
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