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Sway Buckling of Multistory Frames

Flambage d'ensemble de cadres ä etage multiples

Seitliches Ausknicken von Stockwerkrahmen

Fernand MORTELMANS

Professeur
Katholieke Universiteit Leuven

Heverlee, Belgium

SUMMARY
In this contribution the sway buckling of a plane structure, composed of beams and columns,
will be studied.
As the number of stories is assumed to be great, the stiffening resulting from the beams
can be distributed continuously over the height of the columns. In this way it has become
possible to concretize the sway buckling in one differential equation. The buckling load may
then be directly read in a diagram as a function of a dimensionless coefficient K', which
indicates the relative stiffness of the beams with regard to the columns.

RESUME
Cette contribution etudie le flambage d'ensemble d'une ossature plane composee de poutres
et de colonnes.
Le nombre d'etages etant grand, l'effet de raidissement des poutres peut etre reparti unifor-
mement sur la hauteur des colonnes. De cette fagon, il a ete possible de representer le
flambage d'ensemble au moyen d'une equation differentielle unique. La Charge critique
peut alors etre directement tiree d'un diagram me, en fonction d'un coefficient adimensionnel
K' qui indique la rigidite relative des poutres par rapport aux colonnes.

ZUSAMMENFASSUNG
In diesem Beitrag wird das seitliche Ausknicken eines aus Riegeln und Stützen bestehenden
ebenen Stockwerkrahmens untersucht.
Da die Zahl der Geschosse als gross vorausgesetzt wird, kann die versteifende Wirkung der
Riegel kontinuierlich über die Stützenhöhe verteilt werden. Dies ermöglicht die Beschreibung
des seitlichen Ausknickens in einer einzigen Differentialgleichnung. Die Knicklast kann
demzufolge in Abhängigkeit eines dimensionslosen Koeffizienten K', welcher die Steifig-
keitsverhältnisse von Riegeln und Stützen enthält, direkt einem Diagramm entnommen
werden.
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1. INTRODUCTION - HYPOTHESES

Besides the local buckling of a particular element of a structure, the buckling
of the structure as a whole may occur in the case of high-rise buildings. In
this contribution we first consider the stability of plane frames, the columns
of which each have a constant mqment of inertia (l£) from the foundation up to
the roof. The moment of inertia of one column, however, needs not to be equal
to that of another.
We further assume that the moment of
inertia (I) of the beams is constant
on all floors and that the distance £
of two successive floors is equal.
The number of storiesis assumed to
be high (see further). The material
behaves elastically up to the critical
load. The floor load is the same on
all floors. Afterwards the influence
of an additional heavy roof load will
be examined. x

Moreover, it is assumed that the
elastic deformations are only the
result of bending moments : the
influence of the transverse force and
of the normal force is left out of
consideration.
We consider the frame in sway buckling

\'
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Fig 1

2. FUNDAMENTAL DIFFERENTIAL EQUATION

As the number of floors is great and the beams, at the deformation of the whole
are assumed to remain of constant length, it may be accepted that the deflection
curves of all columns aie equal.
It may thenbe approximately assumed that the
end points A£ and Ai+l of any given element
of a beam will have the same rotation when
the structure deflects in its plane. This
causes a point of inflection in the middle pjq 2
of each part beam (between two successive
columns). _
The bending moment in the beam against the columns i and i+1 is ^
Such moments form a stiffening of the columns. "i+1
Distributing these beam moments over the height (£) of a story, which is admis-
sible because of the great number of stories one obtains

6 EI

6 EI
~~:r

1 1+1

6 EI dy_ ,J_ JTT dx (L. L.
1 l+l

(1)

Let p be the total load of the entire building devided by the total height H;
i.e. the load per unit length (measured vertically). Each column (i) bears a

certain part (pi) of this load, which is assumed to be constant over the height.
n

There always must be - p. p.
Let us separate a small element dx from the column i.
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After deformation (deflection of the
structure) the element AB is deformed
to A'B'.
The internal forces Mj_, D£ and N£ at
the point A' have increased at the
point B' to M£ + dM£, D£ + dDi and
Ni + dNj..
From the vertical equilibrium follows :

Pi dx + dN^ 0,
dN£

or p. -—ri dx
Expressing the equilibrium of moments
round the point A1 and neglecting terms
of smaller order of magnitude, one
obtains :

dM.

—- + D. + N. -^ - m. 0
dx l l dx l

x +dx

dx

D,+dD

(2)

Ni + dN

y+dy
Mi + dMr^

\/->jpi j

Fig. 3

The normal force N. is given by

N. p. (Hl *i x) + P. (3)

P. representsan additional heavy load
on the roof acting on the colomn i.
The bending moment may be expressed as a function of the deflection

M. .-,.&l 1 A
2

dx
and

dM.
l

dx' EI
1 A

3
dx

Introducing (1), (3) and (4) in (2), one obtains

,3
EI

dx -- l l+l -1

(4)

(5)

If this differential equation is written for each column and these equations are
added up, taking into account the supposition that the deflection curve is also
equal for all columns up to the third derivative (see suppositions), one obtains:

n ^3EU.-4 +
1 j 3

o dx
n

Putting _ I. «

o

n n

_ p. (H-x) + EP.*i l¦- o o
n n

J; _ p. p ; EP.' ri r ' lo o

12 EI n
I

1

_ i-
7 Li

i-1
P- + E D. 0 (6)dx l

1
- - -Pl + ^_JÜ .b =_L_

EJ EJ IJL ' EJL
3

and considering that in the absence of any horizontal load E D. 0, equation (6)
will pass into : ,3 i- „T-iEJi^+[p(H-x)+P--!-fl]g=0 (7)

dx ¦— -1

This intrinsic differential equation describes the problem of sway buckling.

3. GENERAL SOLUTION

In order to convert the differential equation into an easily solvable one, we

pass on to a new variable z : v3/2
z A (h - xX'" (8)

with A, a constant still to be determined, and h, a fictive height of the
structure, function of the relative load proportion P/p and the effect of the
transverse members

H +
12 EI

l Lp
(9)
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The differential equation may be written :

3 2
- 7 7 + d_Z _ iz_L
,,3 .2 dz 9z
dz dz

27 2- EJ 4r- Az dy
2 P Z dz

Pütting
A

1

0

and.if z / 0, then one obtains

ii + ii I +^z
a 3 2 z dz u

Q
2

dz dz 9z

Finally, putting dv_

dz
then (12) is converted into the well-known differential equation

2
d u du 1 1

—T + TT - + u (1 -2 dz z n 2
dz 9z

0

The Bessel functions of the order 1/3 and -1/3 form a set of independent
functions, which satisfy the differential equation.
The general Solution of (14) can be written as :

u Cj J_]/3(z) + C2 J]/3 (z)

with C. and C. two Integration constants to be determined from the boundary
conditions. jA third Integration constant follows from the relation : •£- u.

The boundary conditions at the foundation (x 0) usually are : y 0 and

As to the third boundary condition two possibilities may be examined.
In the case of a plane structure, as
indicated in fig. 4,one may put

for x H : M 0 or —£ 0.
dx

(10)

(11)

(12)

(13)

(14)

(15)

dx
(16)

In the case of a water tower, for
instance, where the water reservoir
has a very great stiffness, one
should rather put

for x H : ^- =0dx

JZ7

0

Jwr
b

Fig 4

4. TYPICAL SOLUTIONS

The general Solution is now applied in some typicai cases, which are of frequent
occurrence in practice.
In all these applications it is assumed that the columns are fixed into the
foundation.
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4.1. Structure, for which the equations (—S-) 0 en P 0 hold
dx x-H

A structure of that kind is thus only subjected to a vertical load p, distributed
all over the height. The roof floor has no exceptional stiffness so that, in
addition to the boundary conditions at the foundation, may be put as third
boundary condition : ,2te > - o

dx x=H

With these specific data and the general Solution as a basis, the boundary
conditions may be expressed as follows :

1. In x ?=0ordx u Jfj (h - x) 1/2 0
J x=0

As h, p and EI are constant, this condition is reduced to : u 0,

or, u being a function of z, u(z 0

in which z represents the value of z for x ¦

Putting pH3 _ 12 IH2 _,iL_ - K and -1S— K into (18)

2 r~' k'
then B0 - j yK (1 - -;

zo =3
3/2

(17)

(18)

(19)

(20)

The condition (17) may now be written generally :

Cl J-./3 (2o) + C2 J./3 (zo> " ° (21)

2. In x 0 : y 0

For x 0 always holds z t 0. The function values J_ ,_(zo) and Jj ,,(zq) at
the point z are real and finite.

dy °
From -f- u followsdx

y J u dx + C3 j |"c, J_]/3(z) + C3 J,/3(-) -x + C3

In the limite case z z the integral disappears. This means that the
deflection at the origin only becomes zero if C- 0.

,2
3. For x H, or z

d yz. must be —£- 0, or
dx

2/3 du -1/3
3 z -j— + z udz x-H

The value z. may be calculated as a function of K and K'

3/2
-1 £f<H-F-H> „ K. 2/3

As z. is always different from zero, the boundary condition becomes

or 3 z,
dj

3z. <£>z-z, +*<V
•1/3 (zl}

+c dJl/3(2l}
dz 2 dz

+ C, J_,/3(-,) + C- J1/3(-,) 0 (22)

Expressing the derivatives of Bessel functions in the basic functions themselves,
one finds

c, J2/3 («,) + c2 j_2/3 (*,) 3 z,



146 IABSE PROCEEDINGS P-34/80 iabse periodica3/1980 w%

As z, i 0 : - C, J2/3 (Z)) + C2 J_2/3 (z,) 0. (23)

In order that there should be another than the trivial Solution for the System
formed by the equations (21) and (23)

f Cl J-./3 (zo> + C2 Jl/3 (zo> " °

\-C, J2/3 <_,) + C2 J_2/3 (z,) 0

the determinant must be zero : J_. ,_ (z ~_?/3 ^zp + Jl/3 ^Zo^ J2/3 ^7'\> °
(24)

This is the intrinsic relation, which defines the buckling load p
As both z and z. are functions of K and K', the relation (24) represents a

function Sf K and K' :
F (KjRl) Q (25)

For a given structure the coefficient of relative rigidity is constant,

_
12 IH2

K JlL '
so that in the function F only K appears as a variable. The smallest value of
K (K determines the critical load p (p corresponding to K'.
The critical buckling load is thus given By EJ „ (Ms)pcr 3 ' er
in which K is a function of K.

er
The zero points of the function F have been determined numerically; the
diagram K/K' has been plotted by means of the Computer (see fig. 5 and 6-curveK.)
The value K' 0 corresponds with a free-standing shaft (buckling under dead load),
For that case the known value K 7,83 is found.
If P represents the critical,Cfotal load (H p a critical stress (a can
then^e defined by „, „- _ 7,83 E

" (f H2

with A the section and> /— H the slenderness of the column.

From the zero point (K' 0) the function rises continuously with the stiffness
of the members.
When the stiffness of the members becomes infinitely l^arge, the columns buckle
locally between the foundation and the first floor.
The critical buckling load of the column i is then the Euler buckling load :

ir2I,E
(P (p H

TT2
E J

ul2

er i Xr i »2

Summing up over all columns, one obtains : p

Asalimit value of K may be put
3

pcr H ir2'E J n2 H3 2 2 ,,7.K- -^ UYT- "" : (27)

n represents the number of sföri'es (H ot)

At this limit value the structure buckles locally.
The number of floors at which the danger of global and local buckling is equal,
is given by :

n ----- (27b)
IT
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d2y
4.2. Structure for which the equations (—j) 0 en p 0 hold

dx x-H

The structure is thought to be loaded on the top floor only; the dead load of
the floors and the columns is supposed to be negligible with reference to the
total roof load P.
In this supposition the differential equation is reduced to

dx
°r Wlth

P 12 1 d*y
L dy „a 17 " jTl ' 73 + a di °

dx
The general Solution is :

y C. sin va x + C„ cos /ä x + C,.
From the boundary conditions follows :

for x 0 : y 0 or C2 + C3 0

for x 0 : P- 0 or C, Sä. 0 (C. 0)dx 1 1

2
for x-H : dy _ _ /— „ „—i 0 or C? cos /a H 0

dx

In order that there should not be a trivial Solution, there must be cos /a H 0

r n - 3TT

or /a H y ---
TT

The smallest value satisfying this is - „
u F T 12 EI

The critical load is then given by P =¦ + p T— (28)
cr uz L

Everything happens as if the critical load of the structure is equal to the
1 2 EI

Euler buckling load, globalized over all columns, increased with a term «

which denotes the influence of the stiffness of the beams. At a zero stiffness
of the beams the Euler load is effectively found again. „

TT EJIf the beams are infinitely stiff the columns
# Pcr —-—

buckle locally ^2 Ej 2
Expressed in the Euler buckling load, it becomes : P " -— (2n)

Cr 4 H

The condition at which the danger of global and local buckling is equal,is givenby
IH _

ir2(4n2 - 1)
LJ 48 n

The number of stories at which this condition is satisfied,amounts to

6 IH6 IH
+ T2 LJ ir LJ

(29)

4.3. Structure for which the equations (-ry _„ 0 and P 0 hold

The conditions at the foundation, as dealt with sub 4.1 still remain valid.
The third boundary condition J- 0 at the point x H leads to :

dx

/fX-*>"2 o
x=H
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As (z) z + 0, there must be u Cj J /3(Zj) + C2 Jj/3(Zj) 0.

In order that there should not be a trivial Solution, the determinant of the

fCl J-,/3(zo> + C2 J,/3 (zo> " °

IC1 J-1/3(V + C2 Jl/3 (V °

must be zero : J .«(«_) Ji/3(z]) " J-i/3^zp Jl/3^zo^ ° ^30^

As z and z, are functions of K and K1, eq. (30) may be written in the form

F' (K,K') 0 (31)

The smallest value of K, (K at which (31) is satisfied for a given value of

K', defines the critical load P =J K (32)
cr H3 cr

The zero points of the function F' have been calculated numerically; this
allowed the drawing of diagram K /K', shown in fig. 5 and 6 - curve IC.

4.4. Structure for which the equations (-r-O and p ¦ 0 hold.

The first two boundary conditions, mentioned sub 4.2 still remain valid. The

third condition becomes : for x H : -3- - 0 or C2 sin /k~ B " 0.

In order that there should not be a trivial Solution, there must be

sin a H 0 or /ä H TT, 2 TT...

The smallest value satisfying this is ir. tt^j t? EI
The critical load is then given by : P " —5— + p (33)

H

Here again the critical load is found by adding to the Euler buckling load the
influence term of the horizontal member stiffness.
It is to be noted that the term,which includes the influence of the member

stiffness ,is independent of the boundary condition in x H.
Analogously as sub 4.2 it is possible to calculate the number of stories at
which the danger of global buckling of the structure is equal to the danger of
its local buckling. 1 ~ '

One f inds : n - 4 TT + \ kr^ > + ' <34>
TTZ LJ V TT LJ

4.5. Structures loaded by P i 0 and p / 0

d2
Let us first assume that for x-H the condition —\ 0 is satisfied. If both

dx
a uniform load p and a compressive load P act on the structure, the differential

d3*
equation EJ —%¦ + {

dx
only differs from the one in which P - 0 is supposed

_ ^ P 12 EI
H + — - y T - X

p -t Lp s 0

si-ii +P
dxJ

n 12 EIH ~n^ dx

P 1 2 PT
in the term a - H + - - ¦ T

(35)
p l Lp
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Let us assume tentatively the critical roof load to be known, i.e. P

Everything happens as if the stiffening by the members (term * —) is reduced
by the load P

er,
The value of K' becomes then 0

,2
12 IE

Kl K IL
P £er. ' EJ

12 IH
£LJ

P H

EJ
(36)

This value of Kl determines a first critical load p by using the K/K'-diagram
in question. " 1

Thus the critical, uniformly distributed load,which corresponds with a given
roof load ,is determined.

Next, a second critical roof load P is taken and the corresponding load p
is calculated, etc. 2 2

The points determined are plotted in a P /p -diagram and joined by a flowing
curve.
If it is desired that the coefficient
of safety is the same for p and P :

Pcr pcr p er
p and P — then is —

s s p pcr

On plotting this straight line in the
diaeram P /p the intersection point A6 er *cr ' r
of this straight line with the curve
P /p determines the critical values
er *cr

sought
Pr (P P1
cr cr' *c (P--)

9X
9*9 «5

Fig 7

For an easy construction of the diagram in fig. 7, first P is calculated in
the supposition p 0 (formula 28)

o tt2 EJ 12 EI
er .„2 TF4H

and p in the supposition P 0 (formula 26)

p" H K*cr „3 cr
n

After that, the corresponding value of p is calculated for 3 or 4 values of
P included between P° and 0.
er cr

This curve may be
determined very easily with the
aid of diagram 5.
The constructed curve may also
be replaced approximately by a
straight line which joins the

points B(0,P°r) and C(p°r>0).

3cr

Fig 8
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Analogously an intersection point A' is now determined (see fig. 8).
The straight line BC is represented by o

o crP p ¦— pcr cr o er
pcr

The intersection point A' has then as coordinates
o

P* =lJ-SI (37)
cr p o

P cr
p o

P er
P°

r er (38)

P P

_ + -21

If for x H the equation -— 0 holds as boundary condition, the argumentation
continues to be right. _
Then is calculated : o it EJ 12 EI o EJ vP —~— + —jt";— and p —-¦ K.

cr „2 X. L Xr „3 cr
H n

Intermediate points can again be calculated as above, by reading K in the
diagram of figures 5 and 6.

5. INFLUENCE OF NOT CONTINUOUS ACTING OF THE MEMBER MOMENT

In consequence of the not continuous acting of the member moment, a nodal point
can suffer a certain relaxation. This means that the node undergoes an
additional rotation. As it eoneerns here a correction on the basic rotations,
it may be assumed, with regard to the calculation of this correction, that at
the midpoint between two successive nodal points, both in the members and in the
columns, there are hinges. The sum of the member moments at the place of
column i comes originally to _x _T

i i-1
When this member moment acts on the node of the column, it is equalized pro

6 EI
rata of the distributing coefficients. The moment -= i> is reduced to

6 BI 9 _ £11 + 1EI j ^
Li

L. v L. L. ' 21^1l i i-i ----+ zr- + I
i Li Vi

6 EIInstead of —= ip there now acts from the member to the left of the column i
i

a member moment _T 2 1.
6 EI l
Li 2Ii + I^i: + LJ-)

i i-i
upon the column i.
So the point is to reduce the stiffness of the member by multiplying by a
coefficient ß..lFor the member moment, resulting from the member to the right of the column l,
it is proved analogously that has to be multiplied by the same
coefficient ß. : i+1
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l

1 +2I7(l7
1 1

The summation term — now becomes :

l-\ iT7+ ßi <i7 +r2> +

Li+.

+
n L

(39)

(40)

6. EXTENSION TO A SYMMETRIC SPACE STRUCTURE

X
'jn

!jn^

So far only sway buckling of a plane structure in its plane has been considered.
Let us now turn more generally to a construction, as shown in fig. 9, composed
of a serie of columns, joined by beams according to the y-direction.
The moment of inertia of these beams per field can be different, but the moment
of inertia of theätories per field is assumed to be constant.
It is further supposed that the
floors are infinitely stiff in
the horizontal plane and that
buckling occurs according to the
y-direction. A possible rotation
of the structure is left out of
consideration here; this problem
still needs to be worked out
further.
In these suppositions all
columns suffer the same i j!,
deflection at the place of a U

| oü'jQ"
floor. 1 2

The construction is built up of
m plane frames.
In the frame j there are n+1 columns (0,1, i
aiedenoted by the notations : I. I.., I.jo' jl' jn

rjd

j m

Fig.9

n) whose moments of inertia

Between two successive columns i-1 and i the moment of inertia of the member is
denoted by I'.., the span by L...Ji Ji
The equilibrium condition (5) for any given column of the system is :

EI A +
^dx3

6 EI'.

Pj. (H-x) + P.. -J-
Ji 1

L..J-

1

Lji+.
dy
dx

+ D.. 0.
J-

The addition of these equilibrium conditions, written for each column of the
System, produces again the differential equation (7) :

EJ ---2- + p (H-x) + P

with dx

m n
1 o I.J-

P

m n
_ E E

p.o rji
m n

m
E E
1

P..
o Jl

12 E I" l L. £ ¦»
T 1

m ~1
-, E E

i'..
L 2 1 o

3-

3«
Lü+i

If the relaxation is to be taken into account, then the coefficient ß — can be

introduced :
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Ji

2 I.Ji
St L2I.. + I!.r--+ I' y-^—

Jl Jl L.. jl+1 L.J J Jl J Jl+1

m n
— — e rL 2

j=l i=o

I'.. I*..

jl k L.. L..^, '
Jl Jl+1

Consequently, the proposed method of calculation also holds good with regard to
construction symmetrically designed in plan view.

7. EQUIVALENT SLENDERNESS

The validity of the developed theory
is limited to the elastic field.
With relatively stiff structures
of small slenderness, however,
there may occur plastic buckling.
An exact calculation in this
field has not been made yet, to
our knowledge. In order to get
something practical we first
determine the critical load of
a free-standing column, subjected
to a load P at the top and to a
load p per unit length, uniformly
distributed over the height of
the column.

Fig 10

Let us first assumeLet i be the moment of inertia of the column.
boundary condition in x H.
When only the load p is applied, the elastic critical load is given by the

s-
expression

cr
H (41)

When only the load
by

P«°
cr

P is

£f 7,83
H

applied, the elastic critical load is given analogously
2 „•TT El (42)
4 H

p' H/P'*cr cr
When both p and P are different from zero, a

constructed, as explained in 4.5.
The approximation may also be maintained by a straight line
If it is assumed here as well that

diagram may be

P_
pH

P'
er

Xr p:>
(43)

then the real critical elastic load is given by

,.r Y

>-°

P*u
cr

p'r H (44)
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Introducing (41) and (42) in (44) then one obtains :
2 „.,r TT Ei ,r _ //-\Pcr =Y y + 0,315 ^2- =Y pcr H (45)

2 2
From this the critical stress is derived (X H A/i and A is the sectional
area of the column) : r ,r „* + P —¦ — —.,r _ cr Xr _ Y + 1 ir E

0cr Ä Y + 0,315 ^2
(46)

If this critical stress is compared with the critical stress,calculated for the
global structure, an equivalent slenderness may be derived
(A represents now the sum of the sectional areas of all columns) :

(47)
'y + 1

TT2 E A
Y + 0,315 4 r r

P + Per rcr
H

If the third boundary condition is ^Ix^x-U °' then an equivalent
slenderness may be derived in a similar way :

+ * n2 E - A
- (48)

WY + 0,522 r r H
» cr v cr

If either p 0 or P 0, then the equivalent slenderness is determined by :

_o _,o o ,oP P or p pcr cr er er
One obtains then : - p°
for ftt =o p - 0 : ^ -f- or X

dx x=H 4XZ A

P 0 7,83 E Pcr H

X2 A

for(g)x=H 0 P 0 :^| - 4 c

P 0 üill 4f* u - ,2 A

cr
With the slenderness thus calculated, the reduction coefficient V is read in the
i^/X diagram, valid with regard to a single column, subjec_ted to a compressive

load. The permissible critical buckling stress is than : a =f> a
The dash over O points to "permissible" stress.

IT E

cr

7,83 E

cr

18,9 E —

8. APPLICATION

Given a water tower, as depicted in figure 11. The dead load of the reservoir
is estimated at 6000 kN; the effective water capacity is 5000 kN.
E - 30.000.000 kN/m2.
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The dead load of the floors and the columns
amounts to : 0,80 x 0,80 x 25 x 4 x 30

+ 0,13 x 6,82 x 25 x 5

+ 0,28 x 0,37 x 25 x 5,2 x 4 x 5

2940,76 kN.
The weight of the outer walls is :

0,28 x 5,2 x 18 x (30-5x0,5) x 4 2882,88 kN.
2

The useful overload (10 kN/m is :

(6,80 - 0,56) x 10 x 5 1946,88 kN

The load per unit height is then :

7770,52 „.p -r-^— 259 kN/m

The following calculations are made (member

rectangular section) : (19) (33) (32) :

I

J -
1

0,50 x 0,28

4 x

12

i0,80
12

1 +I
L 6 6

0,0029 m

0,1365 m

-1

500 m3

i 2-; H—
-10 kN/m

-

i_n

X

,80/80

28/50

/777777Ai'7/7W7//y///7^/7///////

mJ

(19)

(33)

(32)

K'

0,3333 m (relaxation here has practical no influence)

12 x 0,0029 x 30" x 0,3333
0,1365 x 5 15,295

7

x 3 x IQ7 x 0,1365 +
12 x 3 x 10' x 0,0029

Fig 11

I14.490 kN

30
45 x 3 x 10 x 0,1365

302
204.750 kN

For different values of P the corresponding critical load p H is found
according to formula (36).

p
cr

K'.l K.l P H
er

0 204.750
20000 15,295 - 4,396 10,899 - 38,5 175.170
40000 15,295 - 8,791 6,504 - 30 136500
60000 15,295 - 13,187 2,108 - 22,5 109.200

114490 0

11.000
pH 7770,52

1 ,HI _>

P Hrcr
P 1,415 p H
cr rcr

Pr 83.000 kN
cr

s 7,54

pr H 60.000 kNrer s 7,72



156 IABSE PROCEEDINGS P-34/80 IABSE PERIODICA 3/1980

From the above it appears that the
coefficients of safety are practically
equal. The slight difference is due
to reading errors.
According to the approximation formulas
(37) and (38) one finds :

Pr 82.060 kN

pH" 57.990 kNrcr

PX

8000 _. V

6000-

*/' \*7 \
** / I ^,

Fig.12

4000-
H 1

2000

/ i \ PcrH

4000 8000 12 000 16000 20 000

CONCLUSION

The very complex problem of sway buckling
of a framed structure has been reduced
to a simple and clear method for calculation.
The case in which the roof load is comparable
to that of the normal roofs as well as the
case in which extra heavy roof loads are to
be considered (e.g. a water tower) has been
Condensed into an explicit formula.

Without any difficulty the safety of the structure with reference to sway
buckling can be calculated. At this Operation the coefficient of safety for
the compressive load may, if desired be increased, for instance, with regard
to that for the floors. This would be justified in the case of a water tower,
when the intermediate floors are by no means to be taken into consideration for
storage accomodation.

In this case it would also be possible to reduce the overload on the floors and,
at the same time, to apply an equal coefficient of safety for both floor load
and roof load.

The concept "equivalent slenderness" also allows the checking of plastic buckling.
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