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Bending Theory of Skew-Anisotropic Plates

Theorie de flexion des plaques anisotropes biaises

Die Biegetheorie der schiefwinklig-anisotropen Platten

LIN Yuan-Pei CHEN Wei-He

Design Engineer Design Engineer
Shanghai Municipal Engineering Design Institute

Shanghai, The People's Republic of China

SUMMARY
This paper puts forward the new theory of structural skew-anisotropic plates. Firstly, one has
to determine the conditions of restraint in the direction of the plate plane. If there is no
restraint in the direction of the plate plane, then the stiffness coefficient will be calculated
according to eq. (28) of this paper, whereas, in the case of fixed restraint in the direction of the
plate plane, the stiffness coefficient will be calculated according to eq. (24) of this paper.

RESUME
Cet article presente la nouvelle theorie sur les structures composees de plaques anisotropes
biaises. II faut d'abord determiner les conditions de limitation pouvant intervenir dans le plan
de la plaque. S'il n'y a pas de limitation, on peut calculer le coefficient de rigidite selon
l'equation (28) de cet article; si une limitation determinee entre en ligne de compte, le coefficient

de rigidite peut etre calcule selon l'equation (24).

ZUSAMMENFASSUNG
In diesem Beitrag wird die neue Theorie der Konstruktion von schiefwinklig-anisotropen
Platten aufgestellt. Es werden in erster Linie die Beschränkungsbedingungen der Platte in
der ebenen Richtung unterschieden. Wenn es gar keine Beschränkung in der Plattenebene
gibt, so wird der Steifigkeitswert nach der Beziehung (28) eingesetzt. Wenn es eine feste
Beschränkung in der Plattenebene gibt, so wird der Steifigkeitswert nach der Beziehung (24)
eingesetzt.
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sional coupling is clearly demonstrated under the condition of structurally
skew anisotropic plates as shown in Fig. 10, 11.
Thus a new concept is developed for the de3ign of skew girder bridges: i.
e. to determine the type of support first (whether to use neoprene bearings
or steel hinged bearings) and then to calculate the internal stresses of
the skew plates.

2. THE DEFORMATION OF PLATES

Considering the structurally anisotropic plate as a rigid structure made up
of longitudinal ribs, transverse ribs and a covering top slab, as shown in
Fig. 1. Putting X-axis in the direction of the longitudinal rib, Y-axis in
the direction of transverse rib, plane XOY in the midplane of the top slab
and Z-axis in the left hand coordinate System.

,x
Y.V / y.v,7.\?

XX

I ;¦¦**'

X.Ud.iZ #

v. yD
FigFig. 1

Denote the displacements in the X Y directions as jj\ Y respectively.
Then, two auxiliary coordinate Systems jjoY and Xoy are chosen. Make_
axisX coincide with axis X _axis y perpendicular to axis X and axis y
coincide with axis Y > axis "x perpendicular to axis ™ Let the
displacements in_the direction X V e^ual U • V and the displacements
in the X Y direction equal \^ y respectively, as shown in Fig. 2.

let C Co5<X

so X= X + CY

ü u + cv
ü - 5u

5= Sin oi

Y= SY
CX + Y

V= SM

V= Cm-V

(H

(2)

In the coordinate System Xoy the deformations may be written as

£*» 3u/3x
cTyy ^v/a?
^?xy 2V/2X + 3Ü/3Y (3)

While in the coordinate system XoY. *»- deformations are quoted from eq.
(1) of Ref. [1] i.e. in referring to Flg. 3.
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6xx 3< u + cvVjx
6YY 3 v+ cm/aY

Ixr SOt^r + 9V/3X) (4)

From eqs. (1), (2), (3), (4) we obtain

(5)

6-xx I

/ o o, Cxx

Cxy O 1 ,-Vs. -YY,

ixt -*&,<¦/<>, \. i*X.

This may be simplified to

6 H £

zZJ XdrXX
,)V

dY
in

m
Jy

%-dx

dx

U. 3

Let the displacements of U y in the plane XoY equal U 0 Vo •

Using the small deflection assumption, that the normal line remains straight
after deflection, as follows:

U + CV=Uo+C\/o-- 9u|/?X

CUt V=CU, + V0-Z 3u./aY (6)

Again, using the general assumption of structurally anisotropic plates:

2-Z,
i5 «2,

-xx ¦

Xr- (7)

in which,?, distance from the centroidal axis of main beams to plane XoY ;

Jj= distance from the centroidal axis of cross beams to planeXoY -

See Fig. 1,
From eqs. (7), (4) yields:

?=¦*!

i.e.
so

?> C U0 + C V0 - I 2>uj/2-X y 2X

Uo+ CVo -Z,^-j/3X =^,CY)

u + c y= -c.?-zo^u)/ax +jiCY)

cu + v -C2-f-:>3u)/aY+i,oo

Substituting eq. (8) into (4) and let
Y'Cx.Y)-- (j,<Y) + £oo)/s

(B)

(9)

sc that;

Cxx, 1 ,0,0,
trr. o 1 o.

Yxy '%•%,*.

-(3-Z.Y o o
o -(H-Zi) o

-Vax!

3Vc.Y,

o

o

MfOt-YX (10)

the above equation may be simplified to
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£ P A % + R
To obtain the twist energy later on, the relation between the twist angle
and the flexural angle must be solved. Here we quote eq. (25) from Ref.[l],
in other words: fron the definition of twist angle, it is known that

äx» 3 v/n 3Y 'au/^z

Substituting eq. (2), (6) into the above equations, we have

-Sx CcWc3X " 2u3/c3Y)/s

^Y= (--to/ax - c W3Y)/S
(11)

3. RELATION 3ETVEEN STRESSES AND DEFORI'.ATIONS OF PLATES

For the relation between stresses and deformations of top plates:
Benote (f as the stress vectors in the XoY coordinate System.

<J as the stress vectors in the XoY coordinate System.
Thus, in the XoY coordinate System, the relation between stress and strain
is

CTxx.

Ö"YY.

£"x Y-

_ _E_
l_f-

1 / f <=> ' Cxx

V \ o &YY

o o 0-0/2, Yx\ (12)

and simplified to

K £

According to the theory that the elastic internal energy of a structural
body will not be changed irrespective of the selection of the coordinate
System:

~ \\ V* <A*<-? =Jk\\ 8T<T Jx AX d3)

from eq. (1) we have

clX-d?" - dx • dy
I c,
o S.

Substitute the above eq. and eqs. (5),(12) into (13) we have

-t Jj £TC HTk H s)6 dxdr -^ jjeVdx-lY
d htkH-5H cseAvO L- e

(14)

in which L-
x[cXi-^/2sz], /-[(fo-fv4s']r -cci+vves

(15)
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For the relation between stresses and strains of longitudinal ribs and
transverse ribs:
In the £ direction, take out a thin sheet of longitudinal and transverse
ribs with the depth dg Let .d,o?) be expressed as the width of the longitudinal

rib at 2 and <JZ(£) as the width of the transverse rib at j? Fig. 1.
by using the relation between stresses and strains and recognizing that both
longitudinal and transverse ribs are all very thin in their transverse
direction respectively, the affects of "¦'xy against Zxy mav -e neglected.
Thus

(Txx.

(Tyy.

Cxy

4^-)/sy
_ _£>£_

\-r O '<!-<?)£_. O

e*«.l

I^yy-

n xv, (16)

For relation between twist moment and twist angle of longitudinal and
transverse ribs:
Let the twist moment of longitudinal rib be as Tx the twist rigidity as
Kic- the twist moment of transverse rib be asTy and the twist rigidity as
KY thus

Was •

Kx/Xy ' ° •

O Ky/a5 (17)

4. EXPRESSIONS OF POTENTIAL ENERGY

For the bending energy of top plate:

U, i JSS ^ d>^Yd* - t JJS<R+PA*JLCR+PAWSE/i-O dxdYdz

^5WCRTLR + ^ R^--FA/X+/XTATprLPA'X )<SE/-yOcJxclYa^

Then we can easily obtain R^R-Ig ^<x,Y) [c/sX C|-V)/2, J h

j^LpA'Xd-? vf<X,Y5hGr/X

in which C- II - cz,/s3, -ci2/# Ws- + <¦ wyi]C?,+2.V-S-II

h* -
|- + -l h), Symmetrie

yftifirKtä^

(18)

(19)

x

(20)

For the bending energy in the longitudinal ribs and transversa ribs:
From eqs. (10), (16) we have

<SE

Ui-4 )U6T(rdxdYd-= fg^jJftcpAK+K-

-IiC^^Äy o - o
CpA'X+R^^vdz
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note that j d,(H) C H--X* d 2 Ix/XY ~ \?/i2 - h ?i

S d?(?H2-H03d- »IyAs - h/^12 - hE»

in which J„ XY moment of inertias of main and cross beams respectively

<wß*
o

'*8-*£-&&< <=>¦ „ se4x4y

(21)

For the twist energy of longitudinal ribs and transverse ribs:
From eq. (11) we have

- MW

Kx/x?

KyC\x

"3-8-/3X.

^-vy/H
Sdxc-y

C'S* KxÄv ° ' CS^Kx/2AY

>x sdxdY

(22)

For total potential energy:

U= U. + U* + U, - SS "\ w) s dxdY ^-SS [0(TD1'X+r2S,-Eh f<x,Yy(-Y!l&X

+ [s*Eh fW-yi-f]«^1 + °",f)/2 >} S dxdr - jj VJ u)S dxdY (23)

in which
i i i

D„ D„ D,3

"D, P,', Ol„ D^3.

t?äi ->w D),,

Di - [s4EI-/x? CHT»)] + C*[a*S^t(H?h/H*)+ 6]+tfM$]
Pi« t>a, - CcVsV) [<EZ&h/l-0 + 5]

Pi, [s+EJYAx<'-^+C[('+-'3[(E.U/i-f)+D]+(5xKT/,5;)]

P,'- "D31 - -C[<E?, <2,+ZOh/2 o-^-»"5 + 5 + <^<"/2A?>]

Dia D«= -c[(EZ,a,+3>lv4«-f*>>* 5 + C^KvfcxO]

»* -^ -£(*£¦*• * 5] | ^_+ £.)
5 Ef£/i2 0YJ (24)
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5. THE EFFECT OF BSKDING-EXTEilSIONAL COUPLING

Obviously, from eq. (23), the potential energy |J contains as arbitrary
function ^CX.Y) » which makes u) indefinite and will be definitely determined

only after Ih?CX/0 ^ES D--n defined according to the condition require-
ed in the plate plane. It is mainly caused by the non-symnetry of the
sections, which we have called the effect of bending-extensionsl coupling.
Now let's study the two types of conditions often encountei-ed in practical
design;
(a) In the direction of the plate plane, the structurally anisotropic plate
is not subjeet to any restraint.
Since the plate is not subjeet to any restraint i.i the direction of the
plate plane, it can be considered that the midpl^ne of the tep plate will
present a rigid body movement after it is loaded.
Therefore, we have

^xY 2=o ° ¦ (25)

From eq. (10),

"Vlz-O =l"CZl/5 ' "CVS > <*.+2*V2S -h+ ¥<**>-©
so 4>cx,Y)»||c2,/s dt/s -C*i+2tV*S.|vX (26)

substituting in eq. (23), we have

U= ^ JS^Do'X SdxdY - jj^u)SdxdY (27)

in which, the matrix "Do is defined as

t>° - (s*e1x/ay ci-v>> o-s*-p t cVRe.Vzo+oVCKx/x^

D^ (S*E IyA»<i-V*>) + 0-S*;>5 + CV[cEZ?h/ati*VO)+ CKy/a-O]

D,°3 DJ, -C C 5 + C S* Kx/2 \Y

t£ T&- -CCü + Cs'KyAx-sO)

Dä°, C 5 l+ C3- sV)/2 + { S*[< Kx/Ay -) + C Ky/x5")]/4 } (28)

We can obtain the Solution of non-restrained üü by taking the Variation of
U= O i.e. 5\) o This Solution is equivalent to a -th order partial
differential equation together with its corresponding boundary conditions,
which is exactly the same as in Ref.[l], [2], except that Do was expressed
by eq. (28). This is very similar to the "reduced bending stiffness" of
laminated plates of composite materials.
(b) In the direction of the plate plane, the structurally anisotropic plate
is subjeet to fixed restraint.

X=o, X-=t Z=2i U»o V=o

Y- -i Y»+-| Z-?z u o v=o.

substituting in eq. (8), we have
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tfCx.Y) C j,'cY) + jj <x) X-^- o

substituting Cf ex,Y) into eq. (23), we have

timJ§i. Jj0(TO,7CSdxdY -jj^iOSdxdY (29)

Taking dU 0. we oan t»-113 obtain the .Solution of u) in the fixed condition.
This Solution is also equivalent to a 4th order partial differential equation

together with its corresponding boundary conditions which is exactly
the same as in Ref. [1], [2], except that the coefficient is expressed as
in eq. (24) instead.

6. PARTICULAR CONDITIONS

As in Ref. [l], we use orthotropic plates, isotropic plates and beam gril-
lages for verification.

For the orthotropic plate:
If it is not restrained in the direction of the plate plane:
In eq. (28) let (X> 9o* C=o 6=l

Elx/xYci-^) \r[ö+(EhZ,?-/o-o)] ©

V[5+ (Eh-i?,/a-Y';0], EIy/xsO-V';» <=>Do

(30)

If it is fixed in the direction of the plate plane:
In eq. (24) let

Di

o
o

(31)

For skew isotropic plate:

In eqs. (24), (28) let £, Z- °
Then the two eqs. are equivalent and equal to

¦5 <C*+sV)ö -CD

Do= <c*+sV)<5 5 -cd
-CD -CD Cl+CJ-sV)6/2. (32)

It can be Seen from eq. (32) that the effect of bending-extensional coupling

disappeared at this stage.

For skew plane beam grillage:

In eqs. (24), (28) let h <=> 2t -¦©
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Then the two eqs. are equivalent, both being equal to

T>, D-

jS*ei» cYk-
AyO-«' Ar / o _ cs7kx

Z \<?

O /
6+EIy C'S'Ky
A»(i-If'5 A5

CS2 kr
2X;

_ cs'kx
Z Xy

CS'Ky
2-Nx ' $<*- Ax • (33)

It can be seen from eq. (33) that the effect of bending-extensional coupling
disappeared at this stage.

For the orthotropic skew pläte:
From eq. (1) we obtain

'dyi'' 1 o o 3uJ
¦3X'

9 u) — C2
1 - C 9*u)

¦dy1 s1 S2 s* •3Y1

*¦
?X9Y ' _2C

S o 1

6
5 -Ao
^9X-Y

simplified to: 0< J*
By using the theorem of energy we can find that,
under the condition where there is no restraint in the direction of the
plate plane, the rigidity of orthotropic skew plate is:

D J D«, J (here D0 is expressed by eq. (30) (34)

under the condition where the plate is fixed in the direction of the plate
plane, the rigidity of orthotropic skew plate is;

D-=JTD,J (here T>, is expressed by eq. (31) (35)

7. EVALUATION

Various methods of evaluation, such as the method of finite elements 16]
the method of series [8] and the method of difference [2] etc. have been
developed by several authors. In coping with the requirements of design,
the method of Variation is to be used in this paper for the conditions of
two opposite simply supported edges and two opposite free edges. This
Solution has been already programmed. As shown in Fig. 2, the stiffened
beam with bending rigidity EI is supported in the plane where Y=_ß/-2, •

If a concentrated load acts at the point X- \a then **j can be expressed
by the Dirac function.
So eqs. (23), (27) can be rewritten as

u- ätSS^^sd^Y + iSY=1%-^(Äjdx

- \?o Jcx-x0-)5cy-Y<.1 ¦— S 10 dxdY

let ui) -|| Y°, Y', Yn| • Ii<x>.i<50 J„00|T= YnT j
Substitute eq. (37) into (36), yields

(36)

(37)
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U=^UJ 0 .1'
i

D„YnTY- -D^YnV, D,3YnV- f.
-ttlfta. D^YrfYn'. CJi-Y^Y». s-y] J.
D»iYn\. Cfctftf. Dj3Y^Y». if

+ EI(YhTf;54|Y=±8 '1 Po cT<x-xo YnT^S4|y=Y ldx= JFCX.-J.^f 5dx

-- ¦ |<f - i-$ £$»}-»$-i-SJJj^ ^Jj< o (38)

Thus the Solution can be obtained by simplifying the 4th order partial
differential equation to a set of ordinary differential equations. Due to
limited Space, details of Solution and Programms are omitted.

8. COMPARISON BETWEEN MODEL TESTS MD CALCULATED RESULTS

8.1. Masao Naruoka's model test

Dimensions of model are shown in Fig. 4.
with bending rigidity

There are stiffened edge beams

EI
Y- + 5

From eq. (24) yields

0.234 E

P.«

0.10010, 0.01422, 0.02523,

0.01422, 0.02381, 0.01066,

0.02523, 0.01066, 0.01668,

Concentrated load To acted

vx

¦VJ\6 </OS'630

Tb | I 1 nb

separately on X« Yo o
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Fig. 4B/e t B/3 > WZ • The results
of computation of midspan deflections

u) internal forces M and
the comparative results between
experimental and calculated values mentioned in Ref.{2j are shown in Fig.
5, 6 respectively.
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calculated value according to this paper
12) test value

(2) calculated value
Fig. 5 Midspan deflection
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calculated value according to this paper
(21 test value

ZZZ '.2) calculated value
Fig. 6 Kidspan moment

Another experi'aent was perfcriied entirely ifl accor-ance with the above
mentioned di;.cfistons of rasao i.'aruoka's mcdel, b;jt it was not S'abject tc
restraint i.i the direction of the plate plane.
This is equivalent to the type (a) of the said ehtory. Eq. (28) yields

D0

0.06311, 0.00213, 0.00205,

0.00213, 0.01924, 0.00190,

0.00205, 0.00190, 0.0018P-,

For the comparative results between the calculated and experimental val les
of deflections U) and internal forces M see Fig. 7, 8.

\

'0'}-pi'/kb»

\p.

calculated value according to this paper
test value

Fig. 7 Midspan deflection

-X

»-'¦ft

calculated value according to this paper
test value

Fig. 8 Midspan moment

From the above two examples, we cfm see that different results will be

yielded from different boundary conditions in the direction of the plate
plane in the same Ilasao Naruoka's model, and both theory and practice are
consistant.

8.2. Model test with OL 3o°

The material used is plexiglass with E=2.45x10 Kg/cm V* =0.38. Dimensions

of the model are shown in Fig. 9.
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The experiment was carried out as type (a), hence the calculation was worked
out accordingly, i.e. to calculate by eq. (28).

Do -
+ 0.74928, -0.03620, -0.02393,

- 0.03620, +0.12311, -0.00537,

- 0.02393, -0.00537, +0.01613,

In comparing the calculated and experimental values of the midspan deflections

(jj and internal forces M as shown in Fig. 10, 11, a favourable con-
sistence is found.

P.

test value
value calculated according to type (a) of this paper
value calculated according to type (b) of this paper

Fig. 10 Midspan deflection

f'/02

\
• test value

value calculated according to type (a) of this paper
value calculated according to type (b) of this paper

Fig. 11 Midspan moment
Aff-cm

If we don't distinguish type (a) from type (b) and misuse eq. (24) (i.e.
type (b) to calculate the rigidity, where

"D,

+3.18174, +0.98813, -1.72609,

+0.98813, +0.55446, -0.72217,

-1.72609, -0.72217, +1.17186,
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then, the calculated values of the midspan deflections u) and internal
forces M represented by dotted lines in Fig. 10, 11 show up a tremendous
difference between the results of types (a) and (b).

8.3. Experiment of a structurally orthotropic skew plate with CX=-VS°

The material used is plexiglass with E=2.45-104Kg/cm2 \f =0.38
Dimensions of model are shown in Fig. 12.
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K

The experiment was carried out under the condition of type (a), hence the
calculation was worked out accordlngly, i.e. using eq. (34) for computation:

¦D«

+2.08274, +0.54762, -0.41215,

+0.54762, +0.82098, -0.58052,

-0.41215, -0.58052, +0.42811,

Comparison between the calculated and experimental values of midspan deflections

U) and internal forces M as shown in Fig. 13, 14, is obviously
quite in consistenoe.

X
test value
value calculated according to type (a) of this paper
value calculated according to type (b) of this paper

Fig. 13 Midspan deflection

0

cm

test value
value calculated according to type (a) of this paper
value calculated according to type (b) of this paper

Fig. 14 Kidspan moment
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When the calculation was carried out under type (b), i.e. using eq. (35):

+2.39194, +0.54762, -0.63079,

+0.54762, +0.82098, -0.58052,

-0.63079, -0.58052, +0.58271,

then the calculated values of midspan deflections wj and internal forces [vi
were shown by dotted lines in Fig. 13, 14. It is obvious that although
the conditions are entirely different under types (a) and (b) for the
structurally orthotropic skew plates, the differences in the calculated
results are Insignificant. In Short, it is clear from the above four examples

that this theory is relatively consistant with experimental results.

Besides the above mentioned tests, the authors have made a series of other
model tests (including (X 3o° a-S° <oo° 90° Due to limited Space,
they will not be enumerated here one by one. Generally speaking, except
for specific points, the difference in deflection is less than 85S, and the
difference in moment is less than 1 5.X

9. CONCLUSION

For structurally skew anisotropic plate, it is important to distinguish
the condition of restraint in the direction of the plate plane.
If it is not subjeet to any restraint in the direction of the plate plane
(in the case, where a neoprene bearing with colparatively small shear
modulus is used), the stiffness coefficients of eq. (28) or (34) (orthotropic

skew plate) should be used for computation. If it is subjeet to fixed
restraint in the direction of the plate plane, the stiffness coefficients
of eq. (24) or (35) (orthotropic skew plate) should be used for computation.

NOTATIONS

cX
C s._
X, Y.x.Y.X-Y. 2
U • V. ü. V- U,^.uJ-
2, ,1,
t.B.
h.

Ax,AY.
£xx.£yy.Yxy ipxx A^Tjxy
flxx ,<Tyr Cxy. <Txx ,5s;?.CSf •

"Vx -\Jy ¦

TX ,Ty ¦

kx Ky

Ix, ly

skew angle
C CoStX 5= SintX
coordinates
displacements
distance from the centroidal axis of main and
cross beams to plane
the length and width in the X and Y direction
of the plate
thickness of the top plate
the width of longitudinal and transverse beams at
Z

the distance between longitudinal beams and
distance between cross beams
strain
stress
twist angle
twist moment of longitudinal rib and transverse
rib
twist rigidity of longitudinal rib and transverse
rib
moment of inertia of longitudinal beam and transverse

beam
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moment cf inertia cf stiffened side beam
modulus of elasticity
Poisson's ratio

ber.ding rigidity cf top plate

potential energy, internal energy
external loading
point of action of concentrated £brce
rigidity matrix in the direction of the plate
plane not subjeet to any restraint
rigidity matrix in the direction of the plate
plane subjeet to restraint
stress vector
curvature transformation matrix (fromxoY
coordinate System tc XoY coordinate System)
see eq. (5)
see eq. (10)
see eq. (12)
see eq. (15)
see eq. (19)
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