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Formal and Real Structural Safety.
Influence of Gross Errors

Sécurité formelle et réelle des structures.
Influence de fautes graves

Formale und reale Sicherheit von Tragwerken.
Einfluss von groben Fehlern

Ove DITLEVSEN

Prof. Dr. techn.
Danish Engineering Academy
Lyngby, Denmark

SUMMARY

Gross error occurrence cause gaps between calculated and real structural failure rates.
Considerations about gross errors have, however, small influence on material consumption
for given structural lay-outs. Therefore formal probabilistic reliability theory plays a mean-
ingful role for the choice of dimensions. Concerning different lay-outs it is essential to eva-
luate the proneness to gross errors. Procedures for this depend on possibilities of defining
some measure of proneness to failure due to gross errors. Fuzzy set theory is investigated
in this view.

RESUME

Le fait de fautes graves est la cause des différences entre la fréquence observée des défail-
lances de structures et la probabilité formelle de ruine. Des considérations relatives a des
fautes graves n‘ont cependant que peu d'importance sur la quantité de matériaux néces-
saire pour une conception structurale donnée. C’'est pourquoi la théorie probabiliste de la
sécurité joue un réle important dans le dimensionnement des structures. Par contre, en
comparant différentes conceptions structurales, il est essentiel d'évaluer leur sensibilité
aux fautes graves. Des procédures relatives a cette comparaison nécessitent la définition
d’'une mesure pour la sensibilité aux fautes graves. La théorie des «fuzzy sets» est étudiée
dans ce sens, dans la présente contribution.

ZUSAMMENFASSUNG

Der Unterschied zwischen rechnerischer und statistisch beobachtbarer Versagenswahr-
scheinlichkeit von Tragwerken ist auf grobe Fehler zuriickzufiihren. Fir ein gegebenes Trag-
werk-Konzept hat jedoch die Berticksichtigung grober Fehler nur einen kleinen Einfluss auf
den Materialbedarf, weshalb auch die formelle Wahrscheinlichkeitstheorie bei der Bemes-
sung von Tragwerken durchaus ihre Berechtigung hat. Beim Vergleich verschiedener Trag-
werk-Konzepte spielt jedoch die jeweilige Empfindlichkeit gegentliber groben Fehlern eine
wesentliche Rolle. Voraussetzung flir den Einbezug dieser Tatsache ist eine geeignete Defi-
nition eines Masses flir diese Empfindlichkeit. Die , Fuzzy-Set”’-Theorie wird in diesem
Zusammenhang untersucht.
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1. INTRODUCTION

In his contribution to the nsafety concepts» session at the 1980 IABSE Congress in
Vienna, [17], the author has argued that the concept of theoretical (or operational)
failure probability is an indispensable tool to provide rational choices of structural
dimensions. The author holds the opinion that the contributions to the observed
failure rate of real structures are dominated by failures caused by gross errors that
are not and should not be accounted for by the theoretical failure probability. In
fact, the concluding argument of [17] supports the principle that the design value
of the theoretical failure probability for a given structural lay-out should be fixed at
the value which minimizes the total expected costs (where »costs» may be taken in
a more general sense than just direct monetary costs), that is, the expected value of
the establishing costs plus the operation and maintenance costs plus the costs of da-
mage or failure. The question raises whether such an optimization is reasonable in
consideration of the gap between real and theoretical failure rate. Fortunately the
answer is confirmative in most cases. To see this let p, be the theoretical probabili-
ty of failure and let P, be some measure of proneness to failure due to gross errors.

The point is that for a given lay-out of the structure (including the entire plan for the
building process) the proneness to failure p, is in most cases almost unaffected by va-
riations of p,, , these variations only causing variation of the material consumption.
Therefore, the value of p,, which minimizes the expected cost of the given lay-out

is almost unaffected by the expected cost of failure due to gross errors (provided the
costs associated with a failure are only slightly dependent on variations of the ma-
terial consumption). Thus it is rational for each lay-out to choose as design value that
value of p,; which minimizes the expected cost of the given lay-out. The validity of
this argumentation seems to be the only salvation of probabilistic reliability theory
from being just a plaything for university teachers. However, when the question is
about choosing between different lay-outs the expected cost of failure due to gross
errors must be added, that is, a cost which depends on p,, must be added. While the
widely accepted modern decision theory (von Neumann, Morgenstern, [13]) defines
the failure cost as a function of p,, simply as the expected cost with respect to the
given probabilistic model there is as yet no generally accepted definition of Pg,- Even
with such a definition available it is by no means obvious how to define the expected
failure cost as a function of p,, except, perhaps, that it should be an increasing func-
tion of p,,.

To the author’s knowledge the terminology »proneness to failure» together with an
attempt to define a numerical measure of it was first suggested by Pugsley, [11]. Block-
ley, [3], [4], has published a useful checklist for grading the quality of a project with
respect to proneness to gross errors in all its stages from design to use. He applied this
checklist in a grading of 23 major projects that all turned into disasters. The problem

is to cook down all these gradings to a single appreciable measure of proneness to
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failure. He applies the fuzzy set concept which was introduced by Zadeh in 1965, [15],
with the purpose of giving a precise mathematical interpretation of imprecise linguistic
statements and a modelling of relations between such statements. However, in the light
of the above discussion, Blockley’s attempt in [4] to »fuzzify» the theoretical failure
probability p,, seems inappropriate.

The following paragraphs of this paper analyses the fuzzy set tool in the field of interest
here. What are fuzzy sets about and how should results of operations on fuzzy sets be
interpreted? The possibility of an interpretation in usual probabilistic terms is discussed.
This discussion reveals several open questions about basing a measure of proneness to
failure due to gross errors on the established fuzzy set algebra. For the time being the
author tends to give support to the view that purely pragmatic reasons justify the fuzzy
set tool.

Blockley gives no justification at all. In [3] he applies one definition and in [4] another
definition of fuzzy set compositions without giving any reasons for these choices. Other
writers (Brown, [5], Yao, [14]) follow the line of Blockley without attempts to estab-
lish satisfying justificatibns. This is not surprising because a justification which satis-
fies an engineer of classical fraining may be pretty hard to give. Fact is, however, that
the fuzzy set tool has been quite successful in practical engineering applications in
connection with control and regulation decision procedures where the purpose is to
steer some process in the right but, perhaps, imprecisely given direction, [7], [10].

The mathematical literature about fuzzy sets has grown very large since the start by
Zadeh fifteen years ago. Only some very few early references will be given in the fol-
lowing for the purpose of documentation. Those basic concepts of fuzzy set theory
(or fuzzy logics) which is needed for the discussion herein will be given from scratch
in order to make the text self-contained.

2. GROSS ERROR EVALUATION IN TERMS OF FUZZY SETS

It is, perhaps, most illustrative to explain the fuzzy set concepts in terms of a relevant
example. Blockley’s grading scale and checklist of statements are well suited for our
purpose, [4]. The 25 statements of the list declare ideal circumstances for occurrence
of no gross errors. Some few examples from the list are:

2(b) The quantity and quality of research and development available to the designer
is sufficient.

4(c) The form of structure has been well tried and tested by its use in previous struc-
tures.

6(d) The contractor is adequately experienced in this type of work.
7(a) The contractual arrangements are perfectly normal.

The grading consists of choosing a pair of characters for each statement of the list. The
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first member of the pair expresses the degree of confidence in the truth of the statement.
The set of grades is:

very high confidence
high confidence
medium confidence
low confidence

very low confidence

ANl S S

The second member of the pair expresses the importance with respect to failure given
occurrence of gross errors related to the statement. The set of grades is as above except
that the word »confidencey is changed to the word »importancey.

Clearly such a grading is subjective. The fact that people with insight in the subject of
the statements are able to do the grading just as teachers are able to grade their pu-
pils indicates that the grading represents some relevant information even though it

is imprecise in nature. It seems to be the imprecision itself that makes the grading
possible. The human brain obviously has a remarkable ability of perceiving an overall
situation and to express this perception in imprecise linguistic terms. This point of
view is so clearly explained by Zadeh in [16] that the author can do no better than to

quote:
»An alternative approach outlined in this paper is based on the premise that the
key elements in human thinking are not numbers, but labels of fuzzy sets, that
is, classes of objects in which the transition from membership to non-member-
ship is gradual rather than abrupt. Indeed, the pervasiveness of fuzziness in hu-
man thought processes suggest that much of the logic behind human reasoning
is not the traditional two-valued or even multivalued logic, but a logic with fuzzy
truths, fuzzy connectives, and fuzzy rules of inference. In our view, it is this fuz-
zy, and as yet not well-understood, logic that plays a basic role in what may well
be one of the most important facets of human thinking, namely, the ability to
summarize information - to extract from the collections of masses of data im-
pinging upon the human brain those and only those subcollections which are re-
levant to the performance of the task at hand.

By its nature, a summary is an approximation to what it summarizes. For many
purposes, a very approximate characterization of a collection of data is sufficient
because most of the basis tasks performed by humans do not require a high de-
gree of precision in their execution. The human brain takes advantage of this
tolerance for imprecision by encoding the »task-relevant» (or ndecision-relevant»)
information into labels of fuzzy sets which bear an approximate relation to the
primary data. In this way, the stream of information reaching the brain via the
visual, auditory, tactile, and other senses is eventuelly reduced to the trickle that
is needed to perform a specified task with a minimal degree of precision. Thus, the
ability to manipulate fuzzy sets and the consequent summarizing capability con-
stitute one of the most important assets of the human mind as well as a funda-
mental characteristic that distinguishes human intelligence from the type of ma-
chine intelligence that is embodied in present-day digital computers.

In order to establish an arithmetic by which the information content of the set of
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pairs of grades may be summarized to give a single measure of proneness to failure due
to gross errors we first introduce numerical scales of both confidence and importance.
Let these scales both be the interval Q = [0, 1]. The classical way of modelling is then
to define a one to one correspondence between the set of 5 grades and a subset of five
numbers in £2, e.g. the set {0.1, 0.3, 0.5, 0.7, 0.9}. The point is, however, that the
linguistic gradings are imprecise in nature and even that this imprecision is an essential
part of the information perceived by the human brain and expressed by it through the
gradings. This essential imprecision is totally lost when applying such a one to one
correspondence. An intuitively appealing alternative is to use the entire set {2 together
with a so-called membership function u, : [0, 1]. The value u, (x) is called the de-
gree of membership of x € {2 in the fuzzy set A. Here A is a symbol for those imprecise-
ly defined numerical measures that correspond to a given linguistic grading. For con-
venience we may identify A and the corresponding linguistic grading. As an example
let A be nlow confidence». We then may model the fuzzy set by a reasonable choice
of a membership function u, that at least does not conflict our perception of the
linguistic grading. Needless to say that it is hopeless to try to look for canonical prin-
ciples that lead to a unique choice of such a membership function. Subjectively per-
ceived pragmatism must be the guide for the choice.

For a moment return to the discretized scale 0.1, 0.3, 0.5, 0.7, 0.9 of degrees of con-
fidence. These numbers may be interpreted as truth degrees for fuzzy logical state-
ments. In classical mathematical logics a statement like 2(b) is either false or true with
corresponding truth degrees O or 1. In human perception of imprecise statements this
classical concept is obviously much too rigid. To soften the truth interpretation the
idea of having truth degrees between 0 and 1 is quite natural. But while the rules of
combining statements in classical logics have a canonical basis difficulties show up for
the formulation of a fuzzy logic of general acceptability. We return to this discussion
below. For now let us accept the idea of working with degrees of truth. As mentioned
we loose the inherent imprecision of our perception, if we just assign one of the truth
degrees, 0.1, 0.3, 0.5, 0.7, 0.9 to the statement 2(b), say. Assume that we judge our
confidence in the truth of 2(b) to be »low». Then we might agree that the truth value
is about 0.3, but not that it is precisely 0.3. So, instead we choose to represent the grade
mlow confidence» by a fuzzy set A defined by a membership function as, for example,

X—0.3 2]

.uA(X)=exp[—%( ) , x€[0,1] (2.1)

where o is a positive constant. The larger ¢ is the larger is the fuzziness. Note that
the extension of this function from x € [0, 1] to all real x is similar to the well-known
bell-shaped normal density (Gauss curve) of mean 0.3 and standard deviation 0. Geo-
metrically the parameter o is the distance from the mean to the two points of inflec-
tion of the curve.

In the following let us agree to use the membership functions u; (x), y;,(X), 4y (%),
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Hpe(X), Moy (X) corresponding to »very lowy-, plown-, mediumy-, »highy-, and »very
high confidence», respectively, where these are defined as functions of the type
X—y
R(x, y3.¢) =expl= (———
d » (cy(l -y
with y = 0.1, 0.3, 0.5, 0.7, 0.9, respectively. Note that the parameter o, see (2.1), varies
with y according to the formula o = cy(1—y) /\/2 where c is a suitable constant. Corre-
sponding to the selected values of y we have o/c = 0.064, 0.148, 0.177, 0.177, 0.148,

)2] , x€[0,1] (2.2)

0.064. This variation reflects larger fuzziness in the medium range than at the extremes:

»very low» and »very high». For ¢ = 1 the functions are shown in figure 1.
1

V

0 1
Figure 1. Suggestions of membership functions defining fuzzy sets corresponding to
the five gradings of confidence in truth of a given statement.

0

By the way, note that for example the fuzzy set of »very low confidence» is not a fuz-
zy subset of the fuzzy set of »low confidence» according to the definition, [15],

ACB < u,(x) < ug(x) (2.3)

This is not in conflict with intuition since the interpretation of »low confidence in
truth of» is not the same as the interpretation of »low truth degrees». If A = »very

low truth degrees» and B = »low truth degrees» then our perception of A and B would
dictate that A C B in the sense of (2.3). In fact, Zadeh makes automatic the operation
of applying a hedge such as very on a primary term such as low simply by squaring
the membership function of low to get the membership function of very low. That
there are possibilities of wrong interpretation of the linguistic statements such as it is
demonstrated here emphasizes the necessity of making clear the meaning of the state-
ments before automatic operations can be executed.
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For any given degree x € Q = [0, 1] of confidence we may next éssign a fuzzy set of
proneness p to failure taken as a fuzzy subset of the interval [0, 1], that is, a condi-

tional fuzzy set of p given x. Corresponding to medium importance we may, for example,
define the conditional membership function u_;(p[x) by

P—(—%)y L efo,1] (2.4)

K (plx) = exp[— ( el )

which for x = 0 (zero confidence) and x = 1 (full confidence) degenerates to the crisp
set membership functions

1 forp=1

0 otherwise

1 forp=0

0 otherwise

#mi(pl0)={ A umi(pll)={

Inbetween x = 0 and x = 1 the membership function is the Gauss bell corresponding
to a mean of 1 — x and a standard deviation of kx(1 — x)//2 where k is a suitable
constant. Figure 4 shows (2.4) for k = 1.

Standard fuzzy set algebra has been constructed such that if x is a member of a fuzzy
set, e.g. with membership function u, (x) = u(x, 0.3; ¢) (low confidence), then the
fuzzy set of x together with the conditional fuzzy set of p given x induce a fuzzy set

of p. Let S be a statement with pair of grades (nlow confidence», nmedium importancen»).
Then the membership function ug(p) of the corresponding fuzzy set of proneness mea-
sures becomes, [2],

ts(p) = max min {u (x), u;(pIx)} (2.5)

We return to a discussion of the origin of the composition rules applied in (2.5).

Conditional membership functions of p given x corresponding to »very high», »highy,
»low», »very low» importance may be defined in terms of u_;(p[x) simply as

(P11 = (1= 09 (26)

for q=1/4, 1/2, 2, 4, respectively. These functions are all illustrated in figures 2 to 6
for k = 1. They reflect in a fuzzy way the intuitive meaning og the linguistic varia-
bles »very high», »high», nlown, »very lown.

For each of the statements of the checklist of n statements we may in this way via the
gradings construct n fuzzy proneness sets represented by their membership functions
s, (P), Us,(P), - - -, Mg (D).

In this construction we have a possibility of changing the fuzziness parameters ¢ and k

from statement to statement in order to reflect our perception of doubts about how
precisely we can judge the single statement.

The next question raises how to combine the n fuzzy proneness sets to a single fuzzy
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set expressing the total proneness to failure due to gross errors. Fuzzy set algebra sug-

gests to join the information of the n fuzzy sets in the fuzzy Cartesian product with
membership function

’JS]_X SgX ... XSy (p]_’ pz, veey Pn) = min {”SI(pl):u52(p2)’-")“Sn(pn)}(z',?)

By this step the information about total proneness is still not readily interpretable.
To each n-set (p;, Py, . . . , P,) of proneness measures we should, in fact, assign a
single total proneness p by some function f:

p = f(pl’ p2’ LA | Pn) (28)

Then a fuzzy set of p is induced by this function. Its membership function is

u(p) = max s Pyyiis 5 29
(p) l_)Ef_,({p})Mslxszx...xsn(pl Py Pn) (2.9)

where p = (p;, Py, .-, P,) and £ ( {p}) is the (crisp) set of points in [0, 1]* =
[0, 1] X ... X [0, 1] which by f maps into the set {p}.

Even the function f may be selected on basis of rules from standard fuzzy set (or
logic) algebra. If we take 1 — p as the truth value of the statement »the structure is
safe with respect to failure caused by gross errors of any source» and 1 — p, as the
truth value of the statement »the structure is safe with respect to failure caused by
gross errors of the source corresponding to statement i» then, obviously, the con-
junction of the statement corresponding toi=1, ..., nis the total safety state-
ment of truth value 1 — p. Standard fuzzy logic then defines 1 — p = min{1—p,,

1-py,...,1—p,}, or
p=max{p;, Py, .., Pn} (2.10)

which defines the function f in (2.8).

The last step in the proneness to failure analysis is to translate the fuzzy set defined

by (2.9) into a linguistic statement taken from a finite set of standardized statements.

A natural procedure is to determine the area and the centre of the area below the
curve defined by the membership function (2.9). The translation of the fuzzy set
into a linguistic statement as for example: sthe structural lay-out has above medium
proneness to failure due to gross errors with low degree of fuzziness», may then be
done by use of the lists next to figure 9.

Blockley’s gradings of the 23 fatal structural lay-outs have in common that there is
at least one statement for each structural lay-out that has the worst possible combi-
nation of gradings, i.e. very low confidence together with very high importance. This
pair of gradings will always dominate all other pairs and place the structural lay-out
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Figure 2. pp;(p x)
(very high importance)

Figures 2 to 6 show suggestions of
conditional membership functions
of the proneness p to failure due

Figure 3. up;(p Ix)
(high importance)
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(medium importance)
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in the class with extremely high proneness to failure. This is quite reasonable when
noting the fact that all structures failed and that the gradings were all worked out
post failure. A closer look reveals that the fuzzy set model given above generally
has a tendency to pick out one or some few pairs of gradings to dominate all other
of the given pairs of gradings.

The practical calculations naturally become overwhelming if (2.9) is used directly for
a large n. However, the calculation can be done recursively by first taking S; and S,
together and calculating u(p) from (2.9) for n = 2 with p = max {pl, pz}. Using the
calculated u(p) as proneness to failure membership function for the statement com-
bined of S, and S, this may next be taken together with S; and a new p(p) may be
calculated for the statement combined of S,, S,, and S. In this way we may proceed
recursively until all n statements are included. The proof that this recursive algorithm
leads to the result defined by (2.9) follows from the complete distributive law of the
lattice of real numbers of the interval [0, 1], see [8, p. 151]:

min {a, max b; } = max (min{a, b, }) (2.13)
iel =

Here I is any index set having such properties that max b, exists.
iel

It follows that if usl(p) = Us,(P) for all p then u(p) for the statement combined of
S; and S, equals this common membership function. Thus all statements with identi-
cal pairs of gradings have no more effect on the proneness to failure than just one of
the statements provided the fuzziness parameters ¢ and k are the same from pair to
pair. In other words, only the set of all different pairs of gradings need be taken into
account. Among these the algorithm picks out one or some few to be determining
for the membership function of the total proneness to failure.

Figure 7 shows u(p) for Blockley’s gradings of the Tay bridge. It is totally dominated
by the worst possible pair of gradings. Figure 8 shows u(p) for Blockley’s single ex-
ample of a structural lay-out which has not failed. It turns out to be dominated by
the grading pair (medium confidence, high importance). Figure 9 shows a constructed
example where a single pair of gradings does not dominate.

The fuzzy set analysis illustrated herein is entirely different from that used by Block-
ley in [4]. This is in itself not a criticism of Blockley’s analysis but it emphasizes that
the fuzzy set tool is a tool for modelling subjective perception of imprecise informa-
tion. Blockley expresses simply a different perception of his gradings than the au-
thor’s. The fuzzy set concept with its compositional rules as used herein is no more
than a language of subjectivistic reasoning helping the reasoning person to keep due
consistency in his process of condensation of different perceptions that he believes
contain some relevant information about the problem at hand. The scientific minded
person may very well claim that the whole procedure is so swayed by arbitrary defi-
nitions and choices that the result of it must be quite arbitrary. In traditional ob-
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0 [ + 4 3
0 1

Figure 7. Blockley’s grading of Tay Bridge,
[4]. The structural lay-out has extremely
high proneness to failure with very low de-
gree of fuzziness. Dominating grading is
(very low confidence, very high confi-
dence).

0 + t + +
0 1

Figure 9. Constructed example. It has
medium proneness to failure with high
degree of fuzziness. The gradings are
(see page 4): (2, 2), (3, 3), (4, 4). The
dominating gradings are underlined.

0
0

&
1

1

Figure 8. Blockley’s non-failure example,
[4]. The structural lay-out has above me-
dium proneness to failure with high de-
gree of fuzziness. Dominating grading is
(medium confidence, high importance).
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very low

low
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Figures 7 to 9 show membership functions of proneness to failure due to gross er-
rors. The proneness measures are fuzzy subsets of the interval [0, 1].
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jectivistic sense this is true, no doubt. The point is, however, that the sources of fuzzy
information are non-objectivistic and non-reproducible in their very nature like the
process of perception in the human brain. The result of such a perception process in
the human brain is objectivistically arbitrary but it is not arbitrary to the percepting
person. It is the brain’s condensation of all the fuzzy information available to the
brain and it is the basis on which the person acts.

Undoubtedly, it is so that the composition rules applied by the brain are not con-
sistently the same at different times and for different types of information. In certain
matters of small degree of fuzziness this causes evident confusion. To help the human
brain being more rational the human brain itself has invented mathematical model-
ling with impressive success. Thinking of this it seems quite natural to take the step
also to set up a model to secure rationality in fuzzy reasoning in order to reduce con-
fusion and thus improve decision (even though confusion due to bad perception and
condensation of fuzzy information from an intellectual point of view is much easier
to excuse than in the case of precise information). However, a difficulty is that the
rules of fuzzy logic cannot be established on the same kind of clear evidence as char-
acterizes classical mathematical logic. We look into this in the next two sections.

3. THE FUZZY SET OPERATIONS

We will first look at the basis for the rule leading to (2.7). In fact, it is based on
Zadeh’s definition, [15],

Ma g (X)=min {VA(X),.UB (x)} (3.1)

for the membership function of the fuzzy intersection ANB of two fuzzy sets A and
B with membership functions u, (x) and ug(x), respectively. By comparison with

the definition of the fuzzy containment relation C, see (2.3), it is easily proven that
ANB as defined by (3.1) is the largest fuzzy set which is contained in both A and B.
In this respect the definition (3.1) is unique. In the same spirit the fuzzy union AUB
is defined as the smallest fuzzy set that contains both A and B. Uniquely the member-
ship function becomes

Haup (%) = max {u, (x), up(x)} (3.2)

It is interesting to note that there is a set of »canonical» conditions formulated by
Bellman and Giertz, [1], which also uniquely lead to the definitions (3.1) and (3.2).
The most fundamental condition of these is that

1. The membership values u, ~5(x) and p, ,5(x) depend solely on the membership
values u, (x) and ug(x).

Once this condition is accepted (for doubts, see next section), it seems difficult not
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to accept the following conditions about the functions f and g which are postulated
by condition 1 to give

Manp(X) = (U (%), ug(X)) , Haug(s) = 8(Ha (%), (X)) (3.3)

These further conditions are

. f and g are non-decreasing and continuous in both variables,

. f and g are symmetric,

. f(s, t) < min{s, t} and g(s, t) > max {s, t},
. £(1,1) = 1,¢(0,0) =0,

. equivalent set formulations such as A U (BNC) and (AUB) N (AUC) have equal
membership values (3 is a special case of this).

2
3
4. f(t, t) and g(t, t) are strictly increasing in t,
5
6
7

Condition 5 may need a comment: Accepting x as a member of both A and B requires
more than accepting x as a member of A alone. Thus u, ~5(X) < i, (X). By symmetry
it follows that

M Ap(X) < min {IJA(X), [JB(X)} (3.4)

Analogously, accepting x as a member of A and/or B requires less than accepting x as
a member of A alone or B alone. Hence

Ma g (x) = max{u, (x), up(x)} (3.5)

While these conditions as proved by Bellman and Giertz, [1], uniquely give the defi-
nitions (3.1) and (3.2), it seems difficult to impose an analogously simple set of ca-
nonical conditions for unique determination of Zadeh’s definition of the fuzzy com-
plement

U-CA(X)=1_-’JA(X) (3.6)

except that it seems to be a very natural definition. It was used in the derivation of
(2.10) (in its fuzzy logic version).

That (2.7) is a consequence of (3.1) follows by interpreting S,, ..., S, as cylinder
sets in [0, 1]” in which case the Cartesian product S; X 8, X ... X 8, is the same as
the intersection of all cylinder sets.

We are now ready to discuss the basis for the rule

Hp(y) = max min {u, (x), ug(y %)} (3.7)
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which was, in fact, used in (2.5). Here ug (y[x) is a given membership function of a
fuzzy subset B(x) of y space depending on x. We may for a fixed x = x,, interpret this
fuzzy set as a cylinder fuzzy set in the (x, y) space with membership function

Mp(x ) (Xs ¥) = kp(¥IXo) (3.8)

The point is now that x is not given but rather has a membership value u, (x) of a fuzzy
set A. Let Ay be the fuzzy subset of A defined by that membership function which is
zero everywhere except at x = x, where it takes the value u, (x,). We may interpret A, 5
as a cylinder fuzzy set in the (x, y) space with membership function

g, (% ¥) = Ha (%) L (%, Y) (3.9)
where ],‘=x0 is the characteristic function of the crisp set {(x,y) Ix=x0}.

The intersection of the fuzzy cylinder sets Ay and B(x) gets the membership function

Ha gy By (%, Y) = min {1, (%) 1o (%, 9), kp(¥1%o)} (3.10)

according to (3.1). By a direct generalization of (3.2) the union of all these fuzzy sets
AxOﬂB(xo) over all x, has the membership function

rr::)x {1a, NBap (% ¥} = max min{u, (x), ug(yIx)} (3.11)
where we recognize the right hand side as the same as the right hand side of the rule
(3.7). Since these membership values are independent of x the union is a cylinder set
in (X, y) space. As such it only carries information about y. Thus it is quite natural to
define the marginal fuzzy set B in terms of the given conditional fuzzy sets B(x) and
the given marginal fuzzy set A by

B= U (A,NB(x)) (3.12)
X
which, as it is proven, has the membership function (3.7).

In order to explain the rule used in (2.9) let X be a space in which a fuzzy subset A

is defined by the membership function u, (x) (x may be a vector, e.g.). Further, let

f : XY be a mapping of X onto Y where Y is some space, and let A_ signify the same
type of fuzzy subset of A as above. By f the crisp set {£} C X is mapped onto the
crisp set {n} C Y, where n = (). If we, by generalization, accept that the fuzzy set
A, by f is mapped onto the fuzzy set f(A;) defined by the membership function

Hecap ) =Ha(E) 1y (¥) (3.13)
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the rule of mapping induced fuzzy sets as used in (2.9) follows from the generalization
of (3.2) and the generalization of the elementary mapping rule for crisp sets »map of
union» = »union of maps» to fuzzy sets. Since A = U A, we simply get

X

f(A)=f(U U Ax)=U U f(A,) (3.14)
n

x€f ' ({n}h n x€t'({nh

which according to (3.13) and (3.2) has the membership function

Mea)¥) =max { max  {u,(x)1,_,(¥)}} = max (x)
e n xet'({nh St fo-'({y})“Ax (3.15)

This concludes the explanation of those fuzzy set rules which are used in the last sec-
tion. Several more concepts and rules are in the collection of tools of fuzzy set theory
(e.g. fuzzy relations and their compositions). In fact, by the acceptance of the compo-
sition rules (3.1) and (3.2) the algebra of fuzzy sets fits to a thoroughly developed
branch of mathematical algebra called lattice theory, [8], which includes Boolean al-
gebra. The existence of this theory has in itself made it attractive to choose the defini-
tions (3.1) and (3.2) for fuzzy set intersection and union, respectively.

Before concluding this section it should be mentioned that omission of condition 7
leads to several other solutions of f and g. One of these is f(x, y) = xy and g(x,y) =
x + y — xy. In fact, Zadeh, [15], defines a composition of A and B called algebraic
product (written as AB) by the membership function

Hap(X) =ty (%) pg(x) (3.16)

and a corresponding dual composition A ® B =(C ([ A((B) given by the membership
function

Baep(X) =1— (1 =y (%)) (1 —pg(x) = py (%) +pg(x) —ps (X)ug(x) (3.17)

Except that ABC AN Band A @B D AU B there is no obvious interpretation of AB
and A ® B as extensions of usual set operations. The square A%, for example, has no
logical equivalence to A as required by condition 7.

Next section will throw some light on the composition rules (3.1), (3.2) and (3.16),
(3.17) from a probabilistic modelling point of view.

4. PROBABILISTIC INTERPRETATION OF FUZZY SET CONCEPTS

In this section the goal is to discuss the fuzzy set composition rules in the light of a
probabilistic interpretation of the membership function concept.
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Consider the following example. Several competent engineers are asked to judge in-
dependently of each other the length of a crack in a given structure with respect to
whether it reduces the safety of the structure or not. They are asked to answer solely
yes or no to the question. The fraction of »yes» of the total number of answers may,
perhaps, be considered as a guidance to what membership value to choose of the con-
sidered crack in the fuzzy set of dangerous cracks. On the other hand, the usual mo-
delling of such a fraction is to consider it as a probability. A probabilistic model
suited to deal with this kind of subjectivistic classification in two classes, nyes» or »non,
is constructed as follows. Imagine that any one of the engineers who are confronted
with the structural situation decides to hold the opinion that all cracks of length be-
longing to a certain set A of lengths (presumably A is an interval) are dangerous while
the cracks corresponding to the complement of this set are harmless. The judging en-
gineer, and thus his or her set, is imagined to be drawn from some population, that is,
from a sample space of a probability space. The expected fraction of »yes» is the pro-
bability that the random set A covers the length value of the considered crack. In the
following, let us interpret membership functions of fuzzy sets in this probabilistic
way and let us use the notation uu (x) = P(X€A).

Assume next that the engineers are asked also to judge by yes or no whether it pays
to repair the crack (the alternatives being either to do nothing or to replace the part
of the structure which contains the crack). To this question corresponds in a similar
way as above a random set B of crack lengths and we write ug(x) = P(x €B). The in-
tersection membership function then becomes the probability

Lanp(X)=P(XEAAXEB) <min {P(xEA), P(x EB)} = min {u, (x), ug(x)} (4.1)

Thus the definition (3.1) is simply an upper bound on the probability that both A
and B cover x. Correspondingly we have

M up(X) =P(xEAVXEB)>max {P(x EA), P(xEB)}=max {u, (x), ug(x)} (4.2)

It is not possible, however, to construct a probability function P which makes strict
equality valid for any pair of random sets. For example, we have trivially that
P(x€EA A XxE(A) = 0 while P(x € A) + P(x€(A) = 1. This example also shows that
it is not possible to construct a nontrivial probability function P that obeys condition
1 of the seven conditions in the last section.

On the other hand, if for some particular random sets A and B the equation
P(x€ANB) = min{u, (x), ug(x)} (4.3)
is valid then also the equation

P(x € AUB) = max {1 (x), i (x) } (4.4)
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is valid and vice versa, as it is easily proven. Trivially, (4.4) is true for A = B. While
random events X € A and x €B that satisfy (4.4) may be characterized as being strong-
ly dependent the composition rules (3.17) and (3.18) correspond to independence be-
tween the events x € A and x €B:

P(xEANB)=P(x€EA)P(XxEB) =, 5(x) (4.5)
Px€AUB) =P(x€A) + P(xEB) —P(XEANB) =ty op(x) (4.6)

Composition rules of fuzzy sets which have been defined probabilistically as in this
section are, naturally, given completely from the underlying probability space. Except
for trivial cases, however, it seems extremely difficult to choose such a probability
space that, first, fits subjective judgements and, second, admits practicable composi-
tions. At least one can claim that such a probabilistic fuzzy set model will be swayed
with arbitrariness, perhaps more than that of Zadeh, even though it admits a relative
frequency interpretation.

The set of the seven canonical conditions of last section is a shortcut through all these
problems. The resulting composition rules (3.1) and (3.2) make up a much simpler al-
gebra than that of probability theory. Since the rules are inconsistent with a probabil-

ity space formulation we must in general abandon probabilistic interpretations of mem-
bership functions resulting from use of these rules. Their usefulness can solely be judged

by experiencing in practice that we are doing better with them than without. Next sec-
tion touches the problem of associating real world behaviour with fuzzy set member-
ship functions.

5. PRONENESS TO FAILURE AND REAL WORLD BEHAVIOUR.
THE DECISION PROBLEM

A touchstone for the practical value of the fuzzy set grading of a structural lay-out with

respect to failure due to gross errors as suggested in section 2 would be to make a com-
parison with observed failure rates in the real world. This may, at least in principle, be
done in the following way. The lay-outs for a large number of realized structures are
graded by a panel of competent engineers. For each of the proneness classes the failure

frequency is calculated among all the structural lay-outs put into the class by the panel.

In a given class let n be the total number of structural lay-outs and let r be the number
of these that have failed due to gross errors. The corresponding gross error failure pro-
bability p may be estimated in terms of the posterior distribution of p given that the
prior distribution is uniform on the interval [0, 1], say. The expected value of p then
becomes (r + 1)/(n + 2). If such an investigation shows that these expected failure
probabilities increase with increasing proneness to failure the fuzzy set model obvious-
ly behaves appropriately.
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Assuming that this conclusion results from the investigation we may define a mapping
from the set of proneness classes to the set of expected failure probabilities or, more
generally, to the set of posterior distributions. From here on usual decision theory ap-
plies to decide between alternative structural lay-outs. ‘

Obviously the investigation program outlined above is up against overwhelming prac-
tical difficulties because of the very small failure rates that fortunately are observed

in practice. The author has doubts that it will be possible to get a real competent panel
of engineers to do the job. To this add the difficulties of getting sufficient documenta-
tion about the single structural lay-outs. However, there might exist a reachable possi-
bility of trying these ideas with respect to classification about proneness to fire. Possi-
bilities may also exist with respect to investigations concerning proneness to service-
ability damage since the rate of such damage is not very small in practice.

Anyhow, sequential proneness to failure judgements carried out systematically to guide
sequential decisions during the whole process of design, bidding, construction, and use
may turn out to improve the quality of professional civil engineering behaviour. A
study of fuzzy system analysis, 2], within the integrated field of civil engineering
management may turn out to be fertile.

6. CONCLUSIONS

It is a fact that there is a considerable gap between theoretical probability of failure
and real failure rate for several important classes of realized structures. Nevertheless,
it is claimed in the paper that formal probabilistic reliability theory is perfectly mean-
ingful as a decision tool for choosing structural dimensions whatever be its ability to
predict real failure rates. The essential explanation of the gap is that most experienced
failures are caused by gross errors. That probabilistic reliability theory is more than
just desk entertainment follows from an argument that says that the existence of cir-
cumstances having a potential of producing gross errors has only secondary importance
for the choice of dimensions. A measure of proneness to failure due to gross errors is,
however, of great importance for the decision problem of choosing between several
possible different lay-outs of the structure.

It is investigated whether it is possible to define a measure of proneness to failure due
to gross errors by use of Zadeh’s fuzzy set algebra. This is done together with a de-
tailed discussion of the fuzzy set concept and its standard composition rules in the
light of the applications of interest here. Attempts to make probabilistic interpreta-
tions of fuzzy sets illustrate clearly the differences between probabilistic modelling
and fuzzy set modelling. The discussion shows that the two views cannot be con-
sistently united. However, the last is by far the most simple to work with in this im-
precise field of human perception.

It can be concluded that a subjective measure of proneness to failure due to gross
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errors can be formulated in the language of fuzzy sets and fuzzy logic. The prone-
ness measure suggested herein is based on a grading procedure reported by Blockley
but the fuzzy set algebra is applied quite differently here than done by Blockley and
his followers, Brown and Yao.

In spite of its triviality it is pointed out how, in principle, to establish a connection
between the measure of proneness to failure due to gross errors and the expected cost
of failures of this type. Unfortunately this important link is doomed to be very weak
for long time to come. This is due to the foretellable big practical problems of getting
sufficient information in order that a competent panel of engineers can make the
necessary grading of a large number of structural lay-outs from practice.
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