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Numerical Analysis of Continuous Helicoidal Girders
Calcul numérique de poutres continues spirales

Numerische Berechnung durchlaufender spiralférmiger Trager

V.A. PULMANO A.P. KABAILA

Associate Professor Associate Professor

University of New South Wales
Kensington, Sydney, Australia

SUMMARY

A numerical analysis of continuous helicoidal girder by the stiffness method is presented.
The full stiffness matrix of a helicoidal member is derived by first evaluating the flexibility
matrix atone end which when inverted gives the end stiffness matrix. The integrals associated
with the end flexibility matrix and equivalent load vector, are numerically evaluated by
Simpson’s rule using the computer. The analysis of a helicoidal girder of varying cross-
section can easily be treated. Numerical examples are presented to illustrate the proposed
method.

RESUME

Une méthode numérique pour le calcul de poutres continues spirales est présentée. La
matrice compléte de rigidité d'un élément spiral est dérivée en évaluant la matrice de flexi-
bilité a une extrémité puis en déterminant la matrice inverse. L'intégrale correspondant a la
matrice de flexibilité et au vecteur charge est calculée numériqguement a I'aide de la méthode
de Simpson. Le calcul de poutres spirales a section variable est également possible. Des
exemples numériques illustrent la méthode.

ZUSAMMENFASSUNG

Eine numerische Methode zur Berechnung durchlaufender spiralformiger Trager wird dar-
gestellt. Die vollstandige Steifigkeitsmatrix eines spiralformigen Elementes ergibt sich durch
zahlenmassige Festlegung der Flexibilitatsmatrix an einem Ende und anschliessender
Bestimmung der Kehrmatrix. Die der Flexibilitdtsmatrix und dem &quivalenten Lastvektor
zugeordneten Integrale werden zahlenmassig mittels Simpsonmethode festgelegt. Variable
Querschnitte sind einfach zu berlcksichtigen. Numerische Beispiele erlautern die vorge-
schlagene Berechnungsmethode.
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1. INTRODUCTION

Earlier works on helicoidal girders [1,2,3,4] treated mainly the problem
of helicoidal staircases which are indeterminate to the sixth degree. The
analysis of continuous helicoidal girder has been attempted by Abdul-Baki

and Shukair [5] by deriving explicitly the end flexibility matrix of a
helicoidal segment which, when inverted, gives the end stiffness matrix.
However, the resulting expressions for the different terms in the end flexi-
bility matrix are very lengthy, and therefore inconvenient. Derron and
Jirousek [6] presented a method of analysis of helicoidal girders, which

was based on an assumed displacement field. In this respect their analysis

is similar to the customary finite element formulation leading to approximate
solution. The accuracy of solution usually improves as the number of elements
to model a given problem is increased.

In this paper the integrals associated with the derivation of the basic
matrices, viz., flexibility matrix, equivalent nodal loads are derived in the
exact form, but the integration is carried out numerically. The method, there-
fore, is substantially different from those described in the above references.
The effects of bending, shear, axial and torsional deformations are included
without difficulty, however the effects of warping are excluded. In the analy-
sis, the structure is assumed to be linearly elastic, and to obey other basic
assumptions related to small deflection theory. Numerical examples are
presented.

2. THEORETICAL CONSIDERATIONS

2.1 Geometry and Axis Transformation

In Fig. 1(a), a helicoidal member AB is shown with the nodal coordinates in the
positive directions and their numbering. The nodal axes are taken parallel to the
orthogonal reference axes xj. At any section C, defined by angle B, the member
axes are defined by three mutually perpendicular axes X;, X;, and X3 which
coincide respectively with the tangent to the helix, normal to the helix (which
is also normal to the generator of the cylinder), and the binormal to the helix.
The x, and x3 axes are assumed to coincide with principal axes of the cross-
section of the helicoidal member.

The member axis Ei and the reference axis x; are related by the equations

Q’]l 9’12 2’13
Y SR YO % S oY I 2% €))

231 L3z L33

in which [A] is the rotation matrix. The term Zi- in Eq. 1 is the cosine of the

angle between the member axis xj and the referenCe axis x;. Considering the geo-
metry of the helicoidal member of Fig. 1, it can be shown™ that the terms of the
rotation matrix, A, are as follows:
cos o cos B cos a sin B sin o
[A] =|-sin B cos B 0 (2)

-sin o cos B -sin a sin B cos a



M sse perioDICA 471981 IABSE PROCEEDINGS P-48/81 167

Angle o defines the inclination of the helix, angle B, the position of the point
considered. Both o and B are shown in Fig. 1.

2.2 End Flexibility of Helicoidal Member.

As shown in Fig. 1(b), end A of the helicoidal member AB is considered to be
fixed. The end actions p,, applied at B, are expressed in terms of the nodal
axes. The internal actions, {o.} at any section C are in terms of end actions Py
and aregiven by the matrix expression

{oC} = H {pB} (3)

in which {OC} = {N sz Sx3 T sz MX3} 5 {pB} = {pB1 Pg, P, Pp, Pp, sz}’_
H = transformation matrix, N = axial force, Si ’Sig = shear forces in the x;
2
x3 directions, respectively, T = twisting moment, and Mig’Mi = bending moments
3
about x, and x3 axes, respectively.

In Eq. 3, the transformation matrix H, as shown elsewhere [7], is simply the
product of the rotation matrix, R and the translation matrix T, that is,

H=RT (4)
in which
R =19 & 1|1 % @ N
0 A X I X=|r3s 0 -m (7)
=To T 0
B C . .
Ty = X1 - X1 = R(sin QB - sin R)
Ty = xg - xg = R(-cos _ + cos B)
B . C_ B X3 B
LR W M R tan o (QB- B)
X2
LY A
\ s a X1

(c) Development of Member AB

P
</ .

10 r
X

¥

FIG. 1 HELICOIDAL MEMBER AB SHOWING ITS REFERENCE AXES,
MEMBER AXES AND NUMBERING OF NODAL COORDINATES.
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=
1]

radius of circular cylinder defining the helix

(3x3) identity matrix

Substitution of Eqs. 5 and 6 to Eq. 4 yields

A 0
H = Tt (8)
AX A

Using the principle of virtual work, the end flexibility, f_,,, of the helicoidal

member AB is evaluated from the equation EB

£ =, H D'Hds (9)

where D = [EA; GA; GA3 GJ EI, EIj], in which the symbol [ |
denotes a diagonal matrix

E = modulus of elasticity
A1,A2,A3 = the area of section, the shear area in.iz - direction,
and the shear area in x3; direction, respectively.
J = torsion constant
I,,I3 = moment of inertia about x, and x; axes, respectively

ds R dB/cos o

In evaluating Eq. 9, a numerical procedure is used. This approach entails the
evaluation of the various matrices at discrete points along the member and the
integration is performed numerically by Simpson's rule.

2.3 Stiffness Matrix of Member AB

The inversion of matrix fpp defined by Eq. 9 gives the end stiffness kpp, i.e.

kpp = fBB-I (10)

such that
{pg} = [kyy] {3} (11)

in which {pg} and {up} are the forces and displacements at the end of the canti-
levered helicoidal member. If the helicoidal member is a part of a structure,
then in addition to the displacements of one end relative to the other, it may
also undergo rigid body motion defined by the displacement u, at end A. In
order to establish a member stiffness, k, these rigid body displacements must
be taken into account. The stiffness matrix, k, which relates the end forces
and end displacements in terms of nodal axes is given by the following equation,

{p, pp} = [kl {u, up} (12)

The end forces p, at A are in equilibrium with Py thus
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pA =T pB (13)

The end actions at A and B in terms of the pp are therefore given by

A
PA =T
= [pg] (14)
Py I
and by contragredience,
6.1 = [T 1] {u, u} (15)
B A B

Since the strain energy, U, in the helicoidal member remains the same with or
without the inclusion of the rigid body motion, the strain energy in terms of
k, ., is given by

BB
=T -
P .
U=2% ug kBB uB
T T -T AT u
- L _
= 4[uA ug [1‘ [kBB] [-T" 1] [ug] (16)

and in terms of the full stiffness matrix, k, of helicoidal member,

=
]

4luy ugl K] [ﬁg] (17)

Comparing Eqs. 16 and 17, it follows that

T AT
k = [1] [kypd [T 1] (18)
or o oT A
T kBBT -T kBB
k =
aT
-kBBT kBB (19)

Equation 19 is the stiffness matrix of the helicoidal member AB expressed in
terms of the nodal axes.

2.4 Equivalent Nodal Loads {Q}

2.4.1 Concentrated load on AB

Let the load vector at D, expressed in terms of the nodal axes, be denoted
{pD} = { Pp, Pp, Pp - Pp, }. The angle Q defines the location of lead p

as shown in Fig. 2(a). It can be shown that the displacement vector at the
release B, caused by pp at point D, is given by

T !
Upy = JH D H0 ds (20)
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where Hy is the transformation matrix of the loads at D to the internal actions
{oc}. To calculate Hy, the expression given by Eq. 8 applies, but Qp replaces
Qp, coordinates of point D replace that of B, and for B > £p, Hy = 0.

Having found upg and fpp, the reaction pg are found considering the compatibility
condition,

uy, + f 0 (21)

BO BB Pp

or -
= -k (22)

BB “BO

Pg = ~fpp Upp =

X1

(b) Distributed Loading, w = w(0)

FIG. 2 CONCENTRATED AND DISTRIBUTED LOADINGS ON
HELICOIDAL MEMBER AB.
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By statics, the reactions at A are given by

~ ~

Pp = “Tpa Pp =~ Tpa Pp (23)
The equivalent nodal loads, {Q} = {Qy Qp} which are numerically equal to the
end reactions but act in the opposite directions, are given by,
(@} = {q, 3} = -1p, pg!} (24)

2.4.2 Distributed Loading on AB

Consider the cantilevered helicoidal member AB subjected to a distributed
loading, w = w(8), in which 6 is a horizontal angle as shown in Fig. 2(b). The
components of the distributed loading are considered positive in the positive
directions of the x; - axes. The internal forces at any section C, due to

1
distributed loading on portion CB, are given by

B .

{oC} - R I T dF (25)

fip

where R and T are the rotation and translation matrices, respectively, and dF is
the elemental load vector defined by angle 6.

For a uniformly distributed load with intensity w, per unit length of the hori-
zontal projection, and acting parallel to the x, - axis,

{dF} = {0 o0 wRdd 0 0 0} (26)

Substitution of Eq. 26 into Eq. 25, and evaluation of the resulting integral
yields,

o 5 -
0
A O woR (B-Qp)
loc} = L J “WoR [sin B - sin@y - (B-0g) cos 8] | = H, @7
+woR? [cos B - cosQp + (B-Qp) sin g]
L 0 d
The end displacements upgg due to a uniformly distributed load w, is then
given by, QB
ugy = éA HD ™' H ds (28)

and hence, the end reactions at B are

Pg = ~¥pp Upo (29)

From equilibrium conditions, the reactions at A are

B =
fgg T., dF (30)
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The second term of the right-hand side of Eq. 30 is simply equal to second
matrix of the right-hand side of Eq. 27 but B is now replaced by (.

3. NUMERICAL EXAMPLES

3.1 Example 1 Deflections at Free End of Cantilever Helicoidal Girders

The vertical deflections at the free end of cantilevered helicoidal girders
have been evaluated for girders with a uniform cross-section, linearly
varying depth and parabolically varying depth. The geometric and material
properties of these girders are given in the figure of Table 1.

The girder of a uniform section has been analysed considering two load cases,
namely; (a) a point load at free end, and (b) a uniformly distributed load

of intensity wy per unit length of horizontal projection acting on the whole
girder. Analyses were made with different values of the inclination angle, a,
and the number of segments, n, which sub-divide the girder. The numerical
results tabulated in Table 1 are in excellent agreement with the closed form
solutions presented by Gerstle [8] . Note that Gerstle's solutions included
only the effects of bending and torsional deformations. This accountspartially
for the small differences between the two solutions.

The treatment of helicoidal girders of varying cross-section is easily done,
and to illustrate this point two cantilever helicoidal girders, subjected
to a point load at free end, were analysed. One is a girder with linearly
varying depth, and the other, with a parabolically varying depth. Both
girders have constant width. Numerical results for a = 15° and n = 32 are
given in Table 1.

3.2 Example 2 Fixed End Actions in Helicoidal Girders

A helicoidal girder of uniform section is analysed for equivalent nodal loads
of two load cases, namely: (a) a point load at the midpoint of the girder, and
(b) a uniformly distributed load of intensity wp per unit length of horizontal
projection, acting on the whole girder. Using 32 segments to sub-divide the
girder, numerical values for equivalent nodal loads of each load case were
obtained for two values of the inclination angle, a = 0° and a = 20°, and are
summarized in Table 2.

3.3 Example 3 Two-Span Helicoidal Girder

A continuous helicoidal girder consisting of two spans,as shown in the figure
of Table 3, is fixed at the two ends, and supported at the midspan. The inter-
mediate support prevents displacement in the vertical direction only. The
girder was analysed for three load cases, namely: (a) a point load at midpoint
of span AB only; (b) a uniformly distributed load of intensity wy per unit
length of horizontal projection acting on span BC only; and (c) load cases (a)
and (b) combined. Numerical values for reactions at supports were obtained for
two values of the inclination angle, a = 0°, and a = 20°, and are tabulated in
Table 3. Note that the numerical results obtained for load case (c) are equal
to the super-position of results obtained for load cases (a) and (b). This
serves as a partial check to the solution.

4. CONCLUSIONS

In this paper a numerical procedure for the analysis of continuous helicoidal
girder by the stiffness method is presented. The full stiffness matrix of a
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TABLE 1 VERTICAL DEFLECTION COMPONENTS (mm) AT FREE END

OF CANTILEVERED HELICOIDAL GIRDERS (EXAMPLE 1)

No. of

ioud Segments Inclination Angle, o
n
0° 15° 30°
Girder with Uniform Section
Point 8 -36.38673 -37.80223 -42.56490
Load 16 -36.38673 -37.80223 -42.56490
. Ref.[8] -36.319 -37.750 -40.406
u.d.1 16 -9.69262 -10.06906 -11.33578
Ref.[8] -9.638 - _
Girder with Linearly Varying Depth
32 - -15.99359 -
Point -
Load Girder with Parabolically Varying Depth
32 - -17.16251 -
width,
b
depth,
]

Section a-a

0.3

200 x 10°% kPa

- . Depth,d (mm)
Variation |Width,
of depth [b (mm) [dy dg d-
Uniform 100 100 100
Linear 50 200 150 100
Parabolic 200 125 100
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TABLE

2 EQUIVALENT NODAL LOADS FOR A POINT LOAD AND A UNIFORMLY

DISTRIBUTED LOAD ON A HELICOIDAL MEMBER FOR VARIOUS
VALUES OF THE INCLINATION ANGLE, o (EXAMPLE 2).

EQF Inclination Angle, o
Components 0° 10° 20°
Point Load, P = -100 kN, at B
1 0. -2.18725 -4.30213
2 kN 0. 0.00014 0.00028
3 -50.00009 -50.00005 -49.99996
4 -45.42277 -45.09989 -44.12459
5% kN-m 125.00030 123.48570 118.85100
6 0. 5.46836 10.75576
7 0. 2.18725 4.30213
8 1 kN 0. -0.00014 -0.00028
9 -49.99991 -49.99995 -50.00004
10 45.42233 45.09942 44.12400
11} kN-m 124.99970 123.48530 118.85090
12 0. 5.46790 10.75487
Uniformly distributed load (udl),
W= -10 kN/m over whole span
1 0. -0.86175 -1.69479
2 + kN 0. -0.00000 -0.00000
3 -39.26991 -39.26991 -39.26991
4 -18.59739 -18.47017 -18.08595
S5 » kN-m 62.50000 61.90330 60.07763
6 0. 2.15438 4.23697
7 0. 0.86175 1.69479
8}‘kN 0. 0.00000 0.00000
9 -39.26991 -39.26991 -39.26991
10 18.59739 18.47017 18.08595
11 5> kN-m 62.50000 61.90330 60.07763
12 0. 2.15438 4.23697
EQF = equivalent nodal force 10
\QJIZ
E = 200 x 10° kPa Vtc
s S 117 9
= 50mm; d = 100 mm
AN
™
/
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TABLE 3 REACTION COMPONENTS AT THE SUPPORTS OF A
TWO-SPAN HELICOIDAL GIRDER (EXAMPLE 3).

Reaction Only span AB Only Span BC Both Spans AB
Components Loaded Loaded and BC Loaded
Inclination Angle, a = 0°

1 0. 0. 0.

Z}kN 0. 0. 0.

3 64.48747 - 5.84984 58.63763

4 9.55895 - 1.53322 8.02573

SPkN-m -80.45739 10.53136 -69.92603

6 0.

7 0. 0. 0.

8 rkN 0. 0. 0.

9 -11.22502 46.47837 35.25335
10 2.94558 - 4.28729 - 1.34170
ll}kN-m 20.52457 -40.75315 -20.22858
12 0. 0. 0.

13 kN 46.73755 37.91129 84.64884
Inclination Angle, o = 20°

1 0.43957 - 0.13842 0.30115

2tkN - 2.13174 0.45869 - 1.67305

3 63.64783 - 5.61513 58.03270

4 10.19532 - 1.65617 8.53915

S5tkN-m -78.19164 9.82650 -68.36514

6 - 4.46240 1.07285 - 3.38954

7 - 0.43957 0.13842 - 0.30115

8 kN 2.13174 -0.45869 1.67305

9 -11.07113 46.49947 35.42834
10 2.92330 -4.29691 -1.37361
113kN-m 20.61198 -40.88896 -20.27697
12 2.26453 - 0.38074 1.88380
13 kN 47.42330 37.65548 85.07878

= 200 x 10° kP 18
* 2 ™~ 20 kN/m

o
] [}

0.3

50 mm ;

d =
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helicoidal member is derived by first evaluating the flexibility matrix at one
end which when inverted gives the end stiffness matrix. The Simpson's rule is
used to evaluate the integrals associated with the flexibility matrix and
equivalent load vector. The effects of axial, bending, shear and torsional
deformations are included.

The results from the numerical examples indicate the high degree of accuracy
of the proposed numerical method of analysis.

The analysis of helicoidal girders of varying cross-section can be treated
quite easily. However, in order to obtain sufficiently accurate solutions more
segments to subdivide the girder are generally required.
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