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Finite Strip Analysis of Continuous Folded Plates

Analyse par bandes finies de toits plisses Continus

Endliehe Streifenelemente für die Berechnung von durchlaufenden Faltwerken

C. DELCOURT Y. K. CHEUNG

Ingenieur Physicien Professor, Ph. D., D. Sc, FICE, FIStructE.

Dep. of Civ. Eng., University of Adelaide Dep. of Civ. Eng., University of Hong Kong

Adelaide, Australia Hong Kong

SUMMARY
The finite strip method is generalized to study folded plates continuous over any number of

spans and submitted to uniformly distributed loads or line loads. The end supports are either

clamped, simply supported or free. The results obtained agree well with experimental and

theoretical values available in the literature and a comparison of computational efforts required
between finite element and finite strip methods demonstrates that the latter method has a

very definite advantage over the former.

r£sumE
La methode par bandes finies est generalisee pour permettre l'etude de toits plisses Continus,

d'un nombre quelconque de travees, soumis ä des charges uniformes ou lineaires. Les travees

extremes sont soit encastrees, soit simplement appuyees, soit libres. Les resultats concordent
bien avec les valeurs theoriques et experimentales donnees dans la litterature. La comparaison
des efforts livres par l'ordinateur dans les methodes des el§ments finis et des bandes finies

montre que cette derniere est nettement plus avantageuse que la precedente.

ZUSAMMENFASSUNG
Auf der Basis endlicher Streifenelemente wird eine Methode entwickelt für die Berechnung
durchlaufender Faltwerke beliebiger Felderzahl unter verteilten Lasten oder Linienlasten. Die

Enden des Faltwerks können eingespannt, frei drehbar gelagert oder frei sein. Die mit dieser

Methode berechneten Ergebnisse stimmen gut mit Versuchsergebnissen und theoretischen

Lösungen anderer Autoren überein. Vom Berechnungsaufwand her gesehen hat die

vorgelegte Methode gegenüber Methoden endlicher Elemente eindeutige Vorteile.
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Introduction

Traditionally, the analysis of folded plate structures are based
either on the "ordinary theory" or on the "elasticity theory" and most of
the literature has been concerned with the analysis of Single span
structures. [1] More recently attention has been focused on continuous
folded plates. Beaufait [2] used the ordinary theory and developed a
Computer Solution for folded plate with arbitrary end conditions, although
some of the assumptions appear to be questionable [3]. Pultar et al [4]
presented a Solution based on elasticity theory for continuous folded
plates with simply supported ends, in which a force method is applied
subsequently to the Standard analysis in order to determine the redundant
reactive forces at the intermediate supports.

The technique was also used by Scordelis et al [5] for the analysis
of box girder structures with internal rigid diaphragms. Continuous
folded plate structures were also analysed by Lee [6], using a finite
difference technique.

The most versatile tool of analysis is obviously the finite element
method. Rockey and Evans [7] were the first to study the betesriour of
folded plate structures by using a rectangular element [ 8], and Lo and
Scordelis [9] developed a finite segment method (which is a special type
of finite element method based on ordinary theory) in an attempt to reduce
the excessive number of degrees of freedom involved in a problem.

Recently, the finite strip method pioneered by Cheung [10] was
applied to rectangular [11], curved [12,13] and skew [14] folded plate
structures, all with simply supported ends. The object of the present
paper is to extend the finite strip method to the analysis of continuous
folded plate structures with arbitrary end conditions, but without
resorting to the Standard procedure of carrying out a subsequent flexibility
analysis.

Finite Strip Approach

It is now well known that a finite strip is a special finite element
for which the boundary conditions of the structure, in the longitudinal
direction, are CL pfüjOfü. included in the approximation of the displacement
field. In the present approach, such boundary conditions may include
simply supported, clamped, or free edge conditions. However, as far as
the loading is concerned the study is restricted to distributed loads or
longitudinal line loads which are the dominant types of loadings for
folded plate structures.

Stiffness matrix and force vector

The procedure of formulating the stiffness matrix and the force
vector for a flat shell strip has been already given elsewhere [10] and
will not be repeated here. However, the approximation used for the
displacement field will be given below. For a flat shell strip bounded by
sides i and j (Fig. 1) and continuous over several spans the displacement
field is:

N S

u I [(1 - £)u. + (£)u. ] Z Y
b in b in snn=l J s=l
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N S

v Z [(1 -£) v,„ + (£) v4J Z Y'
n=l b in b in sns=l

w E [(1 - 3x2/b2 + 2x3/b3)wJ + (x - 2x2/b + x /b2)9.
in inn=l c

+ (3x2/b2 - 2x3/b3)w. + (x3/b2 - x2/b)e. ] Yin In snJ J s=l

r 1

^3w

U

y«.
Xs-1

Fig. 1 A Typicai continuous finite strip

where S and N are respectively the number of spans and the number of terms
used in the series, Y' denotes the first derivative of Y with respect to
y; x, y, u, v, w, 0 are the coordinates and displacements indicated in Fig.
1, and b is the width of the strip. By definition, the boundary conditions
in the longitudinal direction must 0. pii-Lofu. be satisfied by the functions
Y which are described hereafter. It should be noted that, in the
present analysis, a simple end support oran intermediate support is a

diaphragm which is infinitely stiff in its own plane but perfectly flexible
normal to its plane.

Basic Functions for Multispan Finite Strip
The basic functions Y are the eigenfunctions of a corresponding

continuous beam which has tne same characteristics as the structure to be
considered in terms of end conditions, number and length of spans, relative
rigidities, etc. The complete computation of these eigenfunctions can be
found in ref. 15 and is not repeated herein in detail. However a resume of
the procedure is given in the following.

The continuous beam eigenfunctions are computed by using a general
stiffness approach. For a typicai s
Vibration is given by

,4.. 2
d Y

dy
E Is s

th span, the differential equation for

Y 0
s

(1)

assuming harmonic motion as usual. In Eq. (1), Y is the amplitude of the
mode with reference to a local set of coordinate system originated at the
left end of s span. Is, ms, Es are respectively the second moment of
the area of the section, the mass per unit length and Young's modulus.



IABSE PROCEEDINGS P-14/78

The general Solution for this equation is
Y A sin G u ysn sn s n s

3 cos Guysn s n s

+ C sinh Guy + D cosh G u ysn s n s sn s n s
(2)

where u
n

f 2"
mu

n
EI and G

EI
s s

m

EI denotes the common

theigenvalue and the reciprocal of the relative wave propagation of s span.
The unknowns,un,Asn,Bsn,Csn,Dsn are determined by expressing the boundary
conditions at both end supports and at all intermediate supports.

Solution for yn

By inserting the coordinates of the two end supports of the s

span into Eq. (2), the following equations are derived:

th

*
e

Y
sn

(0)
e
sn

(0)

Y
sn as

e
sn

U
s

1

0

cl
+ßs.

0

2

3s,

A
sn

B
sn

C
sn

D
sn

The two end moments for this particular span can be written as:

M (0)
sn 2

EI ß

0 -1

M U
sn s

SS
Sl Cl

dY

In eq. (3 and (4)
dy.

A
sn

B
sn

J C
sn

D
sn

j

sin ßÄ, c, cos ß&
1 s

(3)

(4)

d2Y

dy!

s„ sinh ß£
2 s

G u
s n

c„ cosh ßfc
2 s

By inverting Eq. (3) and incorporating the result in Eq. (4), the moments
can be written in terms of the deflections and the slopes. As all the
intermediate supports are rigid supports, the condition

Y (0)
sn

Y U 0
sn s

1 < s < S

is used to establish, for each span (except the first and last spans) a
relation between moments and slopes only:

M (0)
sn

M UJsn s

sn

e U
sn s

(5a)
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in which a EI ß(sn c„ - s„ c.)/(l - cn c.)ss 12 21 12
y - Eh ß(s2 - si)/(1 - ci c2}

(5b)

(5c)

By establishing the moment equilibrium (i.e. M (Z + M (0) 0)s-l,n s-1 sn
and compatibility conditions (i.e. fi (s, 6 (0)) at alls-l,n s-1 sn
intermediate supports through Eq. (5a, b, c) the following set of equations

can be obtained.

y(V
a(>11)

+a( H2)

Y(«2>

yCäj)

a(JU)

+a( Ä,) yU3)

0 0 0

0

0

yUs_i>

y(*s_i>

a(Vl)
+a(Zs)

0 0

9ln(0)

2n (0)

8, (0)3n

9^(0)Sn
eCT,(zQ)Sn S

Ym(0)

YSn(V

(6a)

The matrix in Eq. (6a) is overdeterminate, involving S-1 equations and
S+3 unknowns; the boundary conditions at the end supports should be

incorporated to make the matrix square. A non-trivial Solution of un is
obtained by equating the determinant of this matrix to zero.
be shortened as:

{o} [K] {d} (6b)

Eq. (6a) can

and then the Solutions will be given by

det [K] 0 (6c)

[K] being a square matrix, including the boundary conditions, and {d} being
the vector of displacements.

The coefficients of this determinental equation are transcendental
functions of y and can be solved by the Newton Raphson method as suggested
in ref.[15]. Unfortunately it was found that at times certain roots might
be missing and in order to make sure that all the roots up to the desired
number N can be computed, an adaptation of the "modified regula falsi"
method [16, 17] is used herein, although it has the disadvantage of being
somewhat time-consuming. Attention should be drawn to the fact that for
the case of both ends clamped only, Eq. (6c) will miss out the roots
corresponding tq the Situation in which the whole displacement vector {d}
is equal to zero, i.e., the continuous structure degenerates into a series
of single-span substructures with both ends clamped. The eigenvalues of
such beams are of course common knowledge [10] and they can be inserted
into the correct positions in the acending array of V obtained from
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Eq. (6c). The p'osition of the missing roots can also be determined by
using a method proposed by Wittrick and Williams [20J, in which a "sign
count" of the matrix [K] is made.

Solution for A B C D
sn sn sn sn

If the ends are either supported or clamped all the supports are
rigid supports; this leads to the condition Y (0) 0 which implies that
B - D sn

sn sn
The moment equilibrium, the compatibility condition and the zero

deflection conditions at each intermediate support provides 3S-3
equations for the remaining 3S constants. The second condition at the
left end support (i.e. M-^ n(0) 0 if simply supported or 8^n 0 if
clamped) provides one more equation, while the zero deflection at the
last support gives another equation. Finally if Aj_ is taken as a unit
reference constant, the set of 3S equation can be solved. The remaining
condition at the right end support is automatically satisfied because it
has been incorporated once already in the Solution of p In the
particular case of free ends, the process is exactly the same but 4

unknown must be kept for the first and last spans. The conditions of zero
shear force and zero moment at the end will provide the necessary
equations.

Convergence

In finite strip analysis, it is important to be able to predict the
number of terms N required in the series so that results of reasonable
accuracy can be obtained. It has been shown in ref. [11]that for Single
span folded plate structures, 5 non-zero Fourier series terms are
sufficient to give accurate deflections, moments and membrane forces in a
finite strip analysis. For continuous structures, the series will not
converge as quickly and it is also difficult to fix a value N which is
applicable to all problems involving different number of Spans and span
lengths.

A simple but approximate method of predicting the value N is to
examine the convergence characteristics of the distributed loads and take
N as the number of terms required for approximating the loads over a
continuous beam with the same number of spans and span length ratio. As

the functions Y are eigenfunctions obtained by solving Eq. (1), they
possess the property of orthogonality

l s

/ Y Y dy 0 for m # n
o sm sn

For this reason, any load q (y) can be resolved into the same eigen-
function series as

qs(y) h %n Ysn (7)
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in which q
J qS(Y) *m dy

/ Y dy
o sn

and the term by term convergence of the total integrated load can be
examined. The above Integration is carried out numerically.

An an example, the special case of q(y) 80 kg/m on a two-span beam

(either for equal spans or for unequal spans with ^-./X 0.8, which is
characteristic of the examples treated later) is examined by using up to
eleven terms of the series, while the convergence study for a Single span
beam (using Fourier series) with the same uniformly distributed loading is
also made for comparison. In Fig. 2 (a,b,c), the approximate loads for
specified values of N demonstrate clearly the faster convergence of the
Fourier series. In Fig. 2d the percentage error of the total integrated
load with respect to N is worked out for the three beams and it can be
seen that for the unequal span continuous beam, the convergence becomes

very slow for N > 10. It is therefore concluded that the small gain in
accuracy obtained by increasing N even further cannot be justified, keeping
in mind that the number of degrees of freedom per node is equal to 4N. For
the simply supported beam, convergence becomes very slow after five terms,
and this is in aecordance with the findings given in reference 11.

100100

80BO

SO60

Z. 4040

E 2020

160.026.7 53.3 80.0 106.7

a. Two equal spans, N;9
33.3

c. One span. N:5
100

80

60

120

30

20

10

1 1 1 1 1

?-case c

o-case a

-1 \
tu- case b

i

I 1 i i i

0 24 48 72 96
b. Two unequal spans. Nr 10

144 0 4 8 12

d. Convergence with respect
to N

Fig. 2 Approximation of a uniform load of 80 kg/m on three
different beams. with the series E Y

N *n
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Numerical Examples

"live load " 3.83 kN/m2

D E

1.53 0.1016

1.53

53 11.53 3.05 1.53 3.05 53 11.53

3.05

The results for two-span continuous structures with simply supported
ends and for a single-span structure with overhangs (treated as three-span
structure in the finite strip analysis) are presented in this section.

The first example consists of a continuous folded plates structure
initially studied by Beaufait [1 ] using the ordinary theory and subse-
quently by Scordelis and Lo [3,9], using both the elasticity theory and a
finite segment ordinary method. The dimensions and loadings of the
structures, which has two unequal spans, are shown in Fig. 3. The modulus
of elasticity is taken as 25.25 x 106 kN/nr and Poisson's ratio as zero.
The number of terms used in the series will be equal to 10 unless otherwise
specified. Two different meshes using 9 and 18 Strips for half of the
section have been used in the analysis. Little difference can be detected
in the results except for transverse bending moment; for this reason,
results for the two meshes are only given here for the transverse bending
moment.

The longitudinal
variations of the
vertical deflections,
the longitudinal
stresses and the
transverse bending
moments at B and D are
listed in Table 1, 2,
and 3 respectively,
while the transverse
distribution of
longitudinal stresses
and transverse bending
moments for mid-
section of span 1 is
shown in Fig. 4a and
4b. From Tables 1, 2
and 3 it can be con-
cluded that the
agreement between the
finite strip results
and the values from
ref.[9] (in particular
those due to the
elasticity method) is
very good and the only point worth commenting concerns the transverse
bending moments, in which a marked discrepancy exists for the case of the
ordinary theory because of its one-way slab assumption.

For completeness, the transverse distribution of shear stresses t™
at the left end support and at the intermediate support is shown in Fig. 5,
These curves were obtained by extropoloting the values of txy between the
supports. Finally, in order to study the convergence of the results, the
values of the vertical deflection at Joint A and the longitudinal stress
and transverse moment at Joint B (mid-section of span 1) are given in
Table 4 for N 7, 8, 9 and 10. It can be observed that for N > 9, the
convergence becomes very slow, as predicted by the test proposed previously.

a. TRANSVERSE SECTION
3.83 kN/m2

¦ .4-4r4rJy + 4-+4r4r4.J.^4.a.4r4.+r***.4i.a.i-i 1 1 ->

d77 7777 7777
24.40 19.52 1

LONGITUDINAL SECTION

Fig.3 Dimensions (in m and loading for Example 1
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Table 1

Comparison of vertical deflections, in metres times 10

x in
metres

finite strip
method

9 Strips

finite
ordinary

segment
theory

elasticity
theory

B D B D B D

3.66 42.40 17.39 47.28 17.69 42.70 18.00

8.54 76.25 31.72 84.49 32.64 77.47 32.64

10.98 80.52 33.55 88.45 34.77 81.74 34.47

13.42 75.34 31.42 82.96 32.94 76.86 32.64

18.30 44.23 18.91 48.50 20.13 45.45 19.83

30.50 15.56 3.36 20.13 3.97 16.47 3.97

35.38 28.37 7.32 35.38 7.63 29.59 7.93

37.82 27.15 7.32 33.55 7.63 27.76 7.93

Table 2
2

Comparison of longitudinal stresses (kN/vT)

x in finite strip finite segment elasticity
metres method

9 Strips
ordinary theory theory

B D B D B D

3.66 1311 -1242 1477 -1201 1311 -1256

10.98 1932 -2001 2056 -2015 1960 -2056

13.42 1691 -1704 1801 -1753 1739 -1787

18.30 476 - 400 518 - 469 518 - 483

23.18 -2360 1932 -2491 1691 -2256 1739

24.40 -3450 2691 -3636 2346 -3436 2843

25.62 -2415 2001 -2539 1801 -2312 1849

30.50 207 69 297 83 255 55

37.82 1256 - 897 1470 - 842 1263 - 918
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Table 3

Comparison of transverse moments (kg-m/m)

x in
metres

finite strip
method

9 Strips

finite strip
method

18 strips

finite
ordinary

segment
theory

elasticity
theory

B D B D B D B D

1.22 -149 -159 -149 -168 -453 -225 -202 -150
3.66 -334 -183 -362 -195 -453 -178 -336 -195

10.98 -378 -154 -396 -163 -453 -128 -397 -169
18.30 -381 -199 -399 -208 -453 -190 -398 -205
23.18 - 63 - 72 - 63 - 91 -453 -251 -132 -105
25.62 - 59 - 68 - 59 - 91 -453 -245 -130 -101
30.50 -381 -190 -394 -199 -453 -168 -391 -187
37.82 -358 -172 -376 -181 -453 -135 -372 -171
42.70 -104 -113 -104 -127 -453 -221 -201 -146

Table 4

Influence of "n" on the deflections,
stresses and moments (example 1)

value ^^^
at midspan r\^

7 8 9 10

w (metres) at A 149 x 10~4 151 x 10 153 x IO-4 153 x 10~4

2
a (kN/m at B

X 30.37 37.60 46.46 46.27

o (kN/m at B 1787 1811 1839 1839

M (kg-m/m) at B -339 -361 -390 -390

M (kg-m/m) at B 19.88 20.43 21.47 21.52
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X
rsi
£

z

E
<

2.4 J^Z++-M-/1.2 X

1.2 -s ; x</* /

36

-2.4

-4.8 J_ J_

+ _ mid-span 1

a - mid-span 2

I L_

0 1.37 2.75 4.12 5.49 6.86 m

a. Longitudinal stress, mid-span 1 and 2

15.85

L -15.85 -

-31.71

\x t-+

ö. -47.57

-63.42

jX\ f + - mid-span 1

\ >i+ & -mid-span 2

Ö 1.37 2.75 4.12 5.49 6.86m

b. Transverse moment, mid-span 1 and 2

Fig.4 Example 1. Transverse distribution of longitudinal
stress and transverse moment

16.8

E
<

B.4

B.4

-16.8

x.x
_L

x-lett support
c- intermediate support

I I

0 1.37 2.75 4.12 5.49 6.86m

Shear stress, left and intermediate supports

Fig.5 Example 1. Transverse distribution of shear stress
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In order to assess the efficiency of the finite strip analysis, two
finite element Solutions using 9x9' and 9 x 18 meshes of flat shell
elements [l9] for half of the structure are carried out, and a comparison
of number of degrees of freedom and CPU time used are presented in Table
5. It should be mentioned that while the deflections differ by only 1%
(maximum) between the three sets of results, the difference in the
stresses and moments amounts to 15% (maximum) between the coarse mesh
(9 x 9) and finite strip results, and 5% (maximum) between the fine mesh
(9 x 18) and finite strip results. Thus it can be concluded that for
comparable accuracies, the saving in CPU time by using the finite stripSolution is very significant.

Table 5

Comparison between finite element and
finite strip results (example 1)

number of
degrees of

freedom

number of points
where displacements

are given

number of points
where stresses

are given

CPU time
in see.

(*)

finite
strip
n 10

400 180 270 120

finite
element
mesh 9x9

1320 100 81 342

finite
element
mesh 9 x 18

2544 190 162 1206

(*) The Computer used is a CDC-6400

The second example corresponds to model 3 from Beaufait's paper [18],
in which experimental as well as theoretical (ordinary theory) results are
available. The dimensions and the loadings are shown in Fig. 6, and the
modulus of elasticity is taken as 73.14 x 10 kN/m^ and Poisson's ratio as
0.33. Because the two spans are equal, only 9 terms of the series are used
for the analysis. Twenty finite Strips are used for half of the structure
because of symmetry.

The transverse distribution of the longitudinal stress and the
transverse bending moment at mid-span is shown in Fig. 7(a,b), and the
values of transverse bending moment and the longitudinal stress at point H
are given at in Table 6 for several different cross-section locations. In
general, the finite strip results are much closer to the experimental
values when compared with Beaufait's theoretical results.
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1.929 kN/m2

nll ^ ^-1.929 kN/m2

XO. XtsU
76.276.2

transverse section

77771 u3 ?$"Tfc
span 1x1143 77Tr span 2= 11'

longitudinal section (example 2

—tk. 3r~
span I =324 7rrr span 2 1143 7777span3r324

longitudinal section (example 3)

Fig. 6. Dimensions (in mm) and loading for Examples 2 and 3

Table 6

Longitudinal Stresses and Transverse Moments at
point H (example 2), at different cross-sections

Section

0 (kN/m2) Mx(kg-m/m)

Beaufait
experiment

Beaufait
theory

finite
strip
method

Beaufait
experiment

Beaufait
theory

finite
strip
method

Mid-Span 1 - 656 - 704 - 718 -0.207 -0.205 -0.210

Mid-Span 2 - 738 - 704 - 718 -0.192 -0.205 -0.210

52.4 mm from
centre support -1642 -1428 -1559 -0.116 -0.218 -0.102

155.6 mm from
centre support 490 538 504 -0.210 -0.215 -0.216
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<

1173

587

587

1173 -

1760

-2346

0.40

0.76 1.53 2.29 3.05

Longitudinal stress, mid span

3.81 4.58 m

The third
example corresponds
to model 2 from the
same paper by
Beaufait, and here
the versatility of
the finite strip
method over that of
the elasticity
method is amply
demonstrated, since
the latter method
cannot be applied
to the present
example which has
fairly long
overhangs The
dimensions and
loadings are shown
in Fig. 6, and the
material properties
are the same as
those given for
example 2. Ten
finite strips are
used to represent
half of the
structure, and eight
terms of the series
(determined from
the load convergence
test) are used in
the analysis. In
addition to the
finite strip
Solution, a finite
element analysis
using 70 flat shell
elements [19] for a
quarter of the
structure was also carried out. All results are presented in Table 7, and
once again the finite strip results agree very well with the experimental
and numerical values. The discrepancy of the longitudinal stresses at the
support was attributed by Beaufait to local effects caused by the
supporting diaphragm.

0.27

0.14

<

-0.14

0.27

0.40
0.76 1.53 2.29

Transverse moment,

3.05

mid span

3.81 4.58m

Fig. 7 Example 2. Transverse distribution of longitudinal
stress and transverse moment

Conclusion

The finite strip method has been generalized to study multi-span
structures with any type of boundary conditions. The number of terms
necessary for the finite strip analysis is dependent on the considered
structure, and can be determined by a simple test of load convergence.
Three numerical examples are presented and the results are compared with
numerical and experimental results available in the literature. The finite
strip method produces values which agree very well with the experimental
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results. Finally, a comparison between finite element method and finite
strip method is presented. The conclusion is that for such continuous
structures the finite strip method is much more economical than the
finite element method.

Table 7(a)
Longitudinal stresses (kN/m (Example 3), at

different cross-sections

Beaufait
theoretical

Beaufait
experimental

Finite
strip

Finite
element

Mid-span

point F -2525 -2539 -2567 -2456

point G 1408 1477 1490 1497

point H - 973 (*)-987, -904v ' - 932 - 994

** point G 490 490 469 483

At
support

point G - 276 166 - 311 - 345

point H 373 407 380 414

(*) different values measured at Symmetrie points
** 155.6 from support in main span

Table 7(b)
Transverse moments (kg-m/m) Example 3 at point G

Beaufait
theoretical

Beaufait
experimental

Finite
strip

Finite
element

Section
mid-span -0.0589 -0.0580,-0.0874 -0.0680 -0.0702

Section 155.6 mm

from support
main span

-0.0145 -0.0072 -0.0177 -0.0181

* different values measured at Symmetrie points
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