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Ultimate Load of Trusses buckling in their Plane
Résistance ultime des poutres en treillis dans leur plan

Traglast von ebenen Fachwerktragern

V.deVILLEde GOYET Fr. FREY Ch. MASSONNET
Aspirant F.N.R.S. Professeur extraordinaire Professeur ordinaire
Université de Liége Ecole polytechnique fédérale Université de Liege
Liege, Belgique Lausanne, Suisse Liege, Belgique
SUMMARY

About twenty trusses have been simulated numerically on computer by using a finite
element program, which takes into account both geometrical and material nonlinearities.
For the trusses, whose compressed bars have a slenderness ratio larger than 50, the results
show that the computation of the secondary bending moments is useless; the bars may be
designed, after the computation of the effective length, by centric buckling under the normal
force; this effective length may be found by an elastic method applied to a simplified
structure.

RESUME

Une vingtaine de treillis ont été simulés numériquement sur ordinateur au moyen d'un pro-
gramme électronique qui prend en compte les non-linéarités géométriques et matérielles.
Pour des treillis dont les barres comprimées ont un élancement supérieur a 50, les résultats
montrent que le calcul des moments secondaires est inutile; les barres peuvent étre dimen-
sionnées, aprés avoir calculé une longueur de flambement, en les considérant comme sou-
mises a |'effort normal seul; la longueur de flambement peut étre trouvée par une méthode
élastique appliquée a une structure simplifiée.

ZUSAMMENFASSUNG

Etwa zwanzig ebene Fachwerktrager wurden mit Hilfe eines Computerprogramms, welches
sowohl geometrische als auch materialtechnologische Nichtlinearitaten berucksichtigt,
numerisch berechnet. Bei Druckstdaben, deren Schlankheitsgrad 50 tbersteigt, zeigen die
Ergebnisse, dass die Berechnung der Zwangungsmomente unnotig ist. Diese Stabe konnen
als zentrisch belastete Knickstabe behandelt werden, deren Knicklange mittels einer ela-
stischen Methode an einem vereinfachten System bestimmbar ist.



142  |ABSE PROCEEDINGS P-47/81 \ABSE PERIODICA 4/1981 AP

1. INTRODUCTION

The essential problem, in the design of rigidly connected trusses, resides in
its compressed bars. The following questions immediately arise:

- Is the concept of effective length valid?

- Which effective length should be adopted for in-plane buckling ?

- Should the secondary moments be considered and introduced (in an interaction
formula) to compute the ultimate strength ?

Some engineers could believe that these questions have been solved for many
years in the various national codes. However, successive and frequent changes in
the design rules of these codes indicate clearly that a definitive solution is
not available. This situation derives from the parallel - but not simultaneous -
evolution of several basic points:

- the semi-probabilistic theory and the ultimate strength control of structures;
- the development of the so-called "European buckling curves";
- the computation method of the ultimate load of trusses.

Most of the time, the compressed bars of a truss are designed:

- at collapse by using the European curves;

- by using effective lengths which date from a time when the computations were
made with the allowable stress method and the buckling curves of EULER,
TETMAYER (in Europe), JOHNSON (in the States), etc.

In these conditions, several questions arise:

- Is such a mixed method always on the safe side ?
- Is a more elaborate design, incorporating the secondary moments, really
necessary ?

This boils down to the question of how a truss must be computed. The present
study is limited to the behaviour of the truss in its plane, assuming bracing
against lateral buckling. Moreover, only in-plane buckling of bars is considered.

2. PRESENT STATE OF THE QUESTION

2.1. The codes

The codes may be usefully scrutinized to the extent that, being a compendium of
practical design rules, they reflect present knowledge. This study shows that,
for about half a century, the buckling (or effective) lengths 2y of truss bars
were taken as equal to 0,8 2. The first changes of attitude in the code com-
mittees appeared about ten years ago. The general tendency is to increase the
buckling length. With 2, =k&, the past and present values of k of some codes are
given in Table 1.

It can be seen that, if k has effectively increased, not all countries have
adopted k=1 1ike the United States. In the American code, the choice is justified
by remarking that, in truss design for equal strength, no bar can help the adjac-
ent one because, by definition, all bars have the same collapse load.

This attitude appears somehow too pessimistic, to the extent that the chords
often have, for technological reasons, the same cross section along their whole
length, which shows that uniform strength design is rather unrealistic.
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TABLE 1

chord web chord web

member | member member | member
U.S.A. A.1.S.C. 1969 1,0 1,0
Germany DIN 4114 1952 1,0 1,0 1978 1,0 0,9
Netherlands NEN 3851 old specifications 1974 1,0 |0,7<k<1
Tchecoslovakia CSN 731401 (no data available) 1976 1,0 |0,5<k<1
Canada C.1.5.C. 1976 0,9 0,9
Belgium NBN B51-001 1977 0,8 0,8 1980 0,9 0,9
France C.M. 1956 0,9 0,8 1966 0,9 0,8
Switzerland SIA 161 1956 0,8 0,8 1979 0,9 0,8
Great Britain BS 5400 1956 0,7 0,7 1980 0,85 0,7

2.2. The computation methods

The rigorous study of structures composed of bars is very complex and the de-
termination of the exact collapse load yields intricate computations. The
methods are essentially numerical, are based on second order theory and may be
classified in two categories, according to the behaviour of the material:

- elastic;
- elastoplastic (with or without strain hardening).

When the material obeys HOOKE's law (o =Ee), buckling lengths are generally ob-
tained by using the displacement method where the unknowns are the displace-
ments of the rigid nodes (straightforward generalization of the classical slope
deflection method). TIMOSHENKO [T1], MERCHANT [M1], KUANG HAN CHU [K1], etc....
have developed corresponding tables and charts. If the chosen unknowns are the
moments at the bar ends, the structure can be analysed iteratively by general-
izing the CROSS method: HOFF [H1], WINTER [W2], LUNDQUIST [L1], etc... have de-
veloped this approach. At present, the computations are made by a computer pro-
gram solving the linearized stability eigenvalue problem [F3].

As soon as the constitutive law of the material is nonlinear, analytical de-
velopments become practically impossible. For this reason, all authors use
electronic computer programs based on large displacement theory ([F2], [LZ2],
etc...). This approach seems the most advanced and the most realistic at the
present time.

On the basis of a study of this type, DUBAS [D2] states about trusses that:

"The collapse load, computed from the buckling lengths furnished by the bifur-
cation theory, gives results in agreement with those derived from a detailed
elastoplastic computation. However, one may fall on the unsafe side, especially
in the case of welded bars".

It appears from present study that the foregoing conclusion does not apply as a
general rule (see section 4.2.3 "Bifurcation approach").
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3. WORKING ASSUMPTIONS

The present study [D1] uses the nonlinear finite element program developed by
FREY [F11, [F2].

3.1. The basic assumptions are large displacements, small strains and elastic
or elastoplastic constitutive laws, so that both geometric and material non-
linearities are taken into account.

A truss bar is discretized in a certain number n of "engineering beam elements"
(Fig.1) formulated in approximate updated Lagrangian description [F1]. The op-
timum number of elements which would
v }y together represent most faithfully
0 u - the bar subjected to buckling varies
| as a function of the slenderness
ratio A =2/1 of the bar. Numerical
)Y X experimentation has yielded the em-

irical relationship:
node 1 a ! a node 2 # P
l e - n=4+x/20
Fig.1.

Numerical simulation of the simple
truss presented by DUBAS [D2] has
been used to test the agreement bet-
ween his results and those obtained by FINEL G [F2]. The collapse loads agree
within 0,7%, a negligible discrepancy (instability of the compressed chord).

Engineering beam element.

A comparison between a test undertaken in the laboratory of the senior author
and its numerical computation was also made [D1]. The tested truss was com-
posed of tubes and some of the bars were assembled with definite eccentricities.
The collapse modes observed and computed were characterized by the yielding of
the corresponding welded connections. The experimental collapse load was found
to exceed the computed value by 3,2%.

These two verifications have emphasized the reliability of the program for the
study of such problems (see also [F1] for further verifications).

3.2. In structural engineering, we can distinguish two main types of trusses:

- those loaded by moving loads (road and rail bridges);
- those loaded by fixed loads (industrial halls of any kind).

In the second case, the design may be such that all bars will be fully used for
the same loading (equal strength design). Buckling should therefore be more
dangerous for this type of structure.

3.3. The study is Timited to truss geometries which are the most popular in
bridges and roofs:

- the N (PRATT) truss;
- the V (WARREN) truss.

The trusses retained are shown on Fig.2; it was decided to study the buckling of:

- diagonals in the V truss (Fig.2.a);
- chords in the N truss (Fig.2.b);
- chords in the third truss (Fig.2.c).
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The interest of the last truss lies in the unequal lengths of the bars of the
compressed chord, where the normal force is constant. Thus we could study the
influence of this particularity on the effective length of the chord.

£
|
|

Fig.2. Studied trusses.

3.4. There are different kinds of cross sections currently used in practice
(H’n, l, o, u,...).

We have retained the H section (flanges in the truss plane) and the hollow rec-
tangular section. If the former is quite usual, the latter is beginning to in-
vade the market for reasons of aesthetics and maintenance.

3.5. In the V truss, the sections adopted are H sections (weak axis buckling).
The studied parameters [D1] were:

- the type of loading: symmetrical or unsymmetrical;
- the slenderness of the chord or diagonal compressed bars.

On the other hand, the N truss is composed of tubes with rectangular cross sec-
tion. We have especially studied the influence of:

- the initial deflections of the bars;

- the eccentricities due to a non-concordance of the axis (as a consequence of
the practical advantage of making a single cut in the tube and of displacing
the bar axis by some centimeters; see Fig.3);

- the welding residual stresses at the joints.

Fig.3. Connections without or Fig.4. Local deformations
with eccentricities. in tubular joints.
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3.6. However, due to the flexibility of the nodes, the numerical computation of
a truss composed of rectangular tubes raises the eternal problem: to which ex-
tent does the theory represent the reality ?

Indeed, for the computer, the connections are assumed to be perfectly rigid, and
the finite element used does not take into account either the local buckling or
the local deformation of the walls of the tubes (Fig.4). As such phenomena may
have an influence on the general buckling of the structure, we have tried to
find in which cases the numerical calculation is acceptable.

Many authors have already undertaken experimental researches (CIDECT researchers
[C1]1, [C2], SFINTESCO [S1], DAVIES and ROPER [D3], JANIN and GIRARD [J1],...) or
theoretical studies (CZECHOWSKI and BRODKA [C3], MOUTY [M3], VENANZI [V1],...)
on these connections. The latter compute the collapse load of the connections by
applying the yield line theory (Fig.5), assuming the chord tube to be a frame on
which the diagonal is attached.

lpyield 0
TrT P&kﬂd
cos 6
Qv -
Mp: plastic moment ot the
D j I T T
02 0-4 0-6 08 -0
e
Fig.5. Computation of a joint Fig.6. Influence of par-
by the yield line theory. ameters u and g [D3].

In general, these methods give good results, if it is considered [D1] that col-
lapse of the connection occurs when the relative displacement w/D (Fig.5) is 1%.
These various researches enable one to state that:

- the connections remain rigid up to collapse provided that u exceeds 0,8 and g
is maintained relatively small (Fig.5 and 6);

- if D/e is greater than 20, the cross section area of the web members should be
reduced to 30 to 40% in the connection itself;

- nearly up to collapse, the behaviour of the connection is linear elastic and
the various relative deflections w/D remain smaller than D/100.

Finally, as already mentioned in section 3.1, the comparison between the truss
test and its electronic computation has also demonstrated the reliability of the
above assumptions.

3.7. The design of the studied trusses (see [D1] for details) is based on the
principle of equal strength. The compressed bars are computed by the European
buckling curves with the following buckling lengths lb :

Qb =0,8 2 for the diagonals ; Eb =2 for the chords.
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The quality of steel is Fe 360 (AE24); residual stress patterns are those used
by the ECCS; initial deflections of bars are sine curves (L/1000 for the weakest
compressed bar).

3.8. For the N trusses (Fig.2), the following cases are examined:

bars with or without initial deflection;
effect of welding residual stresses at the joints,
existence or absence of eccentricities at the joints (Fig.3).

The collapse of these trusses occurs by the buckling of the compressed chord.

From now on, it can be remarked that [D1] :

- the role of the initial eccentricities is not negligible (=10%);

the eccentricities may induce substantial Tocal yielding at thé connections;
taking into account the welding stresses does not modify at all the overall
behaviour of the truss.

w

.9. For the V trusses, we have studied the influence of:

the slenderness of the compressed bars;
the type of loading (see appendix).

3.10. For the trusses with unequal meshes, we have looked for the influence of
the normal force distribution. Here, it was constant in the whole compressed
chord. The parameter was the slenderness of the compressed bars (see appendix).
It appears that the above geometry is not more dangerous for the buckling of the
chord than a regular one.

4. INTERPRETATION OF THE RESULTS

4.1. Collapse mode

Owing to the development of numerical methods adapted to the computer, the pres-
ent tendency is to forget the concept of effective length in favor of a direct
computation of the collapse load. Indeed, this load depends on several factors:

- the type of loading;

- the truss geometry;

- the shape of the cross sections of the bars;

- the type of design used (for example: equal strength).

According to this approach, each truss would be a separate entity that should be
designed globally.

Now, the use of the concept of effective length obliges us to isolate the bar
under review from its environment. This way of handling the problem is obviously
open to the additional criticism that, for an ultimate strength design, no ac-
count can be taken of the internal resultant redistribution, when some sections
are yielding.

These remarks show clearly that the concept of effective length has no theoreti-
cal basis for rigidly jointed trusses.

However, the concept is highly useful in practice, because its knowledge facili-
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tates very much the designer's work, and as we shall see further, numerical ex-
perimentation makes it worth accepting it in the frame of the present study
(statically determinate plane trusses).

To clarify, we have distinguished two concepts:

- the collapse length (2¢), which is an "effective length" of the bar con-
sidered in the actual truss, as it is given by the computer or the experiment;

- the equivalent buckling length (%eq,b), which is the "effective length" of
the bar computed for a given truss by means of an approximate method.

Indeed, a careful survey of the results has shown that the collapse of a truss
was induced by the buckling of one bar, in spite of the equal strength design.

As shown by the deflections of two trusses (Fig.7,8) and the yielding pattern
of the second truss (Fig.9; see [D1] for more details), the collapse mode is
peculiar to "statically determinate" trusses, because:

- collapse always occurs by buckling of one bar;
- as soon as this bar buckles, the entire truss collapses.

Once the collapse load has been exceeded (post-critical range), we observe the
following phenomena:

- the deflection of ONE bar continues to increase very quickly;
- the yielding pattern of this bar shows that it is strongly bent;
- the OTHER bars unload elastically.

Thus, although all bars interact, a truss does not collapse as a whole, and
failure is concentrated on a localized zone; at the limit, if we were in a lab-
oratory, we could test the truss again by replacing only the failed bar. But,
if it can be said that the truss perishes through the buckling of one of its
bars, it must carefully be kept in mind that this bar is restrained by the ad-
jacent ones. The yielding pattern after collapse shows that clearly.

One must note that the above mentioned phenomena develop only after the collapse
load is reached. A computation program able to study the post-critical range is

thus necessary to make the collapse mode of the structure appear correctly (for

instance [F1] enables post-critical analysis).

These remarks emphasize the following fact: the collapse of a truss is essen-
tially different from that of a rigid frame, although both are structures with
rigid nodes:

- In a sway frame, the stability of any bar depends on the degree of lateral
and angular restraint of its end sections. This degree depends itself on the
displacements of all nodes and, therefore, on the rigidity of the whole sys-
tem. Consequently, the whole set of bars composing the frame is involved in
the collapse.

- In a truss, on the contrary, the nodes are practically fixed, because the
truss is formed of a series of triangular "rigid" cells. Consequently, the de-
gree of restraint of a single bar depends essentially on the adjacent bars.
Moreover, the type of loading is very different in a truss. The loads act
only at the nodes and do not subject directly the bars to bending. The normal
force plays therefore a paramount role (see 5. CONCLUSIONS). And, even if the
nodes are rigid, the rotational degree of freedom (Fig.1) plays only a minor
role. It could be said that a truss with rigid or hinged nodes has the same
degree of redundancy.
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Such a fact has been observed experimentally during the test (mentioned in
section 3.1) up to collapse of a truss. Four nodes became completely plas-
tified. To continue the test, one had to stiffen these joints be means of ad-
ditional gussets. It was observed that the overall rigidity of the structure
was the same before and'after this reinforcement. This shows that node rigid-
ity has a very small influence on the behaviour of the truss as a whole (not
on an isolated member, naturally).

Thus, the truss which is "statically determinate" for the normal force will
perish when one of its bars buckles.

245 kN after collapse( post-critical)

P=269.3kN __i= \\\
collapse pF===—====—=""—__ V4 1 Y
7
load 1 4 ! \\
| // I \
I 7 I I
| g 4 2 |
| 2 ,/ ]
t 2 7 post-critical /
Z ]
4 ] 2 : ;
- | // (et /
/, | ’/ - -~ ~ \\ /
7 B ‘ 2 ’, ~ /
7 ., o J
N U4
~
\ at collapse

displacements 50 x

Fig.7. Deflection of the truss nr 4 b) at and after collapse (see appendix).

'X\

A “'

displacements 50x

P=3713 kN lp

Fig.8. Deflection of the truss nr 7 a) at collapse (see appendix).
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elastic 3
1245 kN [
2785 kN mmm
31374kN E
3397 kN
3713 kN 3
(collapse )

[ elastic
1 plastic

3681 kN (after collapse)

Fig.9. Yielding pattern of the truss nr7a).
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These two very different behaviours give us hints about the method to use for
design:

- For a frame, a global design is imperative to find the collapse load. More-
over, this design should be second order and elastoplastic, as recommended by
the ECCS rules; for instance the RANKINE formula may help to find an order of
magnitude.

- For a truss, the "local" design, bar by bar - taking into account the geometry
of the problem and the type of loading - seems indicated. One should naturally
use the "European buckling curves", which apply to isolated hinged columns
loaded centrically. By computing in the reverse sense the slenderness ratio
from the computed collapse load of the truss, one finds the so-called "col-
lapse length", and the problem is reduced to the prediction of this "collapse

length”.

This approach to the problem is corroborated by the numerical step by step cal-
culations. It was observed, in all cases studied, that the behaviour of the
truss is quasi linear up to collapse, although plasticity spreads and bars de-
flect. In particular, the normal forces in the bars of the computed truss are
quasi identical (within 2% max) to that of a perfectly hinged truss, even at
collapse.

This shows that no normal force redistribution does occur before collapse and
that, practically, a truss bar behaves Tike an isolated bar with elastic end
restraints.

Based on the above justifications, the design of all truss bars could be done

by means of the European buckling curves, each bar behaving as a pin-jointed one
and having as effective length its collapse length. If this approach is sound,
the problem to solve is the accurate prediction of the collapse length. This
prediction should be based on a linear elastic stability approach, and, in the
next section, various attempts are presented.

4.2. Numerical results

We have used the following methods:

- computation of the collapse length by the ECCS curves;
- estimation of the collapse load by:

- elastoplastic formulae,

« elastic formulae,

as will be discussed in detail hereafter.

4.2.1. Computation of the collapse length

For each bar investigated, we have adopted the geometric and structural imper-
fections and the yield stress as recommended by the ECCS:

foax = (1/1000)2 5 o =0 recommended by ECCS 3 o =0, (ECCS).

It is therefore logical to obtain the collapse length 2c as follows:
N = Noax /A0, 3 N » A via the adequate ECCS curve 3 A+ A+ b

For the N truss without initial deflection, Le is computed using both EULER
formula and a, curve of ECCS; the true value of Le 1ies in between.
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If we write the collapse length under the form QC =kC 2, Table 2 summarizes

the values of kc'

TABLE 2
*
Truss (*) ECCS curve used kC
1 apg Code 1 0,807
2 a) ag Code 1 0,847
b) ap Code 1 0,755
3 a)(**) ag Code 1 and EULER 0,506 < k < 0,862
b)(**) ag Code 1 and EULER 0,838 < k < 0,970 2
c) ap Code 1 and EULER 0,802 < k < 0,948 e
=
4 a)(**) ag Code 1 0,80 e
b)(**) ap Code 1 0,912
c) ag Code 1 0,876
5 a) c Code 1 0,665
b) ¢ Code 1 0,782
6 c Code 1 0,532
7 a) b Code 3 0,683 s
b) b Code 3 0,686 2
c) b Code 3 0,720 =4
o
8 c Code 1 0,512 a
b Code 2 0,704

(*) see Appendix.
(**) truss with eccentric connections.

4.2.2. Elastoplastic methods

MERCHANT-RANKINE formula

This formula reads
1,1
PC Pp PE

where PC = the actual collapse load;
P =
P of geometry (first order theory);
PE = EULER critical buckling load.

the 1imit Toad given by simple plastic theory, neglecting the change

MERCHANT, as well as HORNE, have shown that the value given by the generalized
RANKINE formula was a good approximation of the actual load for portal frames,

including multi-storey frames [M1],[M4].

Figure 10 shows the curve given by RANKINE formula written as follows:

1
P /P = a5
¢ 'p 1+Pp/PE

and, for each truss, the points of coordinates (Pp/PE ’Pc/Pp) with Pc = computed
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collapse load (program FINEL G).

FeiPp 7 Thus, for a truss, P always ex-
ceeds PRANKINE > the mean percent-
age difference is about 20%. There-

o2 fore, the use of RANKINE formula,

initially developed for beam

columns (large values of M), is

not advisable for the design of

oga

e J3C

pe trusses.

e4c . . . A
e4b Belgian-American interaction

formula [M4]

Unsafe side

The plastic version of this for-

05 mula reads
0 05 10 Pp/Pg
Sr Meq
; — + = 1 (4.2.1)
Fig.10. RANKINE formula. N Ao M_(1-P/P.)
r p E
where Sr : normal force in the bar;
N : reduction factor given by the adequate ECCS curve for
the collapse length QC )
Aar i Mp : squash load and plastic moment of the bar;
PE = anI/Ré : EULER load of the bar;
Meq =C Mmax : equivalent bending moment where:

Mmax is the maximum first order moment in the bar;

C is a minoration factor depending on the shape of
the moment diagram.

As Mmax/(1-P/PE) is an approximate value of the second order bending moment in
the bar at collapse, it may be replaced by the actual value obtained from the
computer program. Thus, 2. remains as the only unknown in (4.2.1) and may be
computed.

Table 3 gives the value of k =QC/2 obtained in this way (see below).

I
A look at the values of Table 3 yields the following comments:

- for the chord, kI =kc y this shows that the effect of the secondary moments
is small;

- for the diagonal, it is not possible to find a value of % , because to sat-
isfy equation (4.2.1), we should adopt values of N larger than 1. This is due
to the influence of the normmal force term which is much larger than that of
the bending moment term.

However, now that certain values %. are obtained, it is interesting to apply
formula (4.2.1) with the first order secondary moments (the only ones at dis-
posal in an engineer's bureau) to see whether the formula is fulfilled. This
computation shows that, if

a=S/(Nho) , b =M /M(1-P/P)
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the following results are obtained:

truss Pco?]apse(kN) kI a b a+b
1 815 043 0,640 | 0,049 | 0,689
4 a) 779,5 0,51 0,829 | 0,025 | 0,854
b) 671 .6 0,715 | 0,792 | 0,124 | 0,916
c) 707,0 0420 0,709 | 0,062 | 0,771

It is seen that:

- kI given by (4.2.1) is on the unsafe side (because a+b<1);

- the very small values of b indicate that bending is far from playing a domi-
nant role in a truss.

These results confirm those found in Table 3: the interaction formula, devel-
oped to predict the collapse of a beam-column, is not convenient to predict the
behaviour of a truss bar which is essentially compressed.

TABLE 3
Truss kI kH kE kC
1 0,29 (0,96) 0,756 0,807
2 a) - (%) (0,98) 0,846 0,847
b) - (%) (0,98) 0,760 0,755
3 a) 0,845 (0,962) 0,763 0,506 <k <0,862
b) 0,89 (0,962) 0,761 0,838 <k <0,970 @
c) 0,85 (0,962) 0,763 0,802 <k <0,948 'é‘
4 a) 0,51 (0,962) 0,763 0,80 ©
b) 0,715 (0,962) 0,761 0,876
c) 0,25 (0,962) 0,763 0,912
5 a) 0,45 (0,990 - 0,665
b) 0,70 (0,904 0,752 0,782
6 ( 0,3) 0,899 0,639 0,532
a) (<0,4) 0,888 0,661 0,683 ﬂ
b) (<0,4) 0,876 0,696 0,686 =
c) (<0,4) 0,910 0,638 0,720 S
8 (<0,36) 0,862 . 0,512 =
9 (<0,2) 0,858 - 0,704

(*) the bending moment diagrams for these trusses are not given in [D2].
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4.2.3. Elastic methods

The elastic methods have a main drawback: they neglect plasticity (decrease of
end restraints, increase of bearing capacity of the whole member). However, as
explained at the end of '4.1., they should enable to compute an equivalent buck-
ling length to be used as collapse length in connection with the adequate ECCS
curve.

Dutch formula

We call Dutch formula the formula given in the Dutch specifications [N1],[N2],
which enables to compute Qeq b for the web members of the truss:
L

Leg.b = M
ky =0,7+03u
.- z EL/2,

T EL /2,

index i applies to the studied bar + adjacent compressed bars;
index k applies to the studied bar + whole set of adjacent bars.

The values of kH are summarized in Table 3 (above). It may be noted that:

- the values for the chords are only given as references;

- the formula takes into account the type of loading by treating differently
the compressed bars and those subjected to tension;

- for the diagonals, the formula seems to give values always exceeding 0,85; we
are thus on the safe side;

- in addition, kH does not vary in the same sense as kc.

The general conclusion is that, if the Dutch formula is on the safe side, it
will, nevertheless, not help us in increasing the accuracy of the design of
truss bars.

Bifurcation approach

When stability is studied assuming linear elastic material and small displace-
ments, a "bifurcation Toad" is obtained (linearized stability theory). Using a
computer code (STABIF [F3]) to analyse the global stability of the whole truss
structure, we get:

- the critical load corresponding to the lTowest buckling mode (first eigen-
value);
- the associated deflected shape (first eigenvector).

If the weakest bar of the truss is known, one may compute

=TI/EI/SCr and kE = geq,b/g'

Table 3 (above) gives the values of kE obtained in this way.

2eq.b

Trusses 5a), 8 and 9 have no kg values. Indeed, the results given by STABIF do
not make sense in these cases. Let us recall that, in these trusses, unlike the
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others, the compressed chords and diagonals have very different slendernesses.
Now, the bifurcation method overestimates very much (1ike Euler's formula) the
buckling strength of short members (Fig.11). Therefore, the weakest bar, in this
approach, will be the most slender bar, even if actually it is not the case.

Moreover, Table 3 shows that kg is by far
O puckling not always on the safe side, even if the
‘ G EULER difference is sometimes small. Therefore,
- EJI GEJ»GE,Z this method cannot be retained.

Real (ECCS) Approximate bifurcation formula [D1]

__:—— _.9E,2 6,130,

— 527 ' ' The bifurcation method takes into account

0,1 G e -4 the real elastic restraint conditions of
" 2l Et?“~\ the bar under study, that is, the real

I : Cs = geometric shape of the structure. But it
| l often gives too small values of k. On the
A A2 A contrary, the Dutch method protects us
against this danger by imposing k values
larger than 0,7 (which corresponds to a
bar pinned at one end and built-in at the

other).

Fig.11. EULER and ECCS
buckling curves.

These two remarks were the starting point for the development by one of the
authors of an approximate bifurcation formula [D1]. Looking at Figure 12, the

1: studied bar(==—=) )Q/‘b
+: tension >
-: compression a va

Fig.12. Actual structure (left) and simplified subassemblage (right).

study of the compressed member was based on the following scheme:

- Type 1 bar : is the bar under study, with characteristics E, I] ,21 , com-
pressed by a force P].

- Type 2 bar : all the compressed bars adjacent to bar 1 are replaced by one
bar with characteristics E, IE ,25 ,P;.
- Type 3 bar : all the tensile bars adjacent to bar 1 are replaced by one bar
with characteristics E, I* ,2% ,P%.
3* 3”3
When a set of bars with characteristics Pj ,Iji , % is replaced by a single bar,
its characteristics P*, I*, 2* are given by the relations

[* =3 (1.2%/2.) and P* =3 (P.2./0%)
i 1 1 i 11

This structural scheme fulfills the various requirements emphasized above,
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namely:

- like the actual truss, the subassemblage is a fixed node structure;

- a compressed truss bar is never pinjointed at either end; the subassemblage
should therefore lead to a safe result;

- k can only become equal to 0,7 if 12 and 13 tend to infinity.

In Tine with TIMOSHENKO [T1], the critical multiplier A is the solution of
the following transcendental equation:

[i1K]w(U2) +12K2¢(U])]¢KU3) - K313¢(U])¢(U2) =0 (4.2.2)
with
w(Ui) = cot K.Q. - 1/Ki£i
¢(U3) = coth K313 1/K313
K. =

i /Acrpi/EIi
This equation may be solved by iteration. As it possesses many roots, we must

make sure that the approximations converge towards the multiplier A., of the

first buckling mode with 2 b >0,7 2. Its solution has been programmed for a
pocket computer. €q,

Table 4 gives three types of effective iength computed by this formula:

2eq,b = kgqt
kE] : takes into account all bars;
kE2 : takes into account the tensile bars only;
kE3 1 is Tike kE2 ,but with all tensile forces made equal to zero.

The disadvantages and advantages of this approximation may be summarized as fol-
Tows:

Disadvantages: - the material is purely elastic;
- the use of the method is less convenient than WOOD's or simi-
lar charts (see hereafter).
Advantages - except for trusses with eccentricities, kgj is always on the

safe side, while remaining reasonably accurate;

- kg1 changes always in the same sense as k¢ 3

- the method is based on the concept of one bar restrained at
one end by the adjacent ones. The concept of global buckling
is therefore left aside and the problem created by trusses
with bars having very different slenderness ratios does not
exist anymore;

- the bar restraints depend not only on the geometric character-
istics of the adjacent bars but also on the values of the nor-
mal forces in these bars and therefore on the external loading;

- the comparison of the values kpy and kgz indicates whether or
not the bar under study is supported by the adjacent com-
pressed bars.
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DONNELL's formula - JOHNSTON's and WOOD's charts

We started our investigation by the global bifurcation method where the struc-
ture was studied as a whole. Because of its disappointing results, we have
simplified to obtain formula (4.2.2), from which kg1 , kg2 and kg3 were computed.
Still simplifying, we assume now the bar under study to be elastically re-
strained in rotation at both ends. Therefore, it may be asked whether the use
of a formula or chart giving the effective length of such a restrained bar can-

not give better results.

Before answering this question, it is necessary to underline two statements:

- The use of such a formula (or chart) should not be a better approach than the
solution provided by the global bifurcation method, which, as we have seen,
does not give satisfactory results.

- The various approaches for restrained bars (DONNELL's formula, JOHNSTON's or
WOOD's charts, etc...) utilize elastic restraint coefficients which do not
take into account either the sign or the value of the adjacent normal force.
Now, we have seen (cf. Table 4) that, sometimes, the compressed adjacent bars,
instead of supporting the bar under study, increase its instability. This is
the reason why, to test the above approach, only the bars subjected to tension
will be taken into consideration.

As in preceding developments, the adjacent bars are assumed to be hinged at
their far ends.

Using DONNELL's approximate formula [M2], the critical load of the restrained
bar (Fig.13) is given by
Pcr = n n?El/4?

. _ 1+2,9(‘f"]+f2)+7,2‘!".[1"2 ) )
with n= and f_i = m R1
1+],4(f]+f2)+1,8f1f2 s
Hinged 1.0 T | \ I O.&& 0
09 R ' o
» N ol
08 & AN —53 \\
1E s,
5 07 ‘°\~— N
. : 06 N —
gl g N\ \
=le 05 =1
(2 N
-
HEe AN
O+ \
\E/ 0-2 N \\
01 .
Faed ooo.som 02 03 04 05 06 07 08 09 10
e * =( $::‘;'I'":‘is':::::5:t bottom ioint) S
Fig.13. Subassemblage for Fig.14. WOOD's chart [WT1].

DONNELL's formula.
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The coefficient R, =2 3
J

EI.
—J characterizes the restraint of the J adjacent bars.

%

We deduce kj = /n (see Table 4).

We recall here briefly only the chart developed by WOOD [W1] (Fig.14).JdHNSTON's

approach differs only in its presentation [J2]. Results are evidently nearly

identical to those found by DONNELL, because all three treat the same problem

(see kw

in Table 4).

Finally, we could evaluate as follows the merits of this approach:

Advantages

Disadvantages:

D

D

k, is larger than k

Ei

DONNELL's formula is easy to use.

for the chords,

kD is slightly less than kEi for the diagonals;
k, is always on the safe side;

the elastic restraint coefficients do not depend on the 1load.

TABLE 4
Approximate bifurcation WOOD and
formula [D1] DONNELL | 5 o1nsTON
ke Keo Keg kp Ky ke
(520) (5>0) (5=0)
1 0,860 0,889 0,889 0,879 0,89 0,807
2a) 0,953 0,933 0,965 0,961 0,965 0,847
b) 0,841 0,933 0,965 0,961 0,965 0,755
3a) 0,817 0,849 0,905 0,899 0,90 0,506 <k <0,862
b) 0,817 0,849 0,905 0,899 0,90 0,838<k<0,970 | Q
c) 0,817 0,849 0,905 0,899 0,90 0,802 <k<0,948 | &
X
4a) 0,817 0,849 0,905 0,899 0,90 0,80 =
b) 0,817 0,849 0,905 0,899 0,90 0,912
c) 0,817 0,849 0,905 0,899 0,90 0,876
5a) 0,772 0,933 0,933 0,920 0,920 0,665
b) 0,901 0,908 0,908 0,89 0,90 0,782
6 0,739 0,750 0,779 0,702 0,705 0,532
7a) 0,744 0,749 0,778 0,717 0,72 0,683 9
b) 0,754 0,749 0,778 0,717 0..72 0,686 =
c) 0,749 0,759 0,791 0,791 0,785 0,720 §
8 0,718 0,735 0,767 0,698 0,690 0,512 p=
9 0,739 0,751 0,771 0,722 0,73 0,704
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5. CONCLUSIONS

5.1. For or against elastoplastic computation

The rigidly jointed frames are essentially bent structures, while trusses are
essentially axially loaded. It is therefore understandable that refined computa-
tions reveal a different behaviour for each of the two kinds of structures. A
frame and a truss obey respectively to interaction curves (N/NP ,M/MP) of the
types 1 and 2 (Fig.15).

In opposition to the truss, the
frame reaches very early the
yielding zone, which justifies
fully the redistribution of in-
ternal forces due to plastifica-
tion. Then, the preceding con-
siderations explain that the in-
teraction formula (which is the
basis for the design of beam-
columns) is not adequate for
truss bars.

MM,

051

In these conditions, the use of
methods based on a purely elas-
tic behaviour of the material
seems adequate to determine the
effective length of buckling of
1) : .  truss bars.

0 05 10" N/Np

Indeed, we think (recall Fig.7
to 9) that the type of collapse
observed shows that the design
“"bar by bar" and the concept of
effective length are correct.

Fig.15. Interaction curve
(N/NP 5 M/MP).

5.2. Computation of the collapse load

It has been shown that trusses may be designed with sufficient accuracy one bar
at a time, by using the concept of effective length and by distinguishing
trusses with centric bars from trusses with eccentric bars. Once computed, the
effective length is considered as equal to the collapse length and the bar is
designed by using the European buckling curves ECCS.

5.2.1. Trusses with centric bars

Above all, it must be emphasized that the present study [D1] applies only to
truss members with slenderness larger than 50.

With this restriction, the results discussed show that

- the buckling effective lengths are , for the chords, comprised between 0,75
and 0,95 £ and, for the diagonals, less than 0,8 2;

- these effective lengths should be determined by an approximate method based on
the bifurcation theory. The global bifurcation approach should, however, be
abandoned.

Two methods are recommended. Their choice will depend on the aim of the designer.
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a) Approximate bifurcation formula

As this formula takes into account the value and the sign of the forces in the
adjacent bars, we may consider the stiffness of the compressed bars without
fear of overestimating the elastic restraint. Moreover, the comparison of kE1
and kE2 enables to have an idea of the equal strength design:

- if ko, < kE2 , bar 2 induces buckling of bar 1;

El
- if kE] > kE2 , bar 2 restraints bar 1;
- if kE] = kEz , "simultaneous" buckling of bars 1 and 2 may occur.

b) DONNELL-JOHNSTON-WOOD approaches

These three methods are equivalent; they are based on the concept of the bar
axially loaded and elastically restrained against rotation at both ends. To ob-
tain safe results, it is recommended to neglect the stiffness of the adjacent
compressed bars and to consider that the stretched bars are hinged at their
farther ends. The advantage of this second approach is its simplicity.

5.2.2. Trusses with eccentric bars

For these trusses, it is recommended:

1.- to avoid eccentricities (first source of yield) if the slenderness of the
compressed bar is small (second source of yield);

2.- for the design against buckling, to choose one of the following two possi-

bilities:

a.- use L¢ =2 3

b.- use 2¢c =k& (where k is computed as recommended in section 5.2.1) and
utilize the interaction formula (4.2.1) after having computed the
secondary moments
- either exactly;
- or as follows:

the moment due to eccentricity is M = Te/2 (Fig.16); the part
of this moment taken by the bar under study is M, = k]M with

1
k1 = (I]/R])/(I1/2]-+Iz/£2).

As the bar 1 is supposed to be hinged at the far end, the distribution of mo-
ments is triangular and C =0,548. Refined numerical calculations have shown
that, in this way, satisfactory results are obtained.

N=T
' l ‘
L |
& , 1
e 1™« +=+ studied M1
)ill% ‘; 1 bar
PN
MMM,

Fig.16. Simplified method for secondary moment M1.
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5.3. Future developments

The present study is uniquely devoted to the problem of flexural buckling in the
plane of the truss. The study should be completed by a closer examination of the
behaviour of trusses containing very stocky bars (A =25-30). Indeed, for such
bars, plastic effects should be more important and the behaviour of these bars
would therefore be closer to that of the columns of a rigid frame. Then, one
should tackle the spatial instability of trusses.

APPENDIX - Trusses simulated on computer

Studied bar Truss b h | Type of cross-section for bar nr:
nr cm) |(cm) 1 2 3 4 5
P {F
hl 2/ 3 [D2] |1 1000 250 |HEA200|HEA200|HEA200|HEA120
1_13 4 \
AR 4"[
W] 2 a)|1500| 250 |HEA200|HEA200|HEA100|HEA120| HEA180
£ 5 : b)|1500| 250 |[HEA200 [HEA200 |HEAT00[HEA180{HEA180
| b _%
P MSH
4 3&14 a) 1000 400 MSH MSH MSH 120
b){1000| 400 | 100 100 100
h 2 3 %60
c)|1000| 400 | x10 x6,3 x10 %6 ,3
| b | 3: bars without initial deflections
' - 4: bars with initial deflections
p P b), ¢) : joints with eccentricities
2 1|
g 3N 3 "-f'_~ - 5 a)|1000| 250 {HEB180 |HEB160|HEB160|HEB160|HEA180
£ 5N\ b) [1000| 250 |HEA260 |[HEM140 |HEM140|DIL240|{DIL200
__________________________________________________________________________ § R ——
lP lzlp
- ?5\ T iT% 6 900| 250 [HEB100 |HEB120 |HEAT100|HEA100
c
g A=100
o
P, P2 7 a)| 900| 250 [HEM280 [HEM280 |HEM240 |HEB240
h 4 b)| 900| 250 |HEM280 |HEM260 [HEM240 |HEB240
c)| 900| 250 |HEM280 |HEM280 |HEM240 |HEB240
A_

=40 a) and b): P.=P=P 3 c): P,=1,5 P 5 P=0

7P 1 7

Fﬁx 86 2 P <—W

I
\\13 b N 8 1500 150 |HEA220 |HEM220 |HEM220 [HEB160 |HEB220
A= 52

P R
w 9 450| 250 |HEA120 [HEM100 [HEB120 |HEAT00 |HEM100

A=
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MAIN NOTATIONS
L : length of the bar between centers of connections.

A : slenderness ratio of the bar computed as ratio of its length 2 by its
radius of gyration i : A = 2/i.

: the buckling length is the length of a perfect fictitious member,
hinged at both ends, which would have the same critical load as the
given member, supposed equally perfect (this definition is only valid
if the bar is isolated, loaded only at its ends, of constant cross sec-
tion, and perfectly straight).

L : the collapse length is the length of the fictitious member hinged at
both ends that has:

- the same geometric and mechanical properties as the actual bar;
- the same collapse load as the bar placed in a structure in a definite
environment (loading, type of truss, etc...).

: same definition as Rc , but by adopting a purely elastic bar.

k : ratio of the buckling or collapse length of the bar by its length
(8/2 58 /% 5 ..0).
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