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Sway Buckling of Multistory Frames
Flambage d’ensemble de cadres a étage multiples

Seitliches Ausknicken von Stockwerkrahmen

Fernand MORTELMANS

Professeur
Katholieke Universiteit Leuven
Heverlee, Belgium

SUMMARY

In this contribution the sway buckling of a plane structure, composed of beams and columns,
will be studied.

As the number of stories is assumed to be great, the stiffening resulting from the beams
can be distributed continuously over the height of the columns. In this way it has become
possible to concretize the sway buckling in one differential equation. The buckling load may
then be directly read in a diagram as a function of a dimensionless coefficient K’, which
indicates the relative stiffness of the beams with regard to the columns.

RESUME

Cette contribution étudie le flambage d’ensemble d'une ossature plane composée de poutres
et de colonnes.

Le nombre d’étages étant grand, I'effet de raidissement des poutres peut étre réparti unifor-
mément sur la hauteur des colonnes. De cette fagon, il a été possible de représenter le
flambage d’ensemble au moyen d’une équation différentielle unique. La charge critique
peut alors étre directement tirée d'un diagramme, en fonction d’un coefficient adimensionnel
K’ qui indique la rigidité relative des poutres par rapport aux colonnes.

ZUSAMMENFASSUNG

In diesem Beitrag wird das seitliche Ausknicken eines aus Riegeln und Stitzen bestehenden
ebenen Stockwerkrahmens untersucht.

Da die Zahl der Geschosse als gross vorausgesetzt wird, kann die versteifende Wirkung der
Riegel kontinuierlich tiber die Stlitzenhdhe verteilt werden. Dies ermdglicht die Beschreibung
des seitlichen Ausknickens in einer einzigen Differentialgleichnung. Die Knicklast kann
demzufolge in Abhéangigkeit eines dimensionslosen Koeffizienten K’, welcher die Steifig-
keitsverhaltnisse von Riegeln und Stiitzen enthéalt, direkt einem Diagramm entnommen
werden.
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1. INTRODUCTION - HYPOTHESES

Besides the local buckling of a particular element of a structure, the buckling

of the structure as a whole may occur in the case of high-rise buildings.

this contribution we first consider the

In
stability of plane frames, the columns

of which each have a constant mqment of inertia (Ij) from the foundation up to

the roof. The moment of inertia of one
to that of another.

We further assume that the moment of
inertia (I) of the beams is constant
on all floors and that the distance £
of two successive floors is equal.

The number of storiesis assumed to

be high (see further). The material
behaves elastically up to the critical
load. The floor load is the same on
all floors. Afterwards the influence
of an additional heavy roof load will
be examined. X
Moreover, it is assumed that the
elastic deformations are only the
result of bending moments the
influence of the transverse force and
of the normal force is left out of
consideration.

We consider the frame in sway buckling.

2. FUNDAMENTAL DIFFERENTIAL EQUATION

1]

column, however, needs not to be equal

Ai

I

7 77
0 1
LR

y

As the number of floors is great and the beams, at the deformation of the whole
are assumed to remain of constant length, it may be accepted that the deflection

curvesof all columns amequal.
It may thenbe approximately assumed tha

end points Aj and Aj+] of any given element
of a beam will have the same rotation when

the structure deflects in its plane.

causes a point of inflection in the middle
of each part beam (between two successive

columns) .
The bending moment in the beam against

Such moments form a stiffening of the columns.

t the

A1
©
. P
This
Fig. 2
. — i _6EI
the columns i and i+l is Qn i+l © Li+l ¥

Distributing these beam moments over the height (£) of a story, which is admis-
sible because of the great number of stories one obtains

___6EI 1)
y J L.
i+1

1
. *
1

m. . 9(

1

1

i+l

6 EI dy 1
7 dx ( &

) (1)
L;

L

Let p be the total load of the entire building devided by the total height H;

i.e. the load per unit length (measured

vertically). Each column (i) bears a

certain part (pj) of this load, which is assumed to be constant over the height.

n
There always must be g p; = P

Let us separate a small element dx from the column i.
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After deformation (deflection of the N;+dN;
structure) the element AB is deformed y+dy
to A'B'. Mi+dMj
The internal forces Mj, Di and Nj at x +dx ) D) .
the point A' have inc;easéd at the % B Bl ) i+ dDi
point B' to Mj + dMj, Dj + dDi and )
Ni + dNj. Pil
From the vertical equilibrium follows : dx Ii .-

p; dx + dN; =0 ; Ll

dN4

Tdx C i )

Expressing the equilibrium of moments

round the point A' and neglecting terms X '
of smaller order of magnitude, one \“%’$“

obtains :

dMi dy Ni Fig. 3
& thtNpomm0 @) L——Jy

The normalforceﬂiis given by :
Ni=pi(ﬂ-x)+Pi; (3)
P. representsan additional heavy load
on the roof acting on the colomn 1i.
The bending moment may be expressed as a function of the deflection

d2 dM. d3
M. = -EI. &L and —- = -EI, &L (4)

i i 2 dx i 3

dx dx

Introducing (1), (3) and (4) in (2), one obtains :

3
4y ¥ 6 ET 1 _, dy =

EIidx3+[Pi(Hx)+P T(L )] +D‘O (5)

If this differential equation is written for each column and these equations are
added up, taking into account the supposition that the deflection curve is also
equal for all columns up to the third derivative (see suppositions), one obtains:

er1 &v. | 3 (Hx) + TP -J2EL 5 1 Ez«»;:11) =0 (6)
i 3 P4 i~ T L. | dx i -
o dx o o] 1 1
] n n _ n _ ooy RE 12 .. _P_
Putting £ I, =J; Zp;,=p; IP =P L ¢— =y¢ia=g3 _JzJL’b'EJ
o o o 1 1 n
and considering that in the absence of any horizontal load I D; =0, equation (6)
will pass into : a3 12 E17] dy °
EJ —ldx3 + [p (H-x) +p - —I—L—] p: o 0 (7)

This intrinsic differential equation describes the problem of sway buckling.

3. GENERAL SOLUTION

In order to convert the differential equation into an easily solvable one, we
pass on to a new variable z : g &k i = x)3/2 (8)

with A, a constant still to be determined, and h, a fictive height of the
structure, function of the relative load proportion P/p and the effect of the
transverse members : P 12 EI (9)

h=H+5——£—rp-
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The differential equation may be written :

3 2
_py 2l a2 | &y dy _dy 1 - Q. g
EJBA[ 3 2 YT773z279z G EEGE™E (10)
dz dz
Putting
-2\ /B
A=3 Ve (1)
and,if z # 0, then one optains
3 2
a7’y 4 dy 1 dy Q - 1 )y =0 (12)
3 2 z dz 2
dz dz 9z
Finally, putting dy _ i (13)
dz
then (12) is converted into the well-known differential equation
Pudu L, 1y (14)
2 7d4z z ¢ 2
dz 9z

The Bessel functions of the order 1/3 and -1/3 form a set of independent
functions, which satisfy the differential equation.
The general solution of (14) can be written as :

u = CI J_|/3(z) + 02 J1/3 (z) (15)

with C, and C, two integration constants to be determined from the boundary
conditions. d
A third integration constant follows from the relation : E% = u.

The boundary conditions at the foundation (x = 0) usually are : y = O and %% =0

(16)

As to the third boundary condition two possibilities may be examined.
In the case of a plane structure, as
indicated in fig. 4,one may put

2
forx=H:M=Oorg——% = 0.
dx

In the case of a water tower, for
instance, where the water reservoir
has a very great stiffness, one
should rather put

d

for x = H : Ez =0
X

4, TYPICAL SOLUTIONS

The general solution is now applied in some typical cases, which are of frequent
occurrence in practice.

In all these applications it is assumed that the columns are fixed into the
foundation.
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2
4.1. Structure, for which the equations (g—%) =0 en P = 0 hold
dx  x=H
A structure of that kind is thus only subjected to a vertical load p, distributed
all over the height. The roof floor has no exceptional stiffness so that, in
addition to the boundary conditions at the foundation, may be put as third
boundary condition : d2
) =o

dx2 x=H

With these specific data and the general solution as a basis, the boundary
conditions may be expressed as follows :

- . 9y

l. Inx =20 ' Ik 0 or i:_u %[_(h_x)l/{l -0
x=0
As h, p and EI are constant, this condition is reduced to : U T o,
or, u being a function of z, u(zo) =0 (17)
) . 2 3/2
in which z0 represents the value of z for x =0 : z =3 ﬁ;; h (18)
Putting pH> _ . . 12 T _ o o i15) 5
EJ e 7 i AREg
3/2
2 1
then z, =% \K (1 -%) . (20)
The condition (17) may now be written generally :
CI J_1/3 (zo) + C2 Jl/3 (zo) =0 (21)

2, Inx=0 : y=0
For x = 0 always holds z, # 0. The function values J_l/3(zo) and JI/B(zo) at

the point z, are real and finite.

From %% = u follows

y = J.u dx + Cy = j’ [C] J_I/3(z) + Cq J1/3(z)] dx + C3

In the limite case z = z_ the integral disappears. This means that the
deflection at the origin only becomes zero if Cy = 0.

2 =
3. For x = H, or z = z must be L =0, or 3 22/3 du + z 1/3 u =l
1 2 dz
dx X=
The value z, may be calculated as a function of K and K' :
3/2 2/3
=2 /B g@-S&- - 2 K
Z) =3V @5~ B - 5 K ep
As z is always different from zero, the boundary condition becomes
du
3 z, (33 )z=zl +u (z]) = 0.
dJ (z,) dJ (z,)
-1/3 1 1/3*71
C, —m— — -
&= 3 & |:1 dz + 0y — 5 * Oy I_yy3(z) + G Jyy5(zy) =0 @2)

Expressing the derivatives of Bessel functions in the basic functions themselves,
one finds

[f Cl J2/3 (z]) + C2 J-2/3 (zl)] 3 z, =0 .



146 |ABSE PROCEEDINGS P-34/80 \ABSE PERIODICA 3/1980 AP

As z, # 0 : -C J_

1 (zy) + C

(zl) = 0. (23)

1 92/3 2 3273

In order that there should be another than the trivial solution for the system
formed by the equations (21) and (23)

C1 J (zo) + C2 J]/3 (zo) 0

-1/3
~Cl J2/3 (z]) + 02 J_2/3 (z]) =0

the determinant must be zero : J-l/3 (zo) J—2/3 (zl) + J1/3 (zo) J2/3 (zl) =0
(24)

This is the intrinsic relation, which defines the buckling load Popt
As both z_ and zé are functions of K and K', the relation (24) represents a
. 1
function of K and K F (K,K') = 0 (25)

For a given structure the coefficient of relative rigidity is constant,

12 TH?

s [

= N
so that in the function F only K appears as a variable. The smallest value of
K (K__) determines the critical load p (p__), corresponding to K'.
The €ritical buckling load is thus given § _EJ K

= —= . (26)
cr H3 (oh =

in which Kcr is a function of K.
The zero points of the function F have been determined numerically; the
diagram K/K' has been plotted by means of the computer (see fig. 5 and 6-curveKk,)
The value K' = 0 corresponds with a free-standing shaft (buckling under dead load).
For that case the known value KC = 7,83 is found.
If P represents the critical, Eotal 1oad (Hp ), a critical stress (0__) can
then“Be defined by 7.83 E cr e

- 3

cr A 2
(3') H

with A the section and\ﬁgflthe slenderness of the column.

From the zero point (K' = 0) the function rises continuously with the stiffness
of the members.

When the stiffness of the members becomes infinitely large, the columns buckle
locally between the foundation and the first floor.

The critical buckling load of the column i is then the Euler buckling load :

m21.E
(), =(p_); H=—s
er 71 - Per /i 22
Wz EJ
Summing up over all columns, one obtains : Py ™ ===,
HZ
Asalimit value of Kcr may be put
pH3 2 2 .3
K = cr - T°'EJn H _ Tr2n2 . 27)
cr EJ 3 *

H EJ

n represents the number of sfét¥ies (H = nf)

At this limit value the structure buckles locally.
The number of floors at which the danger of global and local buckling is equal,

is given by :

™
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Ker

Fig. 5
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2
4.2. Structure for which the equatioms (Q_%) =0 en p = 0 hold
dx~ x=H

The structure is thought to be loaded on the top floor only; the dead load of
the floors and the columns is supposed to be negligible with reference to the
total roof load P.

In this supposition the differential equation is reduced to

3
d’y _ 12 EI | dy _
i R S AR~

or with 3
P _121 dy dy _
- SR B 4 W dx3+adx R

The general solution is :

y = 8y sinvax + C,cos vYax + C,.

2
From the boundary conditions follows :

for x =0 y =0 or C, + C3 = 8
= ﬂ: - =
for x Ix 0 or Cl Va Y (Cl o)
2
for x = H dy _ Oor C,cosva H=0.
dx2 5

In order that there should not be a trivial solution, there must be cos YaH=0

_T 3m
or J;H _i ) cee

The smallest value satisfying this is-g . 9

The critfcal lasd is then given by 5 =XE3 ; IZEI (28)
cr HZ L5
Everything happens as if the critical load of the structure is equal to the

Euler buckling load, globalized over all columns, increased with a term l%—%l

which denotes the influence of the stiffness of the beams. At a zero stiffness
of the beams the Euler load is effectively found again. 2

If the beams are infinitely stiff the columns . Por = LS 2EJ s

buckle locally 2 it 9

Expressed in the Euler buckling load, it becomes : Pcr = et (2n)
4 H

The condition at which the danger of global and local buckling is equal,is givenby
I _ ninl - 1)
LJ 48 n :

The number of stories at which this condition is satisfied,amounts to :

1

2
6 I, 6TH
L2 LI 2

m LJ

1
7 (29)

n =

4.3, Structure for which the equations (%%) q= 0 and P = 0 hold

xX=

The conditions at the foundation, as dealt with sub 4.1 still remain valid.

The third boundary condition %% = 0 at the point x = H leads to

-u P_(n - x)llz} =0
[ &l x=H
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As (z)x=H =z # 0, there must be u = C J ]/3(2 ) + C J]/3(zl) =0

In order that there should not be a trivial solution, the determinant of the

system -

C J_l/3(z ) + C JI/3 (ZO) - 0

Cp J_yy3(z) + €y dyy5 (2) = 0
must be zero : J_1/3(zo) J1/3(z]) - J_]/3(z1) J]/3(z°) =0 (30)
As z and z, are functions of K and K', eq. (30) may be written in the form

F' (K,K') =0 (31)
The smallest value of K, (Kcr) at which (31) is satisfied for a given value of
K', defines the critical load P = L2 K . (32)
cr H3 cr

The zero points of the function F' have been calculated numerically; this
allowed the drawing of diagram Kcr/K', shown in fig. 5 and 6 - curve K,.

4.4, Structure for which the equations (%E)x - and p = 0 hold.

The first two boundary conditions, mentioned sub 4.2 still remain valid. The
third condition becomes : for x = H : %% =0 or C2 sin va H =

In order that there should not be a trivial solution, there must be

sinaH=0 or Vva H= 7, 2T...
The smallest value satisfying this is T, TrZEJ 12 EI
The critical load is then given by : P = ——+ . (33)
cr HZ ZL

Here again the critical load is found by adding to the Euler buckling load the
influence term of the horizontal member stiffness.

It is to be noted that the term,which includes the influence of the member
stiffness jis independent of the boundary condition in x = H.

Analogously as sub 4.2 it is possible to calculate the number of storiesat
which the danger of global buckling of the structure is equal to the danger of

its local buckling. 2 J
; 6 6 TH
One finds : n = H? + \/4 3 ) + 1 (34)

m™ LJ

l"lH
olm

4.5. Structures loaded by P # O and p £ 0

2

Let us first assume that for x = H the condition Q_% = 0 is satisfied. If both
dx

a uniform load p and a compressive load P act on the structure, the differential

3
; d P _ 12EI _ dy _
equation EJd—;% + p [H+p _Z_LE x] T 0
only differs from the one in which P = 0 is supposed

3
d _ 12 BT _ dy _
e &L +p [a TL ~* = 0

7 P 12 EI
in the term a H + ; TIE (35)
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Let us assume tentatively the critical roof load to be known, i.e. P

cr,’
Everything happens as if the stiffening by the members (term l%—%l) is]reduced

by the load P .
er,

The value of K' becomes then 2
2 2 Pcr "
g J2IE _p oy E_q2m (36)
1 £LL cr EJ £LJ EJ

1
This value of K' determines a first critical load Per by using the K/K'-diagram
in question. 1

Thus the critical, uniformly distributed load,which corresponds with a given
roof load,is determined.

Next, a second critical roof load P is taken and the corresponding load p

. cr Yer

is calculated, etc. 2 2

The points determined are plotted in a P —diagram and joined by a flowing

curve.

If it is desired that the coefficient

of safety is the same for p and P : P
Per Per P

pm == and P = - then is

/
cr’ Per

cr
pcr

o |

X

o
>
o)
AR
Ca

On plotting this straight line in the
diagram Pcr/pcr , the intersection point A

of this straight line with the curve
Pcr/pcr determines the critical values 0

sought cr cr

r

- r - %
Pcr_(Pcr)A s P = (P ) . Fig.7

For .an easy construction of the diagram in fig. 7, first PZr is calculated in
the supposition p = O (formula 28)
o _mEJ _ 12EI

P =
cr 4H2 L L

and pzr in the supposition P = 0 (formula 26)

o _ EJ
Per ~ w2 Ker

After that, the corresponding value of Pops is calculated for 3 or 4 values of
P> included between Pgr and 0.

This curve may be )

determined very easily with the
aid of diagram 5. A
The constructed curve may also
be replaced approximately by a
straight line which joins the 0 o

i @ = Fig. 8
points B(O’Pcr) and c(pcr,o). g
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Analogously an intersection point A' is now determined (see fig. 8).
g y P g

The straight line BC is represented by p°
p =p® - _CT
cr cr o ° Per
Per
The intersection point A' has then as coordinates
2
S . (37)
er p o
P Pcr
R R, 2.
P o
Per
o
pr 3 Pcr (38)
cr P p°
o5 e
d ? Pe
If for x = H the equation a% = 0 holds as boundarycr condition, the argumentation
continues to be right. 2
Then is calculated : pP° =T EJ 5 12 EI and po _ EJ K
cr H2 £ L er H3 cr

Intermediate points can again be calculated as above, by reading L in the
diagram of figures 5 and 6.

5. INFLUENCE OF NOT CONTINUOUS ACTING OF THE MEMBER MOMENT

In consequence of the not continuous acting of the member moment, a nodal point
can suffer a certain relaxation. This means that the node undergoes an
additional rotation. As it concerns here a correction on the basic rotations,
it may be assumed, with regard to the calculation of this correction, that at
the midpoint between two successive nodal points, both in the members and in the
columns, there are hinges. The sum of the member moments at the place of
column i comes originally to 6 ET . 6 EI

L, ¢

1 i-1

When this member moment acts on the node of the column, it is equalized pro

) .

. . . i EI .
rata of the distributing coefficients. The moment B ¢ 1is reduced to

by
1
6EL , _ (6EL  6EI, L
=5 B 16 TR % e
yd Li Li-l
Instead of GLEI ¢ there now acts from the member to the left of the column i
i
a member moment 6 ET 2 Ii
L Y o1 + T A %t )
i L. L.
1 1-1

upon the column i.

So the point is to reduce the stiffness of the member by multiplying by a
coefficient Bi'

For the member moment, resulting from the member to the right of the columm i,

it is proved analogously that LI has to be multiplied by the same

coefficient Bi : i+l
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1

Bi‘]+1£(1_+1 : (39)
21. L. L.
1 1 i i+l
The summation term'f now becomes :
2 1 1 1 1 1 1
—=B —+B (— +—)+B, (—+—)+ ...+ B —. (40)
L o L1 1 L] L2 2 L2 L3 n Ln

6. EXTENSION TO A SYMMETRIC SPACE STRUCTURE

So far only sway buckling of a plane structure in its plane has been considered.
Let us now turn more generally to a construction, as shown in fig. 9, composed
of a serie of columns, joined by beams according to the y-direction.

The moment of inertia of these beams per field can be different, but the moment
of inertia of thestories per field is assumed to be constant.

It is further supposed that the

floors are infinitely stiff in - é*?
the horizontal plane and that y

buckling occurs according to the o -7 ! -
y-direction. A possible rotation I
of the structure is left out of J

consideration here; this problem
still needs to be worked out F
further.
In these suppositions all Bl
columns suffer the same
deflection at the place of a 9
floor. 1 o _
The construction is built up of Fi
m plane frames.
In the frame j there are n+l colummns (0,1, ... i ... n) whose momentsof inertia
am denoted by the notations : I, , I.., T s

jo’ 3l jn
Between two successive columns i-1 and i the moment of inertia of the member is
denoted by Iéi’ the span by Lji'

n

I

|
|
|
|
I j m
g.

The equilibrium condition (5) for any given column of the system is :

a3y 6 Bl 1 I dy
EI.. + |p.. (H-x) + P,., - ( + ) + D.. = 0.
ji dx3 ji ji £ Lji Lji+l dx ji

The addition of these equilibrium conditions, written for each column of the
system, ‘produces again the differential equation (7)

3
EJ—Xd3+ [p(H—x)+P~—Z—12Eﬂ %{;=o
with dx
23 2y L3 11 3R (L, His
= z . - - - P — B —
Jm L 3P = o Pt B= o8y 5% 210(Lji+Lji+l)'

If the relaxation is to be taken into account, then the coefficient Bji can be
introduced :
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m n y 1!

I I B..( ! S +._liil )

§=1 i=o 3% Ly Lyse

1
2

=] -

Consequently, the proposed method of calculation also holds good with regard to
construction symmetrically designed in plan view.

7. EQUIVALENT SLENDERNESS

*P ‘P
The validity of the developed theory ‘ ‘ —
is limited to the elastic field.
With relatively stiff structures p&
of small slenderness, however, H
there may occur plastic buckling. * ‘

An exact calculation in this
field has not been made yet, to * XI {

our knowledge. In order to get

something practical we first

determine the critical load of b
a free-standing column, subjected ‘
to a load P at the top and to a Fig. 10
load p per unit length, uniformly

distributed over the height of

the column.

C.

2
Let i be the moment of inertia of the column. Let us first assume E-% =0 as
boundary condition in x = H. dx

When only the load p is applied, the elastic critical load is given by the

expression : 10 5o Ei 7,83 (41)
cr H2
When only the load P is applied, the elastic critical load is given analogously
b 2
y P.o - T E1 (42)
cr 2
4 H

When both p and P are different from zero, a p'_H/P'_ -diagram may be
: " cr cr

constructed, as explained in 4.5.

The approximation may also be maintained by a straight line.

If it is assumed here as well that

' plo
P cr cr
- =TT = il | (43)
pH pcrH p.o H
cr

then the real critical elastic load is given by

10
T cr - B
Per Y p1© Y+ Per H )
cr
+
Y p‘o 5
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Introducing (41) and (42) in (44) then one obtains :
2 .
1T 1 m Ei - .
P TY ¥y¥o0,355 2 7 Per 5 (43)
H
From this the critical stress is derived (kz = H2 A/i and A is the sectional
area of the colummn) : ' T .
'T_ Pcr * pcr H + 1 WZE
+ 0,315 4l2

(46)

.
Ocr A Y
If this critical stress is compared with the critical stress,calculated for the
global structure, an equivalent slenderness may be derived
(A represents now the sum of the sectional areas of all columms)

2 1
1 m E A
N = (47)
Y + 0,315 4 T r
Per ¥ Per -
: ot dy = :
If the third boundary condition 1s (dx)x=H = 0, then an equivalent
slenderness may be derived in a similar way :
_ + 1 2 A
A= \fyvo52 " E T (48)

r
+

Per Per "

If either p = 0 or P = 0, then the equivalent slenderness is determined by :

0 _ 510 o _ 40
Pcr Pcr or Per Per
One obtgins then : 9 Pd >
for ( =3 ) =0 p=0 : E—§-= -%E or A o= EZE A
dx“ x=H 4 p°
cr
o
P H
P 0 : 7,83 E - cr or y =
AZ A
0
2 P
gl = = . Tﬁ = cr =
for ( 55 )x=H 0 p=0 : 2 A or A
o
P H
pag ;1598 , _er or A = 18,9 E -2
P
cr

With the slenderness thus calculated, the reduction coefficient ¥ 1is read in the
¢/A diagram, valid with regard to a single column, subjected to a compressive
load. The permissible critical buckling stress is than : 0 __ =¢ . O

2 " . . " {4
The dash over O points to "permissible” stress.

8. APPLICATION

Given a water tower, as depicted in figure 11. The dead load of the reservoir
is estimated at 6000 kN; the effective water capacity is 5000 kN.
E = 30.000.000 kN/m2.
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The dead load of the floors and the columns
amounts to : 0,80 x 0,80 x 25 x 4 x 30 500 m3

+0,13x 6,82 x25 x5
+ 0,28 x 0,37 x 25 x 5,2 x 4 x5
= 2940,76 kN.

The weight of the outer walls is :

0,28 x 5,2 x 18 x (30-5x0,5) x 4 = 2882,88 kN.

The useful overload (10 kN/mz) is :
(6,80 - 0,56) x 10 x 5 = 1946,88 kN

13

10 kN/m

The load per unit height is then :

H
p=_._7..ZM =259 kN/m' |

30
The following calculations are made (member : J 0/80

rectangular section) : (19) (33) (32) : -
0,50° x 0,28 4 f[e=
I =22 X %9 _0.0029 m ! _1

12
6m
0,804 4
12 0,1365 m

6x5m

J =4 x

%- = % +-% = 0,3333 m_] (relaxation here has practical no influence)
2

12 x 0,0029 x 30" x 0,3333
0,1365 x 5

2 7 7

o x 3 x 100 x 0,1365 & 12 x 3 x 10 x 0,0029

cr 2 5
30 -

o 45 x 3 x 107 x 0,13585

cr 302

(19) : K'

= 15,295

(33) : P

]

(32) : p = 204.750 kN

For different values of Pc the corresponding critical load pcrH is found
according to formula (36).

Fig. 11

0,3333 = 114.490 kN

P K! K. p H
Ccr 1 . 1 er
0 204750
20000 15,295 - 4,396 = 10,899 ~ 38,5 175170
40000 15,295 - 8,791 = 6,504 = 30 136500
60000 15,295 - 13,187 = 2,108 ~ 22,5 109200
114490 0
Pl’
EL_= 11.000 . LAE = cr
pH ~ 7770,52 ’ T
P H
Ccr
- 1,415 pcrH
P = 83.000 kN s = 7,54
cr
p’_ H = 60.000 kN s =17,72
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From the above it appears that the P
coefficients of safety are practically F
equal. The slight difference is due
to reading errors.
According to the approximation formulas
(37) and (38) one finds : .
" 8000 |
P = 82.060 kN T /!
CcTr o/ !
. “ff ; Fig.12
p. H =57.990 kN 60001 2/ -
cr \:: |
ViR
4000 Qf, |
!
CONCLUSTON 2000 - |
The very complex problem of sway buckling I
of a framed structure has been reduced 1 RerH

to a simple and clear method for calculation. 4000 8000 12000 16000 20 000
The case in which the roof load is comparable

to that of the normal roofs as well as the

case in which extra heavy roof loads are to

be considered (e.g. a water tower) has been

condensed into an explicit formula.

Without any difficulty the safety of the structure with reference to sway
buckling can be calculated. At this operation the coefficient of safety for
the compressive load may, if desired be increased, for instance, with regard

to that for the floors. This would be justified in the case of a water tower,
when the intermediate floors are by no means to be taken into consideration for
storage accomodation.

In this case it would also be possible to reduce the overload on the floors and,
at the same time, to apply an equal coefficient of safety for both floor load
and roof load.

The concept "equivalent slenderness'" also allows the checking of plastic buckling.

ACKNOWLEDGMENT

The numeric calculations have been programmed by ir L. Knapen, assistant at the
K.U. Leuven. '

REFERENCES

1. MORTELMANS, F. : Berekening van hoge raamwerken onder windbelasting, C-Tijd-
schrift nr. 4, 1969

2. MORTELMANS, F. : Berekening van hoge raamwerken onder windbelasting, C-Tijd-
schrift nr. 4, 1972

3. MORTELMANS, F., D'HUYS, A. : Practical calculation of the buckling strength
of chimneys, 3. Internationale Schornstein Tagung, 72. Jahrgang Heft 2/3/4,
1979

4., MORTELMANS, F., VAN GEMERT,D., DE ROECK, G. : Approximate stiffness analysis
of high-rise buildings : discussion, A.S.C.E. Journal of the Structural
Division, 1979

5. MORTELMANS, F., VAN GEMERT,D., DE ROECK, G. : An approximation method for the
calculation of bending and torsional moments in high-rise buildings under
wind loading, Internal Paper K.U.Leuven (depart. constr.)

6. MORTELMANS, F. : Sway buckling of multistory frames, Internal Paper
K.U.Leuven (depart. constr.)



	Sway buckling of multistory frames

