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The Collapse Behaviour of Plate Girders
Subjected to Shear and Bending

Comportement a la ruine d'une poutre métallique a double te
soumise a des efforts tranchants et de flexion

Bruchverhalten von Blechtragern
unter dem Einfluss von Querkraften und Biegemomenten

H. R. EVANS D. M. PORTER K. C. ROCKEY

Senior Lecturer Senior Lecturer Professor and Head
Department of Civil and Structural Engineering,
University College, Cardiff, GB

SUMMARY

The paper presents a method for calculating the collapse load of a plate girder loaded in
shear and bending and also presents details of a quick and accurate design method which
is capable of predicting the failure loads of plate girders when loaded in shear, bending
or by shear and bending.

RESUME

L'article présente une méthode de calcul de la charge de rupture d’'une poutre métallique
a double té sous l'effet d'efforts tranchants et de flexion. Il présente aussi les détails d'une
meéthode de dimensionnement rapide et précise.

ZUSAMMENFASSUNG

Eine Methode flir die Berechnung der Bruchlast von Blechtragern unter dem Einfluss von
Querkraften und Biegemomenten sowie ein rasches und genaues Bemessungsverfahren
werden vorgestellt.
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1is INTRODUCTION 3

In recent papers, the authors([1,2,3] Lhe,

P YR e
have presented a new method for predicting <<:> £
the ultimate load capacity of webplates AN i

loaded in shear. Since this method B B ~\<4?°
provides identical upper and lower

bound solutions, it can be considered to :

provide an exact solution for the i Tensd

idealised girder considered. It has been N7h A bjAdditionl membrane
established[2] that the method is capable |- a7 [ P S
of accurately predicting the failure load . | B e ~1| stoge.

of test girders whose webplates are 252 GlElam ’/‘(q_z,

loaded in shear. Although allowance was e, //Tgf’/A d

made in the solution for the axial et et
forces in the flanges produced by the Qi
action of the membrane field, the
solution did not deal with the case where
a significant bending moment acts with
the shear force. This paper presents a method to determine the collapse load of
plate girders subjected to combined shear and bending. The paper first considers
the collapse behaviour of plate girders subjected to either shear or bending

and then develops a method which is able to deal with the combined loading case.
Finally the authors present a design method which is both quick and easy to use
and is capable of accurately predicting the failure load of symmetrical and
unsymmetrical girders reinforced by both transverse and longitudinal stiffeners.

FIG. 1 - Stresses in a panel
subjected to shear

2. WEBS LOADED IN SHEAR

An unbuckled shear web will develop equal tensile and compressive stresses
inclined at 45° and 135° to the flanges, see Fig. 1(a). However, as shown by
Wagner, when a webplate buckles, it is unable to carry any additional compressive
loading and therefore has to develop a new load carrying mechanism in which the
additional shear load is carried by an inclined tensile membrane field as shown
in Fig. 1(b). Wagner determined expressions for the magnitude and inclination
of this membrane field for the specific case where the webplate is very thin
and the flanges are capable of carrying the lateral loading imposed by the
membrane field without distorting enough to significantly influence the
distribution of the membrane field. Although many studies were made to develop
design methods[S,QJ for the type of structures encountered in aeronautical
engineering, these solutions were not suitable for the type of girders used in
Civil Engineering, since these have flanges which will distort significantly
and thereby influence the extent and nature of the membrane field which develops
in the webplate.

The first ultimate load method which was capable of predicting the failure load
of conventional plate girders was that proposed by Basler et al[4,5] in 1960.
Basler assumed that the flanges of most plate girders were so flexible that they
could not withstand the lateral loading imposed by an inclined tension field and
established that in such cases the girder fails when the web panel develops an
off-diagonal yield band BFEC, see Fig. 2, due to the presence of a tensile stress
th which, acting together with those stresses occurring in the web at the
instant of buckling, causes the web to 'yield' throughout its thickness. In
addition, he assumed that the stresses in the adjacent triangular wedges ABC

and EFD remained equal to those corresponding to the critical shear stresses

e
Cr
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Stress in triangles ABF
CDE remaining atTcr.
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Critical stress + Membrane stress field = Collapse mode,

FIG. 2 - Ultimate load mechanism developed by Basler et al[4,5]

Clearly the assumption made by Basler that the flanges cannot withstand any
lateral loading was very conservative. In 1968, Rockey and Skaloud[10,11]
showed that for plate girders having proportions similar to those employed in
Civil Engineering, the ultimate load capacity of plate girders was greatly
influenced by the flexural rigidity of the flanges. They established that the
collapse mode of plate girders involved the development of plastic hinges in the
tension and compression flanges as shown in Fig. 3. Figures 4 and 5 show two
experimental girders after they had been loaded to failure and it is clear that
there is a close similarity between their mode of failure and that shown in

Fig. 3. Since extensive strain gauge measurements indicated that the edge of
the yield band intercepted the flanges very close to the position at which the
plastic hinges formed, Rockey and Skaloud assumed that the width of the yield
band was as indicated in Fig. 3, and that the membrane stress field was inclined
in the direction of the panel diagonal.

In 1969, Fujii[12,13] presented a solution in which he considered the flanges

to fail by the development of plastic hinges at their mid-panel positions
together with hinges over the vertical stiffeners under the action of a uniformly
distributed tension field.

Also in 1969, Chern and Ostapenko|[l4] presented a new version of the Basler
collapse mechanism which allowed for a variatién of the membrane stress across
the webplate as shown in Fig. 6 and for the magnitude of cty to vary with the
inclination of the yield band. They used an optimisation process to find the
value of © which gives the maximum value of V;;1+. In addition, Chern and
Ostapenko stated that the flanges would contribute to the strength of the girder
in assuming the development of a picture frame type of mechanism in which hinges
form in the flanges over the transverse stiffeners.

In 1971, a solution by Komatsu[l5] correctly postulated that girders would fail
in the manner shown in Fig. 3 and recognised that the inclination of the tension
membrane field would vary with the flange and panel properties. Unfortunately,
however, this solution violates compatibility considerations in certain cases.
In addition, when differentiating an expression to obtain that value of
inclination O, which will maximise the ultimate load carrying capacity of the
girder, it was incorrectly assumed that the position of the hinges was
independent of the extent and inclination of the tension field.

The above theories were all discussed in detail at an International Colloquium
[16] held in London in 1971. At this meeting, Ostapenko and Chern[17] and
Rockey [18] presented papers in which their earlier solutions were extended to
deal with the combined loading case of shear and bending, and also to provide
solutions for the case of webplates reinforced by longitudinal stiffeners.
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In 1973, Calladine[19] published an L boc ——
excellent paper in which he considered ; _

two specific cases. The first case R e
was of a webplate with negligible el zone
buckling resistance, which allowed "o Tt

him to assume that the action of the

Fully yielded

Loading imposed on
flanges and

web could be represented by a series stiffeners by il el JjWedgenif
of parallel tendons. He established reamcmte““m ESEET A carmy crleal
that the girders would fail when the e anly.
shear panels developed a mechanism of Rlasile Mnge

la) Collapse mechanism proposed by Rockey and Skaloud(10,11).

the form shown in Fig. 3(c), and that
both the position of the hinges and
the inclination of the membrane field Plastic hinge!
varied with the rigidity of the flanges. l ]
The close similarity between the

collapse model proposed by Calladine
and the experimental evidence of
Figs. 4 and 5 is very evident. A
Unfortunately, Calladine did not [b]Vierendeel [frame] mechanism.
extend his solution to deal with
practical girders where the web has a
significant load carrying capacity
before it buckles. The second case
which Calladine considered was that of
a very thick web which yields before
it buckles and he showed that, in

this case, failure would occur by the teiel
web yielding with the development of X, - Xz

plastic hinges in the flanges at the {c)Combined mechanism.
corners of the web panel. It will be
shown later that these solutions are
two particular cases of the authors'
present general solution.

FIG. 3 - Mechanisms involved in collapse
of shear panel.

In 1974, the present authors[1,2,3] presented their new collapse mechanism in
which a collapse mode similar to that shown in Figs. 3(c) and 7 was considered.
It was postulated that in the case of pure shear, failure would occur when the
web yields as a result of the combined effect of the inclined membrane field
and the buckling stress of the webplate together with the development of plastic
hinges in the flanges, as shown in Fig. 7(a). When determining the buckling
stress of the webplate it was assumed that the webplate was simply supported

FIG. 4 - View of a failed girder showing failure sway mechanism
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FIG. 5 - Illustration of failure mechanism developed in

longitudinally stiffened girders.

n. .
- - ’/(’
B e S
— T
/’/t’ //
2
-— #
Buckling Action + Web Acllon + Frame Actlion

FIG. 6 - Collapse model for a girder panel loaded in shear
due to Chern and Ostapenko[14].

along its boundaries. The inclination of the post buckling membrane stress
field was taken as a variable in the solution and an optimising process carried
out to determine the inclination the maximum load occurs. Since this solution
provides the basis of the solutions provided in Section 4, it will be presented
in detail.

It was considered that the loading history of a girder could be divided into

three phases viz. the two phases shown in Figs. 1(a) and 1(b) and the final
collapse stage shown in Fig. 7.

2.1  Stage 1 unbuckled behaviour

With a perfectly flat plate there is a uniform shear stress throughout the panel
prior to buckling. There will thus be a principal tensile stress of magnitude

T acting at 45° to the flange and a principal compressive stress of the same
magnitude acting at 135°, see Fig. 1(a).

This stress system exists until the shear stress T equals the critical shear

stress (t.p). The value of 7. for a simply supported rectangular plate can be
calculateﬁ using equations (1) and (2)

B ZE t 2
Ter = K [12?1-1;23:1 ('&) ()

2 2
K = 5.35 + 4 (%) valid 2> 1.0 K = 5.35 (%) v d valdd 2 ¢ 1.6 ©

where

d d
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2.2 Stage 2 post buckled behaviour Ce
X

Once the critical shear stress (tcy) 1S
reached the panel cannot sustain any
increase in compressive stress and it
buckles. This causes a change in the
load carrying system : any additional )
load has to be supported by a tension ’T//’
membrane field in which the stress has =" _{°
a value of ot, see Fig. 7(a). Under
the action of this membrane stress
field, the flanges bend inwards and
the extent and inclination of the
tension membrane stress field which
develops is greatly influenced by the
rigidity of the flanges.

m
Vour = Vour=Veq

Plastic’
m
; X hinge

2.3 Stage 3 determination of the
ultimate shear load V¢

case where

On further loading the tensile Ctrccmc

membrane stress, o, plus the buckling
stress, Tcp, produces yielding in the —
web. The membrane stress which I

—_fc‘b

m

produces yielding is defined as o.Y. : 5] Your <Vour-Vea
Failure occurs when plastic hinges have
developed in the flanges and the web FIG. 7 - Collapse mode for pure shear

has yielded over the zone WXYZ, see

Fig. 7. Since there is a uniform shear stress within the webplate, the membrane
stress, cty, which causes the web to yield is of constant value throughout the
yield zone WXYZ. It is a minimum requirement that the region WXYZ must yield
before a mechanism can develop. It should be appreciated however that yielding
of the webplate is not confined to the zone WXYZ.

The failure load is determined by a consideration of the mechanism developed in
Stage 3, see Figs. 3(c) and 7(b). It is convenient to consider the webplate
within the region WXYZ to be removed and its action upon the flanges and the
adjacent web material replaced by the inclined membrane stresses as shown in
Fig. 7(a). Consider a virtual rotation @ to occur at the flanges to produce the
sway mechanism shown in Fig. 7(b). Clearly, the stresses acting on the section
ZW do no work and, therefore, only those stresses acting on the inclined right
hand web section YX and on the flanges (WX and ZY) will do work. Note, however,
that, in the particular case under consideration of a web in shear, if the
tension and compression flanges are identical, cc will be equal to ct and the
work done by the stresses acting on the tension flanges is equal and opposite

to that done by the stresses acting on the compression flange. If the flanges
have different flexural properties, ct would not be equal to c.. This is easily
allowed for in the authors' general solution; however, for simplicity at this
stage, the case of equal flanges has been considered.

The expression for the virtual work done due to a virtual vertical displacement
c¢ is given by equation (3) where Vl}j; is the post buckling shear load which
causes the mechanism to develop.

Vi, (cf) = M, + o) t (P) Sin 0 () (3)

where YP is as defined in Fig. 7(a).
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4
Vﬂlt = ~g?£ + th ct Sin%e e B
y b 2 Yuit N ,//f; i
; T -
+ O',t dt (COT, 0 - a‘) Sin~@ &iltt;:sm,‘::(}e%: - e VS}t d
AB due to sway) p\- - - * * = =
The total shear load is equal to the load pL 3T noress |
let carried by the membrane field and the el ey N
ffanges together with the shear load which b
causes buckling.
; FIG. 8 - Yield band when ¢ = O
« Vige = VIl * T dt (true Basler solution).
‘ aM £ g 5 2
« Vg = —7?— *ct o Sin"e + UtY td (Cotd - Cotdy) Sin"® + t_. dt 4)

where M £ is the plastic moment of the flange
is the inclination of the panel diagonal
0 is the inclination of the tension membrane stress field (oty).

The value of oty is obtained in equation (5) by applying the Von Mises Hencky
yield criterion to the two stress fields which are acting in the webplate i.e.
the shear buckling stress and the membrane stress.

o3 : /2 2[9.. 2 -
o) = - > Top SINZ0 + Oy ¥ (ter) [%Sln 20 - JJ (5)
Since the internal plastic hinge will occur at the point of maximum bending
moment where the shear in the flange is zero, it is easy to obtain the position
of the internal hinge W by considering the equilibrium of the beam section

W - X and taking moments about position X.

¥ ino S =
c(ot t) Sin"0 5 2Mpf
5 = Mpf subject toc } b (6)
: Sin 0 % J
¢Ott

Equation (6) holds for all values of c and for all positive values of th
including the zero value which occurs when the web yields before it buckles.
Equation (4) is also valid for all real values of c, i.e. O < ¢ < b. Consider
the case where the flanges have no flexural rigidity and, therefore, the yield
band is restricted as shown in Fig. 8. Considering the work done by a sway
displacement A as shown in Fig. 8 and assuming that the membrane field remains
constant within the area ABCD, then the external work, equal to Vﬂlt (A) must
equal the internal work done by the stretching, under constant stress, of strips
of the webplate such as AB.

= - y 1

vﬁlt XA =(d-Db Tan 0) Cos 0 o t (A Sin 0) n
= y - 3 2

Vﬁlt dt o, (Cot © - Cot @d) Sin® ©

This is equal to the value given by equation (3) when Mpf and, therefore, c = 0.

Considering the general case where the flanges can support a membrane stress
field, the expression for Vult given in equation (8) is obtained :
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- ¥ 2
Vult T dt + o dt Sin

© (Cot @ - Cot @d) + 2 ct cty Sin2 0 (8)

It will be noted that Vi3t consists of 3 terms, the shear buckling load, the
shear load due to the membrane field anchored on to the vertical stiffeners and
the shear load due to the membrane field supported by the flanges, see Fig. 9(a).
When M ¢ is zero, then it will be found that the first two terms provide the
true Basler solution. For a given girder, the only variable on the right hand
side of equation (8) is 0. The only remaining step is now to find that value

of 0, (6y) which will provide the maximum value of Vy This can be achieved
very quickly using a simple desk calculator, espec1ally if one recognises that
Op must lie within the region 64/2 < @y < 450

Relationships between the non~dimensiona1 parameters c/b, €., Tult/T , and the
non-dimensional flange-parameter M{ (defined in equation (225) for a glven
aspect ratio b/d and slenderness ratio d/t, using equation (8), arg plotted in
Figs. 10 and 11. It will be noted that © reaches the values of 45° when

c/b =

It was established in References[1,2,3] that the Cardiff Solution includes as
special cases many of the earlier solutions including the true Basler solution
when the flanges have zero flexural rigidity, Calladine's solution for an
infinitely thin web and a very thick web, also Wagner's solution and Ostapenko's
solution when the flanges are rigid.

The mechanism solution provides an upper bound to the true solution. However,
it is also possible to establish an identical equilibrium solution.

The vertical component of the tensile membrane field which acts across section
WF in Fig. 9(e) must equal the external shear (Vult - Vcr).

FS Sin ©

Ve ™ Ver

Vﬁlt

I

1 = y 3
PS Sin @ + VCr O, t (YP) Sin 0 + VCr

where YP 1is as shown in Fig. 7(a).

: _ Y o: 2 ~ y.'Z
: Vﬁlt Vcr + dt o, Sin” 0 (Cot © - Cot Od) + 2 ct 0, Sin” 6

This solution is identical to equation (8) which was obtained from the
mechanism solution.

It is also possible to obtain a set of forces which will maintain equilibrium
in the wedges AWC and YDE, see Fig. 9(a), without violating yield criterion.
Consider the yield band to coincide with the internal hinge positions W and Y,
then as seen from Fig. 9(b), the flange moment will remain constant at

between A and W. If the yield band extends beyond W and Y, then the moment
acting between A and W will be reduced as shown in Fig. 9(c). Figure 9(d) shows
the distance by which the yield band can extend beyond W and Y before the Mpf
criterion is violated. The ratio a/c, where a is the width of the tension

field acting on the flange, increases with the c¢/b ratio, as would be expected.

Since the same solution has been obtained using upper and lower bound methods
it must be the exact solution for the postulated mode of failure.

Full discussions of the pure shear solution is available in References[l,z,i]
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which include its application
to the behaviour of webs
reinforced by longitudinal
stiffeners as well as
transverse stiffeners.

3. WEBS LOADED IN PURE
BENDING

The stress distribution down
the depth of a webplate
prior to the web buckling is
linear, but when the web-
plate buckles, part of the
web in compression loses its
capacity to withstand
additional compressive
stresses and, as a result,
some of the bending moment
which should be carried by
the compressive area of the
webplate is transferred to
the flanges. This has a
two-fold effect, there is a
shift of the neutral axis
away from the compression
flange with an accompanying
increase in the longitudinal
strains developed in the
compression flange. Figure
12 shows the strains which
are developed in a
longitudinally reinforced
webplate when it was loaded
in pure bending [27].

Failure occurs when the
compression flange either
buckles inwards as shown in
Fig. 13, or laterally. In
the present study, it will
be assumed that the flanges
are adequately restrained ¢

against lateral buckling. u“'F,_,

There is evidence[2Z] to
show that the half wave-
length of the inward
buckle of the compression
flange is related to the
half wavelength of the
compression buckle

formed in the webplate.
The inward buckling of
the compression flange
will occur where the
bending stress is greatest
and will also be in phase
with the lateral loading
imposed by the membrane

A
Port of membrone
|/ fieid supported
by stiffeners

Contndution
due to flonge ¢
AX —

.y AZ ene XDl
Denctes plastic |
hinge « Y Contribut on
E cue o fienge
0
%h'a

- P
Free body /) W X M Y00 01 0200 0¢ 08
diogrem for JtiC Sl @ “%

to AT

flange AWX ML Fig9(d Variction of the rotic S

~
:cncmq moment— - MarMee L withSh ratic where o
iagrem. is length of loc¢ to
Fig-9(b) couse yeld ct A,
[}
Effect of

yleld bend
extendin

A O{lSu:Eiu-ci 0{6&"’9 !}
beyond -é’vdﬂﬂ - |
Corresponding

]
BN Gogrom. gt

Fig.5lel

FIG. 9 - Stress conditions in a shear web due to
the membrane field.

o8t
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o4

o2

i " " i " i
e e o2 Q3 o4 o5 O o1 08 o9

FIG. 10 - Relationship between tylt/Tyw, ©m, ¢/b
and M for panel of aspect ratio 1 and
d/t ratio 200:1. Vertical stiffeners
assumed to remain straight.
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field developed in the buckled
webplate. It is important that
the longitudinal stiffeners
shall have sufficient flexural
rigidity to ensure that they
remain straight up to the
collapse load of the girder and
this has been demonstrated by
Massonnet [22,23] and by Owen,
Rockey and Skaloud[24] who

have recommended the minimum
flexural values for longitudinal
stiffeners.

In 1960, Basler and Thurlimann
[25] reported on a series of
tests carried out on welded
steel girders. They concluded
that, provided lateral buckling
of the compression flange was
prevented, the ultimate load-
carrying capacity of a
transversely stiffened plate
girder could be predicted by
the use of equation (9)

Mﬁ A d E

—= = 1-0.0005 A—W 5.7 AresilT)
vt a

My £ vE

where M. is the moment to cause
the extreme fibres to yield.

This relationship has been
plotted in Fig. 14 from which

it will be noted that for values
of d/t less than 170:1, the
moment to cause collapse is
slightly greater than M,, but
that for more slender webplates
M, falls below M,,. Basler and
Thurlimann modifled equation (9)
to allow for the effect of local
or lateral buckling by introducing
the critical bending moment

M., as shown in equation (10).

Basler and Thurlimann
originally recommended that
when MU/MX exceeded 1.0, the
ultimate load for the girder be

500

_Lo’

r30°
o
m

81-20°

+10°

FIG. 11 - Relationship between Ty]t/Tyw,

Om, ¢/b and M§ for panel with an
aspect ratio of 2 and d/t ratio
of 200:1.

R Ajiiggvilx L compres sian tlance

W top stitfener

\\ L—buttom stif fener

-1L00 4200 -1000- 800 -800 -400 200 N\\¢ 200 <00 600 8 ime 1200

Microstrain,

o} 107\ 207\ 30! 55

v tension flange
=

FIG. 12 - Mid plate strains developed in

girder TG5-2 when subjected to a
bending moment [24] .

o i e AR - L, PN e T i B
1 & - SeTE 23 g R - e

FIG. 13 - Illustration of failure due to
inward collapse of compression
flange [24] .
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The ultimate

assumed to be equal to M,. In a subsequent calin) pemeal
paper Cooper[26] confirmed that equation esikiea, mllo.
(10) provides a good prediction of the of fange. o3
observed bending strength of full size ) t~——___ 0

plate girders, but considered that Murv 8
should be allowed to increase beyond

when the d/t ratio is less than 170:1, Jdendernass  L/at which buckiing
subject to the limit that M > M _, where Sobin (bartial sage
Mg is the full plastic moment of full prage | SuReert assumad)
resistance of the whole girder. b4l

can be
attcined.

]y Highest Slenderness ratic

o
w
T

S

x
~

In 1971 Ostapenko, Chern and Parsanejad
[28] recommended it was reasonable and 53 w00 70 200
accurate to assume that M, = My unless d
local or lateral buckling of the flange
occurred.

300 360

FIG. 14 - Relationship between the
ratio M,/M, and the d/t
ratio as proposed by Basler
and Thurlimann[25]

(oy = 30000 psi).

In 1971 Maeda[29] reported tests which
demonstrated that the formula of Basler
and Thurlimann could be used to predict
the failure load of conventional plate
girders in bending.

Table 1 compares the ultimate bending stress as provided by equation (10) with
the experimental failure loads for a number of plate girders subjected to pure
bending. Very satisfactory degree of agreement is obtained, provided M, is
allowed to exceed My when the webplates are very thick.

4. WEBS SUBJECTED TO SHEAR AND BENDING

The failure mechanism under shear and bending is similar to that for girders
loaded in pure shear. Thus, failure occurs when plastic hinges have formed in
the flanges, which together with the formation of a yield zone WXYZ in the
webplate, form a plastic mechanism, as shown in Fig. 15. It will be noted that,
in the case of a girder loaded in shear and bending, c. is no longer equal to c.

Four important additional factors must be considered when the effects of bending
moment are taken into account.

- The reduction in the buckling stress of the webplate due to the presence
of the bending stresses.

- The influence of the bending stresses upon the magnitude of the membrane
stresses required to produce yield in the web.

- The influence of load shedding from the web to the flanges as a consequence
of buckling.

- The reduction in the plastic moment capacity of the flanges by the axial
stresses arising from the bending moment.

These factors will now be considered individually.

- The reduced buckling stress of the webplate due to the presence of the
bending stresses may be obtained from the following equation :

Omb Z Tm\ 2
g + T— =1 (11)
crb er
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where

Ocrb 1s the critical bending stress when the
plate is under the action of a pure bending
moment.

Ter 1S the critical shearing stress when the
plate is under the action of a pure shearing
force.

Oph and T are the critical bending and
shearing stresses respectively for the combined
bending and shear loading case.

omb 1S the extreme compressive bending stress

m
“ Vutt

SR
at the mid panel section. c. 4L L -
Making the conservative assumption that the web e
panel is simply supported along each of its ym, v,
four boundaries, the critical pure bending 5 %
stress is given by equation (12) 2
(oI 18 Bl 7/

2 2 . g2
E t (b)
g ' gEg Y~ () (12)
crb [;12(1_u2)i} d

FIG. 15 - Collapse
mechanism developed in a
panel loaded in shear
and bending.

The value of the membrane stress cty required to
produce yielding in the web may be obtained from
the Von Mises Hencky yield criterion. For a
webplate subjected to both a bending moment and
a shearing force, the value of oty at a particular point on the web 1s
given by the following equatiom :

y_ 1,.1 /2 _ .2 7 0
o, 2A+2/A 4E5m+3Tm O (13)

dhere A= 3 . Si08 + o Sin’e - 2 ¢. Cos e
m m m

Since the value of o, varies with the magnitude of the bending stress op,
the value of oY will vary over the area of the webplate and in the
establishment of equilibrium equations it is necessary to take into
account the variation of oty along the section, see F%g. 16, passing
through the hinge positions W and Y. The value of o4/ is calculated at
each of equally spaced stations, Fig. 16(a), across the depth of the
section using the appropriate value of op for each station. From the
membrane stress distribution along the face WY, see Fig. 16(c), the
position, direction and magnitude of the total resultant membrane force
FW may be obtained, see Fig. 16(b).

The magnitude of the web membrane stress ot/ will also vary along the
length of the junctions between the web and the flange plates. Experience
has shown that little loss of accuracy results and a substantial
simplification of the solution procedure is achieved if this variation is
neglected. Thus a constant value of o¢’ for the flange portion between
the hinges has been assumed, evaluated on the basis of the o’ value
calculated at the mid-point between the hinge positions. Thus, for the
compression flange, a constant value ofc, evaluated mid-way between hinges
W and X, has been adopted and for the tension flange a constant value of
Ol evaluated mid-way between hinges Z and Y.

Because of buckling in the compression region of the webplate, the capacity
of the web to carry the applied bending moment is reduced and it is a
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M
/i\ pc
™~ Free body diagram

of lengthWX of the
compression flange,

X

Fig.16a. STATIONS CONSIDERED
FOR EVALUATION OF Y
MEMBRANE STRESS FIELD: ul

w Fig.16b, FREE BODY DIAGRAM OF PORTION OF GIRDER TO THE
RIGHT OF CUTTING PLANE WY OF A PANEL LOADED
IN SHEAR AND BENDING.

¥
Fig.16c. DISTRIBUTION' OF MAGNITUDE OF
0y ACROSS FACE W-Y FOR A

TYPICAL GIRDER UNDER A
HIGH BENDING MOMENT.

simple matter to allow for this reduction in the moment capacity. Since
the variation in the value of oty is very small in the compression zone,
as shown in Fig. 16(c), the effect of load shedding can be safely
neglected.

- The reduced plastic moments of the compression and tension flanges due to
the presence of axial forces may be evaluated from the following

- 3 —
o
M’ & MpC 1 - (EE£> for the compression flange (14a)
and P — 2 =
— Ooe 2 -
M! £ = M t 1 - EE_ for the tension flange (14b)
P P yf

where o, ¢ is the flange yield stress and o.¢ and o, are the average
stresses in the compression and tension %fanges respectively.

The adoption of an average flange stress in the calculation of the reduced flange
plastic moment follows from the calculation of an average membrane traction force,
as discussed earlier, and leads to a simplified solution procedure. The
assumption is justified since, unless the value of oy is large, the variation in
Oty will be small and, moreover, when the bending stresses are large the distance
between hinges in the compression flange becomes small, so that the variation in
the bending stresses, and therefore o/, between the two hinges is small. With
respect to the tension flange, when the bending stresses are high the value of
the membrane stresses acting on the tension flange will be small and therefore
the use of an average value for o’ is again justified.

4.1 Free body diagrams and equilibrium equations

In order to establish the equilibrium equations, a section will be taken between
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hinges W and Y. A free body diagram of the portion of the girder to the right
of this cutting plane is shown in Fig. 16(b) and all the internal and external
forces are shown in the diagram.

Before the reduced flange plastic moments can be calculated from equations
14(a) and 14(b), the average stresses ocf and o¢f must be evaluated from a
consideration of the equilibrium of the individual flanges.

From the equilibrium of the free body diagram of the portion of the compression
flange between hinges W and X shown in Fig. 16(b)

L k
C. = == (15)
& Sin © Oy t
te

This equation defines the position of the hinge in the compression flange. It
should be noted that the equation is only valid for values of c. greater than
O and less than b. In the case of an infinitely weak flange, 1c 0, so
that the hinge forms at the end of the flange, i.e. c¢c = O, and the flange
equilibrium equation becomes irrelevant.

Also, the average axial stress in the compression flange may be obtained as :

PC - (c{c Sin @ Cos © + Tcrm) Ce t/2

Ocf = A (16)
ct
where Acf is the cross-sectional area of the compression flange.
Similar for the tension flange : 7
M
_ 2 pt
“t “Sino J ¢ a7}
and tt
) By # (O¥t Sin 6 Cos O + Tcrm) Cy t/2
O = (18)
tf Atf

4.2 Overall equilibrium equations

Considering the equilibrium of the portion of the glrder to the right of the
cutting plane under the action of the forces shown in Fig. 16(b), yields the
following equations :

= Resolving vertically Vult =F, Sin@+ V. (19)

- Resolving horizontally E_ - = F, Cos © - H (20)
- Moments about O

[: (b, = ¢y ] 1 1
(F_ + F) = % [ultSJr——— P - M +Fq-l%:| 2D

From these the following expressions are obtained for the flange forces :

' (&, =
_ ult| Cot © ¢ t 1 1 1
F. = _TT—'[j —g sy ikt 2 :J g [:Mpt * Mpc *Ea - Mw:]

VCI'
- —2*—‘ Cot O -

(22)

and
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Vv (c. -c.)
_ult| _Cot O G t 1] sl 1 _
F, = [ > d + ZL + —~——-2——-—-——] + d[Mpt + Mpc + qu Mw:!

Vcr Term
t (b - g = ct) (23)

+—2—C0t®+ >

4.3 Reduction in shear capacity due to yielding

In some cases, such when the applied bending moment is high and the webplate is
thick, it is possible that local yielding will occur before the webplate buckles.
No additional post-buckling membrane forces can be developed where yield occurs
and the oty values calculated from equation (13) become zero at these positions.
This is most likely to occur at hinge position Z where the imposed tensile
bending stresses are greatest. An increase in the applied bending moment leads
to a growth in the yield zone towards hinge Y. Once this yielding has started
to occur and the web membrane forces have become zero, the web no longer exerts
the type of traction on the tension flange that has been assumed in the failure
mechanism and failure may occur by some other mode. Therefore, in the proposed
method, the web is only allowed to carry that amount of bending moment that is
sufficient to produce yield, without the addition of membrane forces, at the
most susceptible position, i.e. at hinge Z. Any additional bending moment is
assumed to be shed from the webplate to the flanges.

4.4  Solution procedure

The equations established so far have contained terms involving 0, the
inclination of  the membrane field. The inclination at the failure load can be
found by assuming successive values of @ until the maximum load carrying
capacity of the girder (V,1¢) has been determined. Also, for each assumed
value of 0, a closed form solution of the equations (15) to (23), would be
extremely difficult. Consequently, an iterative technique has been adopted.
In the first cycle of this iteration method, it is assumed that the average
flange stresses are zero, and subsequent cycles are then carried out in which
more accurate values of the flange stresses are employed. The value of Vult
obtained in each cycle is compared to the value obtained from the previous
cycle and the process repeated until a satisfactory degree of convergence has
been achieved. The rate of convergence in all cases has been found to be
extremely rapid.

It is possible to carry out the above solution procedure by "hand'', particularly
if sufficient experience has been gained so that reasonably accurate values may
be chosen as starting points for the two iteration procedures. However, in
general, a computer-aided solution would be desirable and full details of a
computer programme suitable for a computer with a small storage is given in
Ref.EKﬂ. However, recourse to even this simple computer solution is not
necessary since, as a result of an extensive parametric study[31], the authors
have been able to develop a simple design procedure, details of which are given
in the following section.

5 DESIGN PROCEDURE

The authors' studies[32] have established that the shear/moment interaction
diagram will be of the form shown in Fig. 17. Point S on the interaction
diagram gives the shear capacity of the girder i.e. when the influence of any
applied bending moments are negligible. Point C corresponds to the situation
where the mode of failure of the girder changes from the shear mode to a
bending failure mode. Point D corresponds to the maximum bending capacity of
conventional plate girders which fail by inward collapse of the compression
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flange. Vs

In Section 2 it was shown that the shear
capacity of a plate girder is given by
equation (8). This equation can now be
recast into the following form using Vg to
denote the value of the ultimate load in pure
shear :

V T gy
—S=ﬂ+/35'mze((:ot@-9)i

\

— \

Vgﬂ Shear Y \

Yyw  Tyw d/ Oy ol \‘
(0] b4 Flange Criterion \

. t Controls \

+ 4/3 Sind  [— /@ (24) ’ i

yw Mg Mg |

M £ Mp—] RTP"J 0 !I-O
where ME = —7-11——— g MAdo ;? £
d't o i
yw

FIG. 17 - Construction of authors'

When tcr/tyw > 0.8 it is recommended that intefaction diagas

Tcr/'r¥w is” replaced by the reduced value of
yw

Tcre/ given by equation (25)
Tere & 1 :
=T =1 - 0.68 - — (25)
yw cr V3

T,
valid L < XY < 1.118
v3  Ter

In addition to the shear load Vg/V.,, given by equation (24), if the flanges of
the plate girder are deep, e.g. whén wine-glass or tubular flanges are used it
will be necessary to allow for the additional shear force Vg, carried by both

flanges, which is given by equation (26)

1 .
Vf = (%cr s Uty SanG) 2a t (26)

where a is the distance from the centre of area of the flange to the web/flange
junction.

The parametric study conducted by the authors has shown that for girders
representative of normal construction, the value of © which produces the maximum
value of the ratio V./V,, is very close to 2/3 @4, where 63 is the inclination
of the panel diagonal t0 the flange. The assumption of © = 2/3 6g will result
in the correct solution or in a slight underestimation of the collapse load.

Assuming that the inclination of the tension membrane field is given by 2/3 €4
it is possible to recast equation (24) into the following form :

V
-\-/-E—=A+B\/ME*'C%é (27)
yw
2 b th Ter
where A = VY3 Sin“o (Cot@—a)c_+_T_
yw yw
Y y
o T o]
B = 4/3 Sin® [—t- c=| =T 4+ 73 ginge[-t
g T 2 o
w yw yw
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Values of these coefficients have been calculated and are given in Tables 2 to
4, With the aid of these tables the calculation of VS/V'Yw is a simple process.

For practical plate girders, as will be demonstrated later, the use of the above
coefficients will provide a safe estimate of the true value of Vg. If, however,
very strong flanges are used then an improved solution could be obtained by the

direct use of equation (24), varying the value of O to obtain the maximum value

of Vs.

The parametric study has also established that the value of the load ratio
Vc/Vyw, corresponding to position C on the interaction diagram, is given by
equation (28)

V, T fo 404 36.8 M . b
7= *+|z— Sin—=°| 0.55 + — = |l2 - (P (28)
yoo v\ Oy Y
where M £ = plastic mo?ent of resistance of the flange
PL o i0yf bf tg” for a single flange plate.
MF = plastic moment of resistance of the flanges acting alone

oyfAg(d + tg) for single flange plates.

Equation (28) is subject to the limit that V./Vy, cammot be greater than Vs/Vyy.
If VC/Vyw from equation (28) is greater than Vs/Vyw: then V. is taken as equa
to Vs.

Equation (28) can be recast into the following form :

Voo T N 36.8 M_

<= =-SLip| 0.554 + ——— B (29)
\Y T M

YW YW F

Values of coefficient D are given in Table 5.

The authors' study has also_established that the interaction diagram S and C is
as follows. The shear at Sl = Vsb, where b is the length of the web panel. The
bending moment at Sl is subject To the control that its value must not exceed
0.5 Mg. A parabola with its origin at sl is fitted between S and C.

Point B corresponds to the situation where the flange fails by inward collapse.
The value at which this occurs is given by equation (9).

A study of interaction diagrams has shown that the curve CBE is quite flat and
therefore can be safely represented by a simple parabola. Hence the shear load
Vg at B acting with M, is given by equation (30)

Vv M -M
B-. /P _u (30)
Ve M

pw

where My, = plastic moment of resistance of web alone.

Thus points S, Sl, C, B and D can be calculated very quickly with the aid of
Tables 2 to 5 and the relevant equations.

The authors' design method can also be applied to webplates reinforced by both
longitudinal and transverse stiffeners (3,30). When calculating the values of
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Vg and V. for a girder with a longitudinally 9
reinforced webplate the value of 1., which is g
employed is the buckling stress of the weakest sub- =
panel. Using this buckling stress the overall fra
panel is then treated as if it were a transversely 30F
reinforced webplate. oc

20
6. RESULTS

151
The authors have applied this design process to a 10k
large number of test girders. Eighty-eight girders,
tested by various investigators have been St
considered and the result of this study has given a [, | _
mean value of the ratio of the predicted failure 215 <10 =50 S5 10 15
load to the experimental load V. of 0.997 ol Error

/V
with a standard deviation of'O.Bgﬁg %ﬁg distribution
of.the values of Vpred/vexp is presented in Fig. 18
which clearly demonstrates the ability of the
design method to predict the ultimate load capacity
of girders reinforced by both transverse and
longitudinal stiffeners accurately.

FIG. 18 - Distribution of
errors in prediction of
failure load for transversely
and longitudinally stiffened
girders under shear and

bending.
TABLE 1
GIRDERS SUBJECTED TO PURE BENDING
REF 4 31 |31 |31 31 (31 |22 |32 |32 {25 |22 |33 (33 |33 |33

GIRDER |G4T2|LBl |LB2 |LB3 |LB4 |LBS |TTGO|D 3 LB6 |TG41l|BLl |BL2 |BL3 |BL4
d/t 388 |444 |447 | 447 447 | 447 (751 (299 [300 {407 |751 |141 |188 |234 |281

M /M 0.97(1.00{1.01{1.00/0.98/0.98/0.99/1.00(0.98(1.04/1.04|1.01(0.93]0.92]0.89
u’ exp
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