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Numerical Analysis of Continuous Helicoidal Girders

Calcul numerique de poutres continues spirales

Numerische Berechnung durchlaufender spiralförmiger Träger

V.A. PULMANO A.P. KABAILA

Associate Professor Associate Professor

University of New South Wales
Kensington, Sydney, Australia

SUMMARY
A numerical analysis of continuous helicoidal girder by the stiffness method is presented.
The füll stiffness matrix of a helicoidal member is derived by first evaluating the flexibility
matrix at one end which when inverted gives the end stiffness matrix. The integrals associated
with the end flexibility matrix and equivalent load vector, are numerically evaluated by
Simpson's rule using the Computer. The analysis of a helicoidal girder of varying cross-
section can easily be treated. Numerical examples are presented to illustrate the proposed
method.

r£sum£
Une methode numerique pour le calcul de poutres continues spirales est presentee. La
matrice complete de rigidite d'un element spiral est derivee en evaluant la matrice de flexi-
bilite ä une extremite puis en determinant la matrice inverse. L'integrale correspondant ä la
matrice de flexibilite et au vecteur Charge est calculee numeriquement ä l'aide de la methode
de Simpson. Le calcul de poutres spirales ä section variable est egalement possible. Des
exemples numeriques illustrent la methode.

ZUSAMMENFASSUNG
Eine numerische Methode zur Berechnung durchlaufender spiralförmiger Träger wird
dargestellt. Die vollständige Steifigkeitsmatrix eines spiralförmigen Elementes ergibt sich durch
zahlenmässige Festlegung der Flexibilitätsmatrix an einem Ende und anschliessender
Bestimmung der Kehrmatrix. Die der Flexibilitätsmatrix und dem äquivalenten Lastvektor
zugeordneten Integrale werden zahlenmässig mittels Simpsonmethode festgelegt. Variable
Querschnitte sind einfach zu berücksichtigen. Numerische Beispiele erläutern die
vorgeschlagene Berechnungsmethode.
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1. INTRODUCTION

Earlier works on helicoidal girders [1,2,3,4] treated mainly the problem
of helicoidal staircases which are indeterminate to the sixth degree. The
analysis of continuous helicoidal girder has been attempted by Abdul-Baki
and Shukair [5] by deriving explicitly the end flexibility matrix of a
helicoidal segment which, when inverted, gives the end stiffness matrix.
However, the resulting expressions for the different terms in the end
flexibility matrix are very lengthy, and therefore inconvenient. Derron and
Jirousek [6] presented a method of analysis of helicoidal girders, which
was based on an assumed displacement field. In this respect their analysis
is similar to the customary finite element formulation leading to approximate
Solution. The accuracy of Solution usually improves as the number of elements
to model a given problem is increased.

In this paper the integrals associated with the derivation of the basic
matrices, viz., flexibility matrix, equivalent nodal loads are derived in the
exact form, but the Integration is carried out numerically. The method, therefore,

is substantially different from those described in the above references.
The effects of bending, shear, axial and torsional deformations are included
without difficulty, however the effects of warping are excluded. In the analysis,

the structure is assumed to be linearly elastic, and to obey other basic
assumptions related to small deflection theory. Numerical examples are
presented.

2. THEORETICAL CONSIDERATIONS

2.1 Geometry and Axis Transformation

In Fig. l(a), a helicoidal member AB is shown with the nodal coordinates in the
positive directions and their numbering. The nodal axes are taken parallel to the
orthogonal reference axes xj At any section C, defineel by_angle ß^ the member
axes are defined by three mutually perpendicular axes Xj, x2, and x3 which
coincide respectively with the tangent to the helix, normal to the helix (which
is al_so normal to the generator of the cylinder), and the binormal to the helix.
The x2 and x3 axes are assumed to coincide with principal axes of the cross-
section of the helicoidal member.

The member axis x. and the reference axis x- are related by the equations

{x>

5 f.x,12 jo13

22 2 3

-32 -3 3

{X> [X] {x> CD

in which [X] is the rotation matrix. The terra I^l: in Eq. 1 is the cosine of the
angle between the member axis x^ and the reference axis x^. Considering the geo
metry of the helicoidal member of Fig.
rotation matrix, X, are as follows:

1, it can be shown that the terms of the

[X]
cos a cos ß cos a sin ß sin a

-sin ß cos ß 0

-sin a cos ß -sin a sin ß cos a

(2)
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Angle a. defines the inclination of the helix, angle ß, the position of the point
considered. Both a and ß are shown in Fig. 1.

2.2 End Flexibility of Helicoidal Member.

As shown in Fig. l(b), end A of the helicoidal member AB is considered to be

fixed. The end actions pR, applied at B, are expressed in terms of the nodal
axes. The internal actions, {oX at any section C are in terms of end actions pR
and aregiven by the matrix expression

{ac} H {pB} (3)

in which {ac} {N S^ S^ T M^ M^} {Pß} {Pßi p^ pBj p^ p^ p^},
_

H transformation matrix, N axial force, S- ,S- shear forces in the x2
x2 x3

x3 directions, respectively, T twisting moment, and M- ,M- bending moments
X2 X3

about x2 and x3 axes, respectively.

In Eq. 3, the transformation matrix H, as shown elsewhere [7], is simply the
rotation matrix, R and the translation matrix T, that is,product of the

in which
A
R (5)

H R T

I 0

X I
(6)

0 -r3 r2

T3 0 -ri
r2 ri 0

(4)

(7)

B C

ri Xi - xi R(sin tia - sin ß)
B C

r2 x2 - x2 R(-cos nD + cos ß)
r r

X xf " x, " R tan a (ßD- ß)
3 3 3 ß

X2

X3

12.

XX
4?V X3 10

^>5«?
M3rf a

Xl

x3 B

kx
f 1 a Xl

(c) Development of Member AB

'x2

\
*X

^X3

Xl

bXl

FIG. 1 HELICOIDAL MEMBER AB SHOWING ITS REFERENCE AXES,
MEMBER AXES AND NUMBERING OF NODAL C00RDINATES.
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R radius of circular cylinder defining the helix
I (3x3) identity matrix

Substitution of Eqs. 5 and 6 to Eq. 4 yields

H

X 0

XX X
(8)

Using the principle of Virtual work, the end flexibility, fRR, of the helicoidal
member AB is evaluated from the equation

B
T -if / H1 D H ds (9)

A

where D [EA1 ^2 GA3 GJ EI2 EI^, in which the symbol |_~|

denotes a diagonal matrix
E modulus of elasticity

Ai,A2,A3 the area of section, the shear area in x2 - direction,
and the shear area in x3 direction, respectively.

J torsion constant

I2,I3 moment of inertia about x2 and x3 axes, respectively
ds R dß/cos a

In evaluating Eq. 9, a numerical procedure is used. This approach entails the
evaluation of the various matrices at discrete points along the member and the
Integration is performed numerically by Simpson's rule.

2.3 Stiffness Matrix of Member AB

The inversion of matrix fgB defined by Eq. 9 gives the end stiffness kBB, i.e.

kBB " V1 C10)

such that
<PB} [kBBl {ÜB} (11)

in which {pg} and {ug} are the forces and displacements at the end of the
cantiievered helicoidal member. If the helicoidal member is a part of a structure,
then in addition to the displacements of one end relative to the other, it may
also undergo rigid body motion defined by the displacement uA at end A. In
order to establish a member stiffness, k, these rigid body displacements must
be taken into account. The stiffness matrix, k, which relates the end forces
and end displacements in terms of nodal axes is given by the following equation,

{pAPB} W {uAuß} (12)

The end forces p. at A are in equilibrium with pR, thus
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Pa =-t Pb

The end actions at A and B in terms of the p are therefore given by

(13)

'bJ

-T

[pB] (14)

and by contragredience,

B^J [-T' I] (uA uB} (15)

Since the strain energy, U, in the helicoidal member remains the same with or
without the inclusion of the rigid body motion, the strain energy in terms of
kBB iS 8iven by

U " ** »J kBB "B

i r T Ti^UA UB] [kBß] [-T' I] (16)

and in terms of the füll stiffness matrix, k, of helicoidal member,

rfujuj] [k] (17)

Comparing Eqs. 16 and 17, it follows that

k [kBß] [-T1 I] (18)

or
TkBBT

"kBBT

-T k
BB

BB
(19)

Equation 19 is the stiffness matrix of the helicoidal member AB expressed in
terms of the nodal axes.

2.4 Equivalent Nodal Loads {Q}

2.4.1 Concentrated load on AB

Let the load vector at D, expressed in terms of the nodal axes, be denoted
{pn} { pn pn pn pn }. The angle £l„ defines the location of load pn

as shown in Fig. 2(a). It can be shown that the displacement vector at the
release B, caused by pp at point D, is given by

BO / HT D"1 H ds
o

(20)
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where H0 is the transformation matrix of the loads at D to the internal actions
{o>}. To calculate H0, the expression given by Eq. 8 applies, but Üq replaces
ßg, coordinates of point D replace that of B, and for ß > fiD, H0 0.

Having found ugo and fgg, the reaction pB are found considering the compatibility
condition,

UBO + fBB Pß °

'fBB UB0 "kBB UB0

(21)

(22)

(a) Concentrated Load Vector at D, {p_}

X2
x3

\
ß.-.

.6

XXr
a.-~

Xl

x3 X2

W W(0)~-j — R

fcffi^Mtx

\\

iX
Xl

(b) Distributed Loading, w w(6)

FIG. 2 CONCENTRATED AND DISTRIBUTED LOADINGS ON

HELICOIDAL MEMBER AB.



IABSE PERIODICA 4/1981 IABSE PROCEEDINGS P-48/81 171

By statics, the reactions at A are given by

"TDA PD - TBAPB (23)

The equivalent nodal loads, {Q} {QA Qg} which are numerically equal to the
end reactions but act in the opposite directions, are given by,

{Q> {QA Qg> -{PA PB> (24)

2.4.2 Distributed Loading on AB

Consider the cantiievered helicoidal member AB subjected to a distributed
loading, w w(6), in which 9 is a horizontal angle as shown in Fig. 2(b). The

components of the distributed loading are considered positive in the positive
directions of the x^ - axes. The internal forces at any section C, due to
distributed loading on portion CB, are given by

{ac> R / T dF (25)

B

where R and T are the rotation and translation matrices, respectively, and dF is
the elemental load vector defined by angle 9.

For a uniformly distributed load with intensity wQ per unit length of the
horizontal projection, and acting parallel to the x3 - axis,

{dF} {0 0 wRdö 0 0 0}
o

(26)

Substitution of Eq. 26 into Eq. 25, and evaluation of the resulting integral
yields,

K>
X o

o X

wQR (ß-fiB)
2

-w0R [sin ß - sin% - (ß-ftg) cos ß]

+w0R2 [cos ß - cosflg + (ß-ßß) sin ß]

0

»w (27)

The end displacements ugo due to a uniformly distributed load w0 is then
given by, n

B -l T
uD / HD H ds

B0
U

W

"a
(28)

and hence, the end reactions at B are

"kBB UB0 (29)

From equilibrium conditions, the reactions at A are

PA "TBA Pß - '4 TCA dF (30)
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The second term of the right-hand side of Eq. 30 is simply equal to second
matrix of the right-hand side of Eq. 27 but ß is now replaced by ßA.

3. NUMERICAL EXAMPLES

3.1 Example 1 Deflections at Free End of Cantilever Helicoidal Girders

The vertical deflections at the free end of cantiievered helicoidal girders
have been evaluated for girders with a uniform cross-section, linearly
varying depth and parabolically varying depth. The geometric and material
properties of these girders are given in the figure of Table 1.

The girder of a uniform section has been analysed considering two load cases,
namely; (a) a point load at free end, and (b) a uniformly distributed load
of intensity w0 per unit length of horizontal projection acting on the whole
girder. Analyses were made with different values of the inclination angle, a,
and the number of segments, n, which sub-divide the girder. The numerical
results tabulated in Table 1 are in excellent agreement with the closed form
Solutions presented by Gerstle [8] Note that Gerstle's Solutions included
only the effects of bending and torsional deformations. This accountspartially
for the small differences between the two Solutions.

The treatment of helicoidal girders of varying cross-section is easily done,
and to illustrate this point two cantilever helicoidal girders, subjected
to a point load at free end, were analysed. One is a girder with linearly
varying depth, and the other, with a parabolically varying depth. Both
girders have constant width. Numerical results for a 15° and n 32 are
given in Table 1.

3.2 Example 2 Fixed End Actions in Helicoidal Girders

A helicoidal girder of uniform section is analysed for equivalent nodal loads
of two load cases, namely: (a) a point load at the midpoint of the girder, and

(b) a uniformly distributed load of intensity w0 per unit length of horizontal
projection, acting on the whole girder. Using 32 segments to sub-divide the
girder, numerical values for equivalent nodal loads of each load case were
obtained for two values of the inclination angle, a 0° and a 20°, and are
summarized in Table 2.

3.3 Example 3 Two-Span Helicoidal Girder

A continuous helicoidal girder consisting of two spans,as shown in the figure
of Table 3, is fixed at the two ends, and supported at the midspan. The
intermediate support prevents displacement in the vertical direction only. The

girder was analysed for three load cases, namely: (a) a point load at midpoint
of span AB only; (b) a uniformly distributed load of intensity w0 per unit
length of horizontal projection acting on span BC only; and (c) load cases (a)
and (b) combined. Numerical values for reactions at supports were obtained for
two values of the inclination angle, a 0°, and a 20°, and are tabulated in
Table 3. Note that the numerical results obtained for load case (c) are equal
to the super-position of results obtained for load cases (a) and (b). This
serves as a partial check to the Solution.

4. CONCLUSIONS

In this paper a numerical procedure for the analysis of continuous helicoidal
girder by the stiffness method is presented. The füll stiffness matrix of a
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TABLE 1 VERTICAL DEFLECTION COMPONENTS (mm) AT FREE END

OF CANTILEVERED HELICOIDAL GIRDERS (EXAMPLE 1)

Load
No. of

Segments
n

Inclination Angle, a

0° 15° 30°

Point
Load

8

16

Ref.[8]

Girder with Uniform Section

-36.38673
-36.38673
-36.319

-37.80223
-37.80223
-37.750

-42.56490
-42.56490
-40.406

u.d.l 16

Ref.[8]
-9.69262
-9.638

-10.06906 -11.33578

Point
Load

32

Girder with Linearly Varying Depth

- -15.99359 -

32

Girder with Parabolically Varying Depth

- -17.16251 -

100 kN

--10 kN/m

x3
X2

X

LED

Xl

width,
b

"1
depth,

d

Xl
Section a-a

200 x IO6 kPa

0.3

Variation
of depth

Width,
b (mm)

Depth,d (mm)

dA dB dC

Uniform
50

100 100 100
Linear 200 150 100
Parabolic 200 125 100



174 IABSE PROCEEDINGS P-48/81 IABSE PERIODICA 4/1981

TABLE 2 EQUIVALENT NODAL LOADS FOR A POINT LOAD AND A UNIFORMLY
DISTRIBUTED LOAD ON A HELICOIDAL MEMBER FOR VARIOUS
VALUES OF THE INCLINATION ANGLE, a (EXAMPLE 2).

EQF

Components

Inclination Angle, a

0° 10° 20°

11

Point Load, P -100 kN, at B

0. -2.18725 -4.30213
2 \ kN 0. 0.00014 0.00028
3\ -50.00009 -50.00005 -49.99996
41 -45.42277 -45.09989 -44.12459
5 \ kN-m 125.00030 123.48570 118.85100
6J 0. 5.46836 10.75576

71 0. 2.18725 4.30213
8 \ kN 0. -0.00014 -0.00028
9J -49.99991 -49.99995 -50.00004

101 45.42233 45.09942 44.12400
11 } kN-m 124.99970 123.48530 118.85090
12 J 0. S.4679Ö 10.75487

Uniformly distributed load (udl),

1]

w -10 kN/m over whole span

0. -0.86175 -1.69479
2 \ kN 0. -0.00000 -0.00000
3J -39.26991 -39.26991 -39.26991
41 -18.59739 -18.47017 -18.08595
5 \ kN-m 62.50000 61.90330 60.07763
öJ 0. 2.15438 4.23697

7) 0. 0.86175 1.69479
8 \m 0. 0.00000 0.00000
9J -39.26991 -39.26991 -39.26991

101
11 ^kN-m
12 J

18.59739 18.47017 18.08595
62.50000 61.90330 60.07763
0. 2.15438 4.23697

EQF equivalent nodal force

E 200 x IO6 kPa

p 0.3
b 50 mm; d 100 mm

¦ x3

10 N.t
B^r

X2

5m*x -i>^f
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TABLE 3 REACTION COMPONENTS AT THE SUPPORTS OF A

TWO-SPAN HELICOIDAL GIRDER (EXAMPLE 3).

Reaction
Components

Only span AB
Loaded

Only Span BC

Loaded
Both Spans AB
and BC Loaded

Inclination Angle, a ¦ 0°

1]
2

3.

il

rkN

¦kN-m

0.
0.

64.48747
9.55895

-80.45739
0.

0.
0.

- 5.84984
- 1.53322
10.53136
0.

0.
0.

58.63763
8.02573

-69.92603
0.

7'
8
9

10'
11
12

¦kN

¦kN-m

0.
0.

-11.22502
2.94558

20.52457
0.

0.
0.

46.47837
- 4.28729
-40.75315

0.

0.
0.

35.25335
- 1.34170
-20.22858

0.

13 kN 46.73755 37.91129 84.64884

5fkN-m
6)

Inclination Angle, a 20°

0.43957
- 2.13174
63.64783
10.19532

-78.19164
- 4.46240

- 0.13842
0.45869

- 5.61513
- 1.65617

9.82650
1.07285

0.30115
- 1.67305
58.03270
8.53915

-68.36514
- 3.38954

10]
lll-kN-m
12J

- 0.43957
2.13174

-11.07113
2.92330

20.61198
2.26453

0.13842
-0.45869
46.49947
-4.29691

-40.88896
- 0.38074

- 0.30115
1.67305

35.42834
-1.37361

-20.27697
1.88380

13 kN 47.42330 37.65548 85.07878

E 200 x 10° kPa

y 0.3
b 50 mm : d 100 mm

kN/m
10 X

Sv 20

*2

X3

4X
N. 100 kN-r

13
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helicoidal member is derived by first evaluating the flexibility matrix at one
end which when inverted gives the end stiffness matrix. The Simpson's rule is
used to evaluate the integrals associated with the flexibility matrix and

equivalent load vector. The effects of axial, bending, shear and torsional
deformations are included.

The results from the numerical examples indicate the high degree of accuracy
of the proposed numerical method of analysis.

The analysis of helicoidal girders of varying cross-section can be treated
quite easily. However, in order to obtain sufficiently accurate Solutions more
segments to subdivide the girder are generally required.
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