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Load-Bearing Masonry Walls Analyzed as Beam-Columns

Analyse de murs porteurs en briques
considéré comme un systéme de poutres-colonnes

Backsteintragwande als Rahmenstltzen untersucht

F. CHEONG-SIAT Moy L. TALL
Assistant Professor Professor
University of Minnesota Lehigh University
Minneapolis, MN, U.S.A. Bethlehem, PA, U.S.A.

SUMMARY

The behavior of unreinforced load-bearing masonry walls made of bricks has been repre-
sented by thatofbeam-columns. Theircomplete load-deformationrelationships are predicted
by a computer program that can account for the difference in the compressive and tensile
yield stresses and the finite lengths of their stress-strain yield plateaux. For the simple cases
inwhich cracking of the material is permitted, but crushing is not allowed, analytical solutions
have been obtained. To further simplify design, the results are plotted in the form of charts.

RESUME

Le comportement de murs porteurs en briques non armés est représenté comme celui de
poutres-colonnes. La relation charge-déformation est établie a I'aide d'un programme de
calcul a I'ordinateur, qui tient compte des différences dans les contraintes de rupture a la
traction etalacompression, etdes hauteurs respectives des plateaux de fluage. Des solutions
analytiques ont été obtenues pour les cas simples ou la fissuration est tolérée, mais non
I"écrasement du matériau. Les résultats sont représentés en forme de diagrammes.

ZUSAMMENFASSUNG

Das Verhalten von unbewehrten Backsteintragwanden wird durch Rahmenstitzen dar-
gestellt. Die vollstandigen Spannungs-Dehnungsverhéltnisse werden mittels eines Kom-
puterprogramms vorausgesagt, das den Unterschied zwischen Druck- und Zuggrenz-
spannung und die vorgegebenen Langen der Spannungs-Dehnungs-Grenzplateaux berick-
sichtigen kann. Fir die enfachen Félle, wo Rissbildung erlaubt, Bruch aber unerlaubt ist, sind
analytische Lésungen gefunden worden. Um die Bemessung zu vereinfachen, sind die
Ergebnisse als Kurven dargestellt.



2 IABSE PROCEEDINGS P-25/79 A

1, INTRODUCTION

Unreinforced load-bearing walls made of fired-clay bricks constitute an effi-
cient structural system for supporting gravity loads and resisting wind loads
in low-rise building structures. In countries where the cost of concrete,
steel, and timber is prohibitive, they are particularly suitable for build-
ings which are a few stories high, requiring no advanced technology for their
construction. Because the safety of the building as a whole depends upon
their structural integrity, it is important that sufficient care be given to
their design.

Clearly, one of the prerequisites for a safe design is a thorough knowledge
of the behavior of the constituent materials. The basic properties such as
compressive and tensile strengths, modulus of elasticity, and initial rate

of absorption of water are generally dependent upon a host of factors in-
cluding binding material, porosity, and shape of the brick unit. Standard
test procedures are available for determining these properties. [8,9,10,12,13]

However, even with a knowledge of these basic properties, the designer is
still faced with two obstacles before he can predict the behavior of a load-
bearing wall and the margin of safety against collapse. Firstly, he needs

to establish adequate failure criteria which will be representative of the
ultimate strength of the wall. Although some failure criteria have been
proposed and some degree of success has been obtained for certain loading
conditions [10], a suitable formulation covering the more general loading
situation of compressive axial force with bending and shear still needs to be
derived and tested.

Secondly, the designer must be able to determine the forces in the most highly
stressed region of a wall in order to apply the relevant failure criteria.
Some analytical methods have been proposed for the case of eccentrically
loaded walls [11,14].  In these methods, it is assumed that the solid brick
behaves as a linear-elastic material with compressive strength, but with no
tensile strength. Algebraic expressions relating the compressive stress to
the applied axial load are derived for three cases, namely (a) when the com-
pressive force lies outside the kern, (b) when the compressive force lies
within the kern at one end of the wall, but outside the kern in some parts

of the wall due to deflections, and (c) when the compressive force is situated
everywhere within the kern,

The purpose of this paper is to present a method for analyzing unreinforced
load-bearing walls subjected to general and common loading cases in which
axial loads, end-moments, and lateral loads are present. Essentially, it con-
siders a unit width of the wall and represents its behavior by that of a beam-
column. In obtaining solutions for the beam-column, shear deformations are
assumed to be small compared with flexural deformations. A check can be made
at the end of the analysis to ensure that this is so. In this method, the
tensile strength of the brick may be considered. Another method which accounts
for these effects was previously developed by Chen. [2]

Two types of analysis are performed. One uses numerical integration along
the column to predict the ultimate strength behavior, and considers crushing
of the brick in compression. It is, thus, suitable for assessing the margin
of safety against collapse. The second analysis restricts the stress level

to those which do not cause crushing of the brick, and is suitable for design,
especially when the analytical data are presented in the form of interaction
charts.
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2. IDEALIZATION OF WALL

The behavior of each vertical segment of a load-bearing wall may be idealized
into that of a beam-column subjected to compressive axial forces, end-moments,
and lateral loads. The magnitude of the axial forces depends on the inten-
sity of loading on the floors being supported. The end-moments, on the other
hand, depend upon the type of connections used at the upper and lower ends of
the wall, as well as the floor loading.

Figure 1 shows two building structures with load-bearing walls. In Fig. 1(a),
the floor resting on the walls acts as a rigid diaphragm transferring wind

* -
mn

(a) (k)
Fic. 1

forces from one wall to the other. Assuming that the bases of the walls

are rigidly fixed to the foundation, wall segments AB and CD may be idealized
into laterally-loaded beam-columns as shown. In Fig. 1(b), a checkerboard
type of loading is imposed on the floors so that wall segment EF bends in
single curvature with approximately equal moments applied at the ends. If

no lateral forces are present, column EF is subjected to pure bending only
with no shear deformations.

3. BASIC RELATIONSHIPS

In this study, the solid wall is made of bricks which have an elastic-per-
fectly-plastic stress—-strain relationship as shown in Fig. 2. The modulus of
elasticity, E , is identical in tension and compression, the yield stress
level in tension, G}y , is less than that in compression, GEy , and the
ratio of these two quantities is denoted as u, where O <u< 1. The yield
strains in tension and compression are given by ety = @t /E and Ecy
c'cy/E , respectively. The cracking strain is represented gy €to and the
crushing strain by egqqo -

Generally, the brick and mortar have properties which are different. For
example, the modulus of elasticity, E , is not the same for the two materials.
Consequently, the stress-strain diagram of Fig. 2 is to be taken as the unit
average of the brick and mortar obtained from tests on small assemblages
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averaging their heterogeneous actions.

Using the idealized stress-strain relationship of Fig. 2, it is possible to
derive the moment-curvature-thrust relationships of a rectangular section of
unit width and thickness t , assuming that plane sections remain plane after
deformation. Three different moment-curvature-thrust relationships exist.
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They represent the cases when the wall is elastic, when cracking or crushing
occurs, and when both cracking and crushing are present, Fig. 3. These re-
lationships have been derived by Chen [2] and are reproduced above in dimen-
sionless form.

3.1 Moment-Curvature Relationships

The relevant equations are simplified by using nondimensionalized quantities:

= E . - s = B -9
€ = o ’ P t@ H m = M s 0 - ﬁ (1&)
cy cy y y
2 Yo Yy
My - °.c:y 6 ﬂjy - EIc - TEt tb)

where P = axial load per unit width of wall, M = bending moment on unit
width of wall, My = bending moment to cause o-cy to be reached assuming no
tension yielding, @ = curvature corresponding to M , ¢y = curvature corres-—
ponding to My , and I, = moment of inertia of elastic section.

Figure 4 shows a typical moment - curvature - thrust curve [1,2]. The curve

MOMENT ; = constant
y

COMBINED YIELD

TENSION OR COMPRESSION YIELD

M [ F\G.4

EQASTIC

D, B, CURVATURE

is separated into 3 regions by the points (m; , @1) and (m2 , @2). The curva-

tures @; and @2 are given by Eq. 2,

+ 5
ﬁl =l-__2_J:l._|_2_l~_[_p (2a)
2
1+ W
g, = (2b)
2 49,
where u = Oy/o and the notation “ denotes absolute values. The
ty

C
three portions of {he moment - curvature - thrust curve are defined as follows,

(a) elastic regime

m o= g P <0, (3)
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(b) tension or compression yield regime
c
m bty b, < 8 <9, 4)

(c) combined yield regime

"7 Tpe T Ez = i ©)
where b = 307 ; c = 2 ¢l§i ;s £o= Q1+ u3)/16 ;
and my. = 31 -p)u+p)/Q -+

3.2 Strain Limits

A criterion often used to determine the strength of a wall is the attainment
of the strain limits €.o and €, at the extreme fibers in the most highly
stressed region. The curvatures Ptp and @.o at which cracking and crushing
occurs are given by Eqs. 6, 7, and 8 [2]:

(a) elastic regime , (gto < Ql . Qco < Ql)

= &+
%o to P

9 = € _-p (6)

co co

(b) tension of compression yield regime,

@, <8, <0y, 8, <0 <)

€., TP _ — 2
B, =——— 2 [ (E *»° - G -g 1"
. i i
g(.‘.0 - _gg——— +% [ (P - €CO)Z - (l - s(.‘.0)2 ] (7)

(¢) combined yield regime, (¢2 < ¢to " @2 < ¢co)

2
-1 Aty I-p
P "1 7 o T TT
2
=L Aty Sl T
¢co Coptp ( 2 Feo 4 ) (8)
In the above equations, €ro = Etof Ey and €. = Eco/ €y . It can be

readily predicted whether tension or compression yielding occurs first. TIf
p < (1- u)/2, tension yielding occurs first [2], Note that if the brick
material is idealized into one with zero tensile strength, y = 0.

4, NUMERICAL COLUMN INTEGRATION

Several numerical methods exist for determining the ultimate strength of
beam-columns., However, the column integration technique presented in Ref. 4

is used here. The advantages of this method are that it requires very little
computer storage and it enables solutions for many loading cases to be obtained
without iteration [3]. Such a solution is made possible by the fact that the
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numerical technique generates two quantities simultaneously, the moment M,
which satisfies equilibrium, and the slope of the bending moment diagram,
dM/dx, which satisfies compatibility. By substituting these values into the
basic equilibrium equations, the forces which are needed for maintaining
equilibrium are obtained. Deformations are also computed directly from these
quantities.

The main equations used in the column integration technique are [4]
(a) elastic regime

dm 2 Yy
> - K(T-m -Qm )

(b) compression or tension yield zone

dm 2c2 ?;

— = K (s - =l Qm) (10)

dx
(c) combined yield zone
\ \
& KR+ 4P - qm 2 (1)

20—l

in which R, S, T = constants of integration; Q = ZqK_ M
K = (P/EIC)¥1 , and q = uniformly distributed load. y

The integration of moments along a column is started at a point where the
boundary condition is known and ends when the length of the member is reached.
As an example, consider column AB in its equilibrium deflected shape, Fig. 1
(a). Taking the origin at the end A, integration can start at A by specifying
a shape dM/dx (see Appendix.) Checking whether My is in the elastic zone, or
in the yielded zones, either T, S, or R, is calculated from Eqs. 9, 10, and
11. The moment Mj at a point Ax below A is then obtained as Mj = My + (Ax)
dM/dx. The moment Mj is substituted in the appropriate equation, Eqs. 9, 10,
or 11, to compute a new dM/dx and the entire process is repeated until the
end B is reached where Mg and (dM/dx)p are now known. For equilibrium to be
satisfied the moment at B must be the computed moment Mp. Compatibility is
satisfied in the following way. At point B, the slope dy/dx = 0. Since,

M_ =Py +Qx+M (12)
dM_ ay

x - P e L3
dM

(x . = Q (14)

Hence the shear force Q is equal to the slope dM/dx at B. Further, since
Q is known and Mg = Qh + P A , the deflection A can be readily calculated.
By specifying different values of dM/dx at A in order to start the column
integration, different values of Q and A are calculated. The maximum shear
capacity of the column is determined from a plot of Q vs. A , such as Fig. 5.

For columns CD and EF, integration would be started at the column center.
References 3 and 4 provide a detailed description of the entire column inte-
gration process and the ways in which the required end forces and rotations



8 IABSE PROCEEDINGS P-25/79 A

5 10 15 20 MM
SHEAR
Q p =.0.5 P* E;: I_l_
POUNDS q_.} e A N
80 L
1 300
60 £.58,
. £.=2&y | 0
40 r E=3x 106 PSI
M=0
| A
20 - cy = 5000 ps1 4100
h/r = 45
1 ) 1 _!_ 0
0 0.2 0.4 0.6 0.8

DEFLECTION A  1NCHES

FIG.S

are obtained by satisfying equilibrium and compatibility.

5. ILLUSTRATIVE EXAMPLE -- ULTIMATE STRENGTH

In order to check the accuracy of the computer program which makes use of the
column integration technique described above, the parameter u was set to 1.0
to represent steel which has identical strengths in tension and compression.
A steel beam-column with a rectangular cross section was then analyzed and
the results compared with data available in the literature [4]. A close
agreement was obtained.

As a first illustration of the applicability of the computer program to masonry
walls, the beam-column AB in Fig. 1(a) is analyzed. For a given column with
one free end, it is required to determine the maximum shear force Q that can
be carried. The cross section of the column is rectangular with dimensions

4 in., x 1 in. (100 mm x 25 mm.) Bending is about the major axis (parallel to
the shorter dimension.) The column slenderness ratign h/r = 45, Ghy = 5 ksi
(22.3 kN), and P = 0.5 Py . Using the dm/dx relationships, Egs. 9 to 11,
integration is started at the free end by specifying an initial slope dm/dx.
Integration is carried out until the full column length is reached. No con-
sideration is given to strain limits during the integration process. Several
values of Q and A are obtained by specifying as many initial slopes dm/dx.
The results are plotted in Fig. 5. After detecting that the maximum value

of Q has passed, the computer program calculates the bending moments and de-
flections, A, corresponding to the cracking or crushing strains. For the
example chosen, it was assumed that no cracking occurs by using a large

value of . (= 20 Ey) and a zero value for U
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The results for a brick having no compressive yield plateau ( €.o = ey) and
for one having a short compressive yield plateau ( €. = 2 €y) are given

in Fig. 5. The following information is conveyed. The maximum value of the
shear force Q is 65 1b (290 N) if no crushing failure occurs such as when

€co = 2€y . If the material has no yield plateau, €co = €y, the maximum
shear that can be carried is 54 1b (240 N) which is lower than the insta-
bility load based on no strain limits. Note that at the maximum load of 65 1b
(290 N), the bending deflection is 0.53 in. (14 mm.) Using elastic theory,
the shear deformation corresponding to the same shear is about 0.0006 in.

when Poisson's Ratio is taken as zero.

The results for a beam-column pinned at one end and acted upon by a moment at
the upper end are shown in Fig. 6(a). Again, strain limits are ignored in

P=05P,
1.0r
h=45r r‘” o 4
E=3x105 pst 0-2 =0.2
0.8 F U;y = 5000 ps1 . /l. .
' to" 0-"Ev COMBINED YIELD
0.6+ M COMPRESSION YIELD'
My { 1
0!4 r-
(o)
ELASTIC
0.2r
0 . * T = ROTATION
0.01 0.02 0.03
f\er. 6

the generation of the moment-rotation curves. These curves illustrate the
effect of tensile strengths upon the ultimate strengths. The curve corres-
ponding to U = 0 is for a brick material with no tensile strength. It is
seen that the effect of tensile strengths is more marked when p is small and
that this effect decreases with increasing p. An identical observation was
made by Chen. [2]

Shown in Fig. 6(b) is the same curve corresponding to u = 0.2 in Fig. 6(a).
The various stages in the behavior of the beam-column are depicted. Compres-

sion yielding starts at a moment M = 0.5 and failure is in the combined
yield zone. Note that if the brick material does not have a compressive yield
plateau, €., = €cy , and failure occurs at M = 0.5 My . If the brick material

has a short temsile yield plateau, €to = 0.4 €y , and a somewhat longer com-
pressive yield plateau, €., = 2 €y , failure occurs in the combined yield

zone at M = 0.77 My . Thus, the u{timate strength is dependent upon the strain
limits in compression and tension.
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6. ANALYTICAL COLUMN INTEGRATION

For the preliminary design, it is usual to assume that crushing of the brick
does not take place at working loads. Under these circumstances, the masonry
wall can behave in one of the three modes depicted in Fig. 7, depending upon

P P P

H(Yl_\ no( ' ( i

”‘Q N

P P P
(A) ELASTIC (B) CRACKING (c) CRUSHING

FIG.T

the axial stresses and height of the wall. Case (a) represents the elastic
solution in which all the column cross sections are under compression and
crushing of the material does not occur., In case (b), cracking occurs first
in the tension fibers, but crushing is not permitted in the compression fibers.
In case (c), crushing is just about to take place in the extreme fibers with
all sections under compression.

The solution to case (a), Fig. 7, is straight-forward and need not be derived
here. Cases (b) and (c) are two limiting conditions which are of interest to
designers. The solutions to cases (b) and (c) have been given in detail in
Ref. 7. Consequently, only the results are presented below.

As seen above, the moment-curvature relationship applicable to a cracked sec-
tion is different from that applicable to an uncracked section. Therefore,
for case (b) in Fig. 7, different equations will govern the behavior of the
cracked and uncracked portions of the masonry walls. However, compatibility
and equilibrium will still be preserved at the junction of the two portioms.
For the uncracked portion, the solution is

m = A sin(Kx) + B cos(Kx) (15)

For the cracked segment,

I—(-—% (D - x) = cosh_l V¥ o+ \ﬁ;\’f—l (16)
2c
¥- 50w an

2c2
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where A, B, D, and S are constants of integration which are calculated by sub-
stituting the appropriate boundary conditions. In particular, if a column of
length L (with p= 0) is loaded axially by force p‘:%- and by equal end-mom-
ents m_ , Egs. (15) and (16) may be solved to give

\

mo=Pp cos(KLl)l— [2p - 4p2]h'sin(KLl) (18)

KL, = KD - (2p) cosh 2 (1) (19)
where

a -1 /1 1 /1

KD = (2p) [cosh Ty + V2 " 1] (20)
and

L = Z(Ll + L2) (21)

In a similar manner, the solution to case (c) of Fig. 7 has been obtained as

(7]

- KL
m, = (1L - p) cos (2 ) (22)
To simplify design procedures, Eqs. 15, 16, and 22 have been plotted in the
form of charts, Fig. 8, 9, and 10. The application of these charts to loading
cases in which the end-moments are unequal has been explained in Ref, 7.

-
P . p=0.5
; P
0-5 B D( p= -
M — Ps
MAXIMUM 7 "
END- M= ﬁY 0.6
moMeNT  O+H [ -
Mo 0.7
0.3 ( _L
M
4
P 0.8
0.2F
0.9
0.1F
1 1 !
0 0.2 0.4 0.6

! 0.8 1.0
7 [P

K)s= (9/5 )
cos ( - ) =cos (7 P

FIG. 8: MAXIMUM END-MOMENT TO JUST CAUSE CRUSHING
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6. COMMENTS

In the ultimate strength analysis, it is assumed that the criteria for failure
are known. If no strain limits are imposed on the beam-column (no cracking

or crushing occurs,) the ultimate strength is represented by the peak in its
load-deformation response curve. This situation corresponds to the case when
the compressive and tensile yield plateaus of the stress-strain curve are
infinitely long. The other criterion used is that failure occurs when either
the cracking or crushing strain is reached. 1In this case the compressive

and tensile yield plateaus are of finite lengths. The mode of failure de-
pends upon the relative lengths of these plateaus.

These two failure criteria have been used in the examples illustrating the
application of the computer program, not only because they are reasonable,
but also because a more accurate failure criterion is not available at this
stage. As the behavior of walls made of bricks and mortar is further ex-
plored under all possible load combinations, suitable failure criteria will
be developed and these can then be directly incorporated in the computer
program,

To check the applicability of the ultimate strength design method presented,
two brick walls were fabricated and tested to failure. The results, which
are reported in Ref, 6, are in good agreement with the theory.

7. SUMMARY

The behavior of an unreinforced load-bearing masonry wall made of bricks
can be represented by that of a beam-column with the same axial load, end-
moments, shears, and boundary conditions. Computer programs have been pre-
pared for analyzing these masonry beam-columns, taking into account the
tensile strength and finite length of the stress-strain yield plateaus. 1In
the solution process, the complete load-deformation behavior is first pre-
dicted, assuming no restriction on the strain limits. Appropriate failure
criteria may then be applied to determine the true maximum strengths. In
the examples provided, the failure criterion used is the attainment of the
maximum compressive or tensile strain at the extreme fibers. Comparison
with two test results have shown good agreement with theory.

In addition, as an aid to design, analytical expressions have been derived
which give the maximum bending moments that can be applied to the wall to
avoid crushing of the material. To simplify the design further, these ex-
pressions have been translated into charts.
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APPENDIX: SELECTION OF INITIAL dM/dx

When applying the column integration technique described above, it is neces-
sary to choose an initial slope dM/dx to start the numerical integration
process. In cases where symmetry exists such as in column EF of Fig. 1(b),
the slope dM/dx can be readily selected since it is known at the colummn's
mid-height [dM/dx = 0]. Where dM/dx is theoretically zero, a small initial
slope (usually 10-6) must be specified for the generation of the moment curve
to proceed.

In non-symmetrical cases such as in column AB of Fig. 1(a), the initial dM/dx
at A can be chosen with care by calculating the elastic response of the
column, as follows. In the usual notation, the moment M at point x in the
column is given by

M

Py + Qx + M_ (23)

M

I

A sinpx + B cosux (24)

2
where A and B are constants of integration, and 4 = P/EI_. By satisfying
the boundary conditions at A and B, it can be shown that Ehe slope (dM/dx)
at point A [x = 0] is <

aM (MB i.MbcosuL)

(E;) =
o

sinuL (25)

where Mg is the moment at B. Noting that Mp<Mpc , (dM/dx), < u(ﬁpc + M,

cos L)/ sin L. Hence an initial slope of (dM/dx)y = 1.1 (Mpc + M cos L)/sin L
can be slected, and subsequently increased by 5% until the complete load-defor-
mation curve is obtained.
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NOMENCLATURE
b,c,f,mpc = constants defining m - § - p curves
E modulus of elasticity
Ic elastic column moment of inertia
K /?7EIC
M bending moment
My first yield moment in compression assuming no tension yield
m M/M
h 4
m, ,m, moments defining boundaries of yielded regions
P axial load
Py axial yield load
P/P
¢ ¥
Q lateral load

R35:T, constants of integration
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