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Finite Strip Analysis of Continuous Folded Plates
Analyse par bandes finies de toits plissés continus

Endliche Streifenelemente fiir die Berechnung von durchlaufenden Faltwerken

C. DELCOURT Y. K. CHEUNG
Ingénieur Physicien Professor, Ph. D., D. Sc., FICE, FIStructE.
Dep. of Civ. Eng., University of Adelaide Dep. of Civ. Eng., University of Hong Kong
Adelaide, Australia Hong Kong
SUMMARY

The finite strip method is generalized to study folded plates continuous over any number of
spans and submitted to uniformly distributed loads or line loads. The end supports are either
clamped, simply supported or free. The results obtained agree well with experimental and
theoretical values available in the literature and a comparison of computational efforts required
between finite element and finite strip methods demonstrates that the latter method has a
very definite advantage over the former.

RESUME

La méthode par bandes finies est généralisée pour permettre I'étude de toits plissés continus,
d’un nombre quelconque de travées, soumis & des charges uniformes ou linéaires. Les travées
extrémes sont soit encastrées, soit simplement appuyées, soit libres. Les résultats concordent
bien avec les valeurs théoriques et expérimentales données dans la littérature. La comparaison
des efforts livrés par I'ordinateur dans les méthodes des éléments finis et des bandes finies
montre que cette derniére est nettement plus avantageuse que la précédente.

ZUSAMMENFASSUNG

Auf der Basis endlicher Streifenelemente wird eine Methode entwickelt fir die Berechnung
durchlaufender Faltwerke beliebiger Felderzahl unter verteilten Lasten oder Linienlasten. Die
Enden des Faltwerks kdnnen eingespannt, frei drehbar gelagert oder frei sein. Die mit dieser
Methode berechneten Ergebnisse stimmen gut mit Versuchsergebnissen und theoretischen
Lésungen anderer Autoren iberein. Vom Berechnungsaufwand her gesehen hat die vor-
gelegte Methode gegeniiber Methoden endlicher Elemente eindeutige Vorteile.
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Introduction

Traditionally, the analysis of folded plate structures are based
either on the '"ordinary theory" or on the '"elasticity theory'" and most of
the literature has been concerned with the analysis of single span
structures. [1] More recently attention has been focused on continuous
folded plates. Beaufait [2] used the ordinary theory and developed a
computer solution for folded plate with arbitrary end conditions, although
some of the assumptions appear to be questionable [3]. Pultar et al [4]
presented a solution based on elasticity theory for continuous folded
plates with simply supported ends, in which a force method is applied
subsequently to the standard analysis in order to determine the redundant
reactive forces at the intermediate supports.

The technique was also used by Scordelis et al [5] for the analysis
of box girder structures with internal rigid diaphragms. Continuous
folded plate structures were also analysed by Lee [6], using a finite
difference technique.

The most versatile tool of analysis is obviously the finite element
method. Rockey and Evans [7] were the first to study the behaviour of
folded plate structures by using a rectangular element [8], and Lo and
Scordelis [ 9] developed a finite segment method (which is a special type
of finite element method based on ordinary theory) in an attempt to reduce
the excessive number of degrees of freedom involved in a problem.

Recently, the finite strip method pioneered by Cheung [10] was
applied to rectangular [11], curved [12,13] and skew [14] folded plate
structures, all with simply supported ends. The object of the present
paper is to extend the finite strip method to the analysis of continuous
folded plate structures with arbitrary end conditions, but without

resorting to the standard procedure of carrying out a subsequent flexibility

analysis.

Finite Strip Approach

It is now well known that a finite strip is a special finite element
for which the boundary conditions of the structure, in the longitudinal
direction, are a patcil included in the approximation of the displacement
field. 1In the present approach, such boundary conditions may include
simply supported, clamped, or free edge conditions. However, as far as
the loading is concerned the study is restricted to distributed loads or
longitudinal line loads which are the dominant types of loadings for
folded plate structures.

Stiffness matrix and force vector

The procedure of formulating the stiffness matrix and the force
vector for a flat shell strip has been already given elsewhere [10] and
will not be repeated here. However, the approximation used for the
displacement field will be given below. For a flat shell strip bounded by
sides i and j (Fig. 1) and continuous over several spans the displacement
field is:

Y
sn

o

Il
o1 =
I o1 w»n

(@ - Doy + Quy ]

n=1 s=1
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Fig.1 A Typical continuous finite strip

where S and N are respectively the number of spans and the number of terms
used in the series, Y' denotes the first derivative of Y with respect to

vy X, ¥y, u, v, w, 0 are the coordinates and displacements indicated in Fig.
1, and b is the width of the strip. By definition, the boundary conditions
in the longitudinal direction must a pAdloil be satisfied by the functions
st, which are described hereafter. It should be noted that, in the
present analysis, a simple end support oran intermediate support is a
diaphragm which is infinitely stiff in its own plane but perfectly flexible
normal to its plane.

Basic Functions for Multispan Finite Strip

The basic functions Y are the eigenfunctions of a corresponding
continuous beam which has tRe same characteristics as the structure to be
considered in terms of end conditions, number and length of spans, relative
rigidities, etc. The complete computation of these eigenfunctions can be
found in ref. 15 and is not repeated herein in detail. However a resume of
the procedure is given in the following.

The continuous beam eigenfunctions are computed by using a general
stiffness approach. For a typical sth span, the differential equation for
vibration is given by

d4Y m wz
5 _
dya ESIS s

assuming harmonic motion as usual. In Eq. (1), Y is the amplitude of the
mode with reference to a local set of coordinate System originated at the
left end of s span. Ig, mg, Eg are respectively the second moment of
the area of the section, the mass per unit length and Young's modulus.
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The general solution for this equation is

= A sin G +
st sn & sunys Bsn EHE Gsunys

+ C sinh G + D cosh Gpuy  ieeee.
sn 7 sunys Dsn Eask Gsunys (2)
2 L % % 1

mwn ) m % 0 &

h = = S .
where un BT and GS %IS 5T denotes the common

eigenvalue and the reciprocal of the relative wave propagation of sth span.

The unknowns,un,Asn,Bsn,Csn,DSn are determined by expressing the boundary
conditions at both end supports and at all intermediate supports.

Solution for My

th
By inserting the coordinates of the two end supports of the s

span into Eq. (2), the following equations are derived:

r i ~ N 7 T
Y (0) 0 1 0 1
sn sn
- - 0 B
Son (@ i ’ : sn e (3)
Y (e ) s c s c C e
sn s 1 1 2 2 sn
Lesn (Qs) {iscl +le _BCZ _BSZ Dsn
The two end moments for this particular span can be written as:
7 )
M_(0) > |0 -1 0 1 ]]a
sn sn
= EISB 5
M 8 - -
s Vg 51 % S TR LRl L somomes (4)
sn
D
sn
< /
dst
In eq. (3 and (4) Oy = ~ —a§;' s; = sin B2_ ¢, = cos BQS
sz 8, = sinh BRS y = cosh BQS
sn
M = =
sn dyz B Gsl-ln

By inverting Eq. (3) and incorporating the result in Eq. (4), the moments
can be written in terms of the deflections and the slopes. As all the
intermediate supports are rigid supports, the condition

Y (0) =Y () =0 1 <s <8
sn sn's

is used to establish, for each span (except the first and last spans) a
relation between moments and slopes only:

M (0) o Y 8,,(0)

Msn(zs) Y o ) (RS) ...... (5a)

~
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in which o = %}s S(Sl c, = S, cl)/(l - < c2) ...... (5b)
Yy = %;S 8(32 - sl)/(l - cz) ...... (5¢)
By establishing the moment equilibrium (i.e. M (L ) + M (0) = 0)
s-1,n s-1 sn
d tibili . e _
and compatibility conditions (i.e es—l,n(gs—l) esn(O)) at all

intermediate supports through Eq. (5a, b, c¢) the following set of equations

can be obtained.

3 a(Zl) /e ]
0 v(2)) +a(1,) v(2,) 0 , 0 0 0 O 10
8, (0)
e 0. (0)
0 0 Y(iz) -+a(23) Y(£3) : 0 0 . 3 3n
B 0
- g - - e (0)
Sn
a( &, _4) 6. (2.)
s-1 Sn S
0 0 0 0 0 . (s Fa(2) 0 0 v, ()
YSn(QS)
...... (6a)

The matrix in Eq. (6a) is overdeterminate, involving S-1 equations and

S+3 unknowns; the boundary conditions at the end supports should be
incorporated to make the matrix square. A non-trivial solution of uj is
obtained by equating the determinant of this matrix to zero. Eq. (6a) can
be shortened as:

{6} =[K] fd} = ssesss (6b)

and then the solutions will be given by

det [K] =0 ... (6c)

[K] being a square matrix, including the boundary conditiomns, and {d} being
the vector of displacements.

The coefficients of this determinental equation are transcendental
functions of u and can be solved by the Newton Raphson method as suggested
in ref.[15]. Uﬁfortunately it was found that at times certain roots might
be missing and in order to make sure that all the roots up to the desired
number N can be computed, an adaptation of the "modified regula falsi"
method [16, 17] is used herein, although it has the disadvantage of being
somewhat time-consuming. Attention should be drawn to the fact that for
the case of both ends clamped only, Eq. (6c) will miss out the roots
corresponding to the situation in which the whole displacement vector {d}
is equal to zero, i.e., the continuous structure degenerates into a series
of single-span substructures with both ends clamped. The eigenvalues of
such beams are of course common knowledge [10] and they can be inserted
into the correct positions in the acending array of B obtained from
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Eq. (6c). The position of the missing roots can also be determined by
using a method proposed by Wittrick and Williams [20], in which a "sign
count" of the matrix [K] is made.

Solution for A , B , C , D
sn’ "sn’ sn’ sn

If the ends are either supported or clamped all the supports are
rigid supports; this leads to the condition st(O) = 0 which implies that

B =-D
sn S

n

The moment equilibrium, the compatibility condition and the zero
deflection conditions at each intermediate support provides 3S5-3
equations for the remaining 3S constants. The second condition at the
left end support (i.e. M; ,(0) = 0 if simply supported or 61, = 0 if
clamped) provides one moreé equation, while the zero deflection at the
last support gives another equation. Finally if Ay, is taken as a unit
reference constant, the set of 3S equation can be solved. The remaining
condition at the right end support is automatically satisfied because it
has been incorporated once already in the solution of ;,_. In the
particular case of free ends, the process is exactly the same but 4
unknown must be kept for the first and last spans. The conditions of zero
shear force and zero moment at the end will provide the necessary
equations.

Convergence

In finite strip analysis, it is important to be able to predict the
number of terms N required in the series so that results of reasonable
accuracy can be obtained. It has been shown in ref. [11]that for single
span folded plate structures, 5 non-zero Fourier series terms are
sufficient to give accurate deflections, moments and membrane forces in a
finite strip analysis. For continuous structures, the series will not
converge as quickly and it is also difficult to fix a value N which is
applicable to all problems involving different number of spans and span
lengths.

A simple but approximate method of predicting the value N is to
examine the convergence characteristics of the distributed loads and take
N as the number of terms required for approximating the loads over a
continuous beam with the same number of spans and span length ratio. As
the functions Y are eigenfunctions obtained by solving Eq. (1), they
possess the property of orthogonality

Ls

o Ysm st dy = 0 for m # n

For this reason, any load qs(y) can be resolved into the same eigen-
function series as

qs(y) - ZN qsn sn e (7)
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dy

in which q
sn
2

sn dy

and the term by term convergence of the total integrated load can be

examined.

(either for equal spans or for unequal spans with £_/2%

The above integration is carried out numerically.

An an example, the special case of q(y) = 80 kg/m on a two-span beam

=0

.8, which is

characteristic of the examples treated later) is examined by using up to

eleven terms of the series,

while the convergence study for a single span

beam (using Fourier series) with the same uniformly distributed loading is

also made for comparison.

In Fig. 2 (a,b,c), the approximate loads for

specified values of N demonstrate clearly the faster convergence of the

Fourier series.

In Fig. 2d the percentage error of the total integrated

load with respect to N is worked out for the three beams and it can be
seen that for the unequal span continuous beam, the convergence becomes

very slow for N > 10.

It is therefore concluded that the small gain in

accuracy obtained by increasing N even further cannot be justified, keeping

in mind that the number of degrees of freedom per node is equal to 4N.

For

the simply supported beam, convergence becomes very slow after five terms,
and this is in accordance with the findings given in reference 1l.
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Numerical Examples

The results for two-span continuous structures with simply supported
ends and for a single-span structure with overhangs (treated as three-span
structure in the finite strip analysis) are presented in this section.

The first example consists of a continuous folded plates structure
initially studied by Beaufait [1] using the ordinary theory and subse-
quently by Scordelis and Lo [3,9], using both the elasticity theory and a
finite segment ordinary method. The dimensions and loadings of the
structures, which has two unequal spans, are shown in Flg 3. The modulus
of elasticity is taken as 25.25 x 100 kN/m? and Poisson's ratio as zero.
The number of terms used in the series will be equal to 10 unless otherwise
specified. Two different meshes using 9 and 18 strips for half of the
section have been used in the analysis. Little difference can be detected
in the results except for transverse bending moment; for this reason,
results for the two meshes are only given here for the transverse bending
moment.

The longitudinal
variations of the “live load " 3.83 kN/m?
vertical deflections, I E TR R RN + ¥ 4 *v ¥ ¥ ¥ ¥ 39
the longitudinal

stresses and the

transverse bending 153 A 0.1016

moments at B and D are ﬁ“ 3.05
listed in Table 1, 2, '-531 F G i
and 3 respectively,

while the transverse IS{LISQJ— o lei—53
distribution of a. TRANSVERSE SECTION
longitudinal stresses 3.83 KN/ m?2

and transverse bending 333333y sdved ey v e s+ II4

moments for mid-
section of span 1 is
shown in Fig. 4a and R
4b. From Tables 1, 2 77/
and 3 it can be con- el L 13.5¢
- g

cluded that the b. LONGITUDINAL SECTION
agreement between the
finite strip results
and the values from Fig.3 Dimensions (inm) and loading for Example !
ref.[9] (in particular
those due to the
elasticity method) is
very good and the only point worth commenting concerns the transverse
bending moments, in which a marked discrepancy exists for the case of the
ordinary theory because of its one-way slab assumption.

For completeness, the transverse distribution of shear stresses Xy
at the left end support and at the intermediate support is shown in Fig. 5,
These curves were obtained by extropoloting the values of tyxy between the
supports. Finally, in order to study the convergence of the results, the
values of the vertical deflection at joint A and the longitudinal stress
and transverse moment at joint B (mid-section of span 1) are given in
Table 4 for N =7, 8, 9 and 10. It can be observed that for N > 9, the
convergence becomes very slow, as predicted by the test proposed previously.

T
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Table 1

: : y . b
Comparison of vertical deflections, in metres times 10

X in finite strip finite segment elasticity
metres method ordinary theory theory
9 strips
B | D D
3.66 42.40 | 17.39 47.28 | 17.69 42,70 | 18.00
8.54 76.25 | 31.72 84.49 | 32.64 77.47 | 32.64
10.98 80.52 | 33.55 88.45 | 34.77 81.74 | 34.47
13.42 75.34 | 31.42 82.96 | 32.94 76.86 | 32.64
18.30 44.23 | 18.91 48,50 | 20.13 45.45 | 19.83
30.50 15.56 3.36 20.13 3.97 16.47 3 .97
35.38 28.37 7:32 35.38 7.63 29.59 7.93
37.82 27.15 7«32 33.55 7.63 27.76 7.93
Table 2 9
Comparison of longitudinal stresses (kN/m")
X in finite strip finite segment elasticity
metres method ordinary theory theory
9 strips
B D B D B D
3.66 1311 | -1242 1477 | -1201 1311 | -1256
10.98 1932 | -2001 2056 | -2015 1960 | -2056
13.42 1691 | -1704 1801 | -1753 1739 | -1787
18.30 476 | - 400 518 | - 469 518 | - 483
23.18 -2360 1932 -2491 1691 -2256 1739
24.40 -3450 2691 -3636 2346 -3436 2843
25.62 -2415 2001 -2539 1801 -2312 1849
30.50 207 69 297 83 255 55
37.82 1256 | - 897 1470 | - 842 1263 | - 918
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Table 3
Comparison of transverse moments (kg-m/m)
X in finite strip finite strip finite segment elasticity
metres method method ordinary theory theory
9 strips 18 strips
B D B D B D B D
1.22 -149 =159 -149 -168 =453 -225 -202 -150
3.66 -334 -183 -362 -195 -453 -178 -336 -195
10.98 -378 =154 -396 -163 -453 -128 -397 -169
18.30 -381 -199 -399 -208 =453 -190 -398 -205
23.18 - 63 - 72 - 63 - 91 -453 -251 -132 -105
25.62 - 59 - 68 - 59 - 91 -453 =245 =130 -101
30.50 -381 -190 -394 -199 -453 -168 -391 -187
37.82 -358 -172 -376 -181 =453 ~135 =372 =171
} 42.70 -104 -113 -104 =127 -453 -221 | =201 -146
Table 4
Influence of "n'" on the deflections,
stresses and moments (example 1)
n
value 7 8 9 10
at midspan
-4 -4 =4 -4
w (metres) at A 149 x 10 151 x 10 153 x 10 153 x 10
cx(kN/mz) at B 30.37 37.60 46 .46 46.27
Uy(kN/mZ) at B 1787 1811 1839 1839
Mx(kg—m/m) at B -339 -361 -390 -390
My(kg—m/m) at B 19.88 20.43 21.47 21.52
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In order to assess the efficiency of the finite strip analysis, two
finite element solutions using 9 x 9 and 9 x 18 meshes of flat shell
elements [ 19] for half of the structure are carried out, and a comparison
of number of degrees of freedom and CPU time used are presented in Table
5. It should be mentioned that while the deflections differ by only 1%
(maximum) between the three sets of results, the difference in the
stresses and moments amounts to 15% (maximum) between the coarse mesh
(9 x 9) and finite strip results, and 5% (maximum) between the fine mesh
(9 x 18) and finite strip results. Thus it can be concluded that for
comparable accuracies, the saving in CPU time by using the finite strip
solution is very significant.

Table 5
Comparison between finite element and
finite strip results (example 1)

number of number of points number of points | CPU time
degrees of | where displacements where stresses in sec.
freedom are given are given (*)
finite
strip 400 180 270 120
n = 10
finite
element 1320 100 81 342
mesh 9 x 9
finite
element 2544 190 162 1206
mesh 9 x 18

(*) The computer used is a CDC-6400

The second example corresponds to model 3 from Beaufait's paper [18],
in which experimental as well as theoretical (ordinary theory) results are
available. The dimensions and the loadings %re shown in Fig. 6, and the
modulus of elasticity is taken as 73.14 x 10 kN/m? and Poisson's ratio as
0.33. Because the two spans are equal, only 9 terms of the series are used
for the analysis. Twenty finite strips are used for half of the structure
because of symmetry.

The transverse distribution of the longitudinal stress and the
transverse bending moment at mid-span is shown in Fig. 7(a,b), and the
values of transverse bending moment and the longitudinal stress at point H
are given at in Table 6 for several different cross-section locations. In
general, the finite strip results are much closer to the experimental
values when compared with Beaufait's theoretical results.
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13

1929 kN/m?2

1.929 kN/m?2

45°

¢ transverse section

Al
>
%
)

Le R
%spanl:l!“ 797' span 2 = 1143 797'

longitudinal section (example 2)

L R

span | =324 7fh span 2 = 1143 79"’"span 3=324
longitudinal section (example 3)

Fig. 6. Dimensions (in mm) and loading for Examples 2 and 3

Table 6
Longitudinal Stresses and Transverse Moments at
point H (example 2), at different cross—sections

2
Uy(kN/m ) Mx(kg—m/m)
Section Beaufait Beaufait | finite Beaufait Beaufait | finite
experiment theory strip experiment theory strip
method method
Mid-Span 1 - 656 - 704 - 718 -0.207 -0.205 -0.210
Mid-Span 2 - 738 - 704 - 718 -0.192 -0.205 | -0.210
52.4 mm from
centre support -1642 -1428 -1559 -0.116 -0.218 | -0.102
155.6 mm from
centre support 490 538 504 -0.210 -0.215 | -0.216
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The third 173
example corresponds
to model 2 from the 587
same paper by
Beaufait, and here
the versatility of
the finite strip
method over that of -587 —
the elasticity
method is amply
demonstrated, since
the latter method
cannot be applied
to the present
example which has -2346 ! L ' 1 '
fairly long over- 0 0.76 1.53 2.29 3.05 3.81 458m
hangs. The a. Longitudinal stress, mid span
dimensions and
loadings are shown 0.40
in Fig. 6, and the ’
material properties
are the same as
those given for
example 2, Ten
finite strips are
used to represent
half of the
structure, and eight
terms of the series
(determined from
the load convergence
test) are used in
the analysis. 1In | \ | A |

addition to the 0.76 153 2.29 3.05 3.81 4.58m

finite strip b. Tran ment id spa
solution, a finite ' YHORNEIEE: SSRGS RS

element analysis
using 70 flat shell
elements [19] for a
quarter of the
structure was also carried out. All results are presented in Table 7, and
once again the finite strip results agree very well with the experimental
and numerical values. The discrepancy of the longitudinal stresses at the
support was attributed by Beaufait to local effects caused by the
supporting diaphragm.

kN/m?2

-N73 =
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Fig. 7 Example 2. Transverse distribution of longitudinal
stress and transverse moment

Conclusion

The finite strip method has been generalized to study multi-span
structures with any type of boundary conditions. The number of terms
necessary for the finite strip analysis is dependent on the considered
structure, and can be determined by a simple test of load convergence.
Three numerical examples are presented and the results are compared with
numerical and experimental results available in the literature. The finite
strip method produces values which agree very well with the experimental
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results.
strip method is presented.

Finally, a comparison between finite element method and finite
The conclusion is that for such continuous

structures the finite strip method is much more economical than the
finite element method.

Table 7(a)
Longitudinal stresses (kN/m?) (Example 3), at

different cross-sections

Beaufait Beaufait Finite Finite
theoretical experimental strip element
o point F -2525 -2539 -2567 -2456
d
cl% point G 1408 1477 1490 1497
>
oo . (*)
= point H - 973 -987, -904 - 932 - 994
*x point G 490 490 469 483
4| point G - 276 166 - 311 - 345
4 2
% point H 373 407 380 414
(*) different values measured at symmetric points
*% 155.6 from support in main span
Table 7(b)
Transverse moments (kg-m/m) Example 3 at point G
Beaufait Beaufait Finite Finite
theoretical experimental strip element
Section %
mid-span -0.0589 -0.0580,-0.0874 | -0.0680 | -0.0702
Section 155.6 mm
from support -0.0145 -0.0072 -0.0177 -0.0181
main span

* different values measured at symmetric points
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