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SUMMARY
A rational analysis of a rectangular plate with eccentric stiffeners is carried out by a variational
principle, leading to a governing differential equation of order ten and a set of natural boundary
conditions. Neglecting the lateral bending and the bimoments of the ribs yields an approximate
theory with an eighth order differential equation. To make this study more practical, a fourth
order governing equation is derived. The results by these two approximate theories for two
simple cases, are compared with the results by the original ten order theory.

RESUME
L'analyse rationnelle d'une plaque rectangulaire avec des raidisseurs excentres est effectuee
au moyen du calcul des variations, conduisant ä une equation differentielle du 10e ordre et
ä un certain nombre de conditions aux limites naturelles.
Le fait de n6gliger la flexion laterale et les bimoments des nervures permet de developper une
theorie approchee avec une 6quation differentielle du 8e ordre. Une equation differentielle
du 4e ordre est etablie afin de rendre cette etude plus pratique. Les applications de ces deux
theories approchees dans deux cas simples sont comparees aux resultats de la theorie generale
du 10e ordre.

ZUSAMMENFASSUNG
Anhand eines Variationsprinzipes wird zur Berechnung einer Rechteckplatte mit exzentrischen
Steifen eine Differentialgleichung 2. Ordnung mit entsprechenden natürlichen Randbedingungen

gewonnen. Durch Vernachlässigung der Querbiegung und der Wölbmomente der
Rippen kommt man zu einer Näherungstheorie mit einer Differentialgleichung 8. Ordnung.
Um die praktische Anwendung zu vereinfachen, wird eine Differentialgleichung 4. Ordnung
abgeleitet. Die Ergebnisse dieser Zwei Näherungsmethoden für zwei einfache Fälle werden
mit denjenigen der ursprünglichen 10. Ordnung verglichen.
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1. INTRODUCTION

The analysis of an eccentrically stiffened plate by an orthotropic plate theory
was first developed by HUBER [1]. In his approach, the top slab and the
stiffeners are "smeared" into an orthotropic plate of equivalent bending and
torsional rigidities. The bending rigidity was later reevaluated by BARES and
MASSONNET [2] taking into account of the füll interaction between the slab and
the stiffening grid System. An analysis in which the effect of Poisson's ratio
was considered for the slab and for the actual contact area between the inter-
secting ribs was developed by CUSENS, ZEIDAN and PAMA [3]. NISHINO, PAMA and
LEE [4] considered the interaction between the slab and the grid System in the
determination of these rigidities. Various attempts also made to develop a more
exact theory for this problem lead to governing differential equations with
higher Orders than Huber's equation, e.g., PFLÜGER [5], MASSONNET [6], and
CLIFTON, CHANG and AU [7]. However, the torsional rigidity proposed by all these
investigators does not agree well with the experimental results.

The principal objective of this study is to establish a rigorous and feasible
approach to the problem of the design of plates with eccentric stiffeners. By

means of a variational principle, natural boundary conditions and three coupled
differential equations are obtained involving one parameter, whose value is
assumed in such a way that the anticlastic Solution by this theory agrees closely
with the experimental results. These governing differential equations are
reduced in order from ten to eight by neglecting the lateral bending and the bimoments

in the ribs. Furthermore, a Single governing equation of Huber's type is
obtained. The Solutions by these two approximate theories are compared with the
original tenth order theory, for the cases of a plate under a cylindrical bending
and a simply supported plate subjected to a uniform load.

PROBLEM FORMULATION BY VARIATIONAL PRINCIPLE

2.1 Sign Convention and Basic Assumptions

Significant dimensions of a typicai element of a plate with eccentric stiffeners
are shown in Fig. 1. The positive directions of the corresponding displacement
components are also indicated. For stresses, the sign Convention as adopted by
TIMOSHENKO and GOODIER [8] is used. The pertinent assumptions in this regard
are as follows: all displacements are small; the slab and ribs are made of thin
plates; points initially lying on the normal to the middle surface remain on the

/r 4
T
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Eccentric Stiffeners

Fig. 2 Original and Displaced
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at y y.
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normal after deformation; cross sections of the ribs do not distort; shear
strains along the middle plane and also across the thickness of the thin ribs
are small and can be neglected.

2.2 Strain-Displacement Relations

According to the above assumptions, displacements and strains can be written as

follows; for the top slab,

w(x,y,z) w(x,y) (la)

u(x,y,z) UQ(x,y) -z j^ (x,y) v(x,y,z) v^(x,y) - z ^- (x,y) (lb,c)

and
J ^2O d W

z ^—f £

3v

3x 3x2
o 8 w

z T-2 Y_,

3u 3v ^2n O 0 Hl+ - 2z
3y 3y2 ' 'xy 'yx 3Y 8x 8x3Y

(2a-c)

e=0,Y =Y =0,Y =Y =0
z yz zy zx xz

(2d-f)

for a £-rib, spanning in x-direction, at y y.,

3y y=yiw(x,yi+t,z) w(x,yi) +t(-^)y=y v(x,y.+t,z) vo(x,yi)-zC^:)y=y (3a,b)

,2 3v
,3w. / 3 w. o.zu - -5—(x,y.)3x3y y=y. 3x Jiu(x,yi+t,z) u^x.y^-zO^)^ +

and 3u
e

32w,
x 3x

0 / \ /<LW.~(x,y )-z(—r)i' 3xz y^
32w

32v,Jw > o,z(—;—) r(x>y-.>
3x23y Y^i 3x2 i

(3c)

(4a)

y y 2t(~ - e 0, e 0, y'xz 'zx 3x3y y=y. t z
Yxt 'tx

(4b-f)

in which t is an arbitrary coordinate axis normal to the middle plane of the
C-rib as shown in Fig. 2. Similarly for an n-rib, spanning in y-direction, at
x x.,

w(x.+f,y,z) =w(x.,y)+t'(g)x=x_, u(xj+t',y,z) - uq(x. ,y)-z (g)^ (5a,b

j2„ 3«

v(x.+t',y,z) vo(xj,y)-z(|W;)x=x +
3 w >, o

z(c, -, - %r—(x.,y)3x3y x=x. 3y j
(5c)

and

32w
z(

_

32u

3x3y2 x=xj 3y2 J(x,,y) t'
3v »2o, ,3 Ws

£y 37"(xj'y)-z(^)x=xj+

V " ^zy " 2t'(l3lfe)x=x.' V °» Ez " °- V Yt'y °' Yzt' Vz
J

(6b-f)

(6a)

0

where t' is an arbitrary coordinate axis normal to the middle plane of the n-rib.
At the intersection of the £-rib at y y. and the n-rib at x x., the strain-i J
displacement relations are assumed to take the same forms as those for the ribs,
excepting that y and y are assumed in the form similar to that of the slab,
i.e.,

3u 3v «2
/ O o „r- dw,.

Y ¦ Y " (¦,— + "5 2n ^ -n

xy yx 3y 3x dxdy x=x.,y=y.
(7)
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where x. - t 11 <> x rü x. +t II, y. - t /2 <. y <. y. +t /2 and h/2 <. z £ h/2 + hjy jyix ix y
assuming that h :S h The term h will be determined in such a way that the pure
torsional rigidity obtained from this formulation agrees reasonably well with the
experimental results.

2.3 Equilibrium Equations and Boundary Conditions

The Virtual work principle can be written as

W. W (8)
1 e

where W. and W are the internal and external Virtual work, respectively, and cani e
be expressed in the forms

W, o.e +o oe +a 6e +t 6y +x Sy +x 6yi J J «I [ x x y y z z xy xy yz yz zx zx
dV (9)

W [ Jq(x,y)6wdA +

?[J!"K*
b j z

(a Su+T 6v+T 6w)dzdy
x xy xz

+ T 6u+T (Sw)dzdx
yx yz

iy=t2

y=b.
(10)

where q(x,y) is the applied transverse load, a bar denotes a boundary trac-
tion, x a ,a and y b ,b are the four edges of the plate.

Substituting Eqs. (9) and (10) into Eq. (8), in views of Eqs. (1) to (7), and

applying Green's formula lead to the equilibrium equations, for an eccentrically
stiffened plate with identical and equally spaced ribs in each direction, as
follows

3N 3N

__-.. + Vx
3x 3y

32M 32M
JSL

0

32M

3N 3N
-JSL + -JL

3x 3y
»2»,

.ZA
3ZM

+ q(x,y) 0
3x2 3x3y 3x3y 3y

and the natural boundary conditions are, along the edges x a and x a

(lla.b)

(11c)

N N
xy xy

V Q + -^"(M -M r)x x dy xy xz,§
3M rM* =5 +-^3y

M r M rz,C z,§

along the edges y b and y b

N N
yx yx

N N
y y

v Q + ,-r-(M -5
y xy 3x yx yz,n

constant

or v constant
o

constant

3w
or ,r— constant3x

3v
o

3x constant

constant

constant

constant

(12a)

(12b)

(12c)

(12d)

(12e)

(13a)

(13b)

(13c)
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SM

y y 3x

M M
z,n z,n

3w
or TT— constant

3y
3u

c

3y
constant

(13d)

(13e)

and, at the Corners,

R M +M -M --M
xy yx xz,C yz,n

M M rx lü,5

where

CÖ,T1

N +N -x,p x,£.

M M +M rx x,p x,C

and

3M 3M

3y
*. 3M rM* M + -^x x 3y

x,p

or w - constant

or
3w

3nx constant

or
3w

constant
3y

3M -
N N +N _ + f^-
xy xy.P ^»1 3x

3M

xy
M +M - 2M j- + —ir^-
xy,p xy,I xz,c, dx

3M

V Q +
x x 3y

xy_ R -M -M
xy yx

n jii
2

t a dz, N _ - t=- I CF dA N T ds
J

_
_h x x,£; bx JAJ x xy.p J_h xy

(14a)

(14b)

(14c)

(15a,b)

(15c,d)

(15e-g)

(15h,i)

(16a-c)

"V'1 bxbv "V " **
ij

x dV, MJ * J xy x,p
a zdz, M ch x x,£, fJ.K

x A

xy.p J _
h

T zdz, M t—rxy xy,I b^b
JII

z,C tu O tdA, M
ij.,5

xy V..

f ikx A

T hdV, M r t:xy xz,t, b
x A

zdA (16d-f)

T tdA (16g-i)
¦J xz °

ztdA (16j,k)

In Eqs. (15) and (16) are stress resultants in x-direction. Those in y-direction
can be written in similar forms. It is of interest to note the presence of M

^
and M which are bimoment stress resultants. This induces the supplemented

w,n * * " A

moment stress resultants M and M and the corner moments M and M ; which are
analogous to the induetion of the supplemented shear stress resultants and the
corner forces by M and M

xy yx

2.4 Stress-Strain Relations

The stress-strain relations are, for the slab,

1-v"
r(E_ +ve 0

1-v"
r(e +ve x

xy 2(i+v) ^ (17a-c)

where v and E are the Poisson's ratio and Young's modulus of the slab; for £-ribs,
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CT Ef-E X GCY (18a,b)
x t, x xz 5'xz

and, for n.-ribs,
a E £ X G Y (19a,b)

y n y yz n yz

where Ef and Gr are the Young's modulus and the modulus of rigidity of £-ribs,
Cg ^

while E and G are those of r|-ribs, respectively. In addition, the stress-
strain relations for rib intersections are

O ¦ E-E 0 =Ee,X GTY (20a-c)
x ?x'y ny xy i xy

in which GT is the shear modulus of the intersections.

2.5 Stress Resultant - Displacement Relations

Substituting the stress-strain relations above into Eqs. (15), in view of Eqs.
(16), leads to the stress resultants in'x-direction as the followings.

3u 3v n.2

N (B+B h-2 + VB ,r-2 -C ff (21a)
x x 3x 3y x 3XZ

v 3u 3v ~2 * 3 v * ~it
N „ rikvlB+B'](__2 + ^)-2C« ^"-B* ^rf+C tM- (21b)
xy

L 2 ^3y 3x 3x3y x 3X3 x 3x33y

M -(D+D -^y-vD-^f+C -^ (21c)
x x 3x2 3y2 x 3x

Mxy= -'^^^'^^^^K^^^ (21d)

~3 23 32u 32u 32v
Q - (D+D ^-(D+H+2D') -^ +C f +C f + T-JT)yx x 3x3 y 3x3y2 x 3x2 3y2 8x3y

j, 3 u .5
-C* —-S- +D* -äJS- (21e)

y 3y* y 3x3y*

M C*-^W_.B*ÜJ « D*^_c*-^ (21f)g)
z,C x 3x23y x 3x2 »»? x 3x23y x 3x2

in which

B Eh/(1-V2) D Eh3/12(l-V2) Bx Ej-A,- (22a-c)

C E..S - D ErI - H t2A;-Gr/3 (22d-f)
x 5 y.C ' x y.C x x S

B* t2B /12 C t2C /12 D t2D /12 (22g-i)XXX XXX X XX
t t
} b
x y

B' r^hG, C B'h D' C'h (22J-&)
b b y I

and

Ar ± \ fdA S - r^- f fzdA I F £- f fz2dA (23a-c)
g bx JAJ y,fj bx JAJ y,5 bx JAJxxxThe stress resultants in y-direction, which can be written in similar forms,

are omitted in this paper for the sake of brevity.

2.6 Governing Differential Equations

Substituting the stress resultant-displacement relations above into the equilibrium

equations yields the governing differential equations of the form
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3zu 32v „3 »3 j. 3"*uO U O U UV «3 «3 \J U 4 r.3
B )_£ +B __£ +B o _c 3w _2c,^w _ß* _± w* _3w
x 3x2 J 3y2 23x3y x 3x3 3x3y2 y 3y* Y SxSy*

32v 32v 32u „3 aa * 3"*v -s
(B+B )—£ +B,—f +B, £ -C SL« -2C'-*==- -B* —£ +C -^2_ 0 (24b)

7 3y2 x 3x2 23x3y y 3y3 3x23y x 3x* x 3x*3y

(D+D )^- +(2D+H +H +4D')—1^ +(D+D ^ -C —\ -C —\
x 3x* x y 3x23y2 y 3y* x 3x3 7 3y3

33u 33v 35u 35v „6 * ^6
-2C- | + —r±)+C* T +C —IT- -D "4^7 -D -\^ q(x,y)

3x3y2 3x23y 7 3x3y* x 3x*3y x 3x"3y2 7 3x23y''
(24c)

where H1 (l-v)B/2+B', B2 (l+v)B/2+B'. Note that there are ten boundary
conditions in each direction, hence the above simultaneous governing equations can
be, if required, reduced into a Single partial differential equation of order
ten with only one independent variable, i.e., u or v or w.

2. 7 Determination of h

Considering the case of the anticlastic
bending shown in Fig. 3; the governing
equations, Eqs. (24) for q(x,y) 0, the conditions

of zero stress resultants along the
plate edges, the conditions of zero deflection

at the three supported corners, and the
condition R(a,b) P at the loaded corner
are satisfied by taking the displacement
functions in the form

uo(x'y) eS ' vo(x'y) elf - w<*»y>-p*y/<Dxy+V

in which e C'/Bj and

D (l-v)D-f-H +2D'-2C'e D (l-v)D+H +2D'-2C'e (26a,b)
xy x yx y

In good agreement with the experimental results [9,10] as shown typically in
Fig. 4, the value of the pure torsional rigidity, D +D can be obtained with
h being proposed as

/•
Fig. 3 Anticlastic Loading

(25a-c)

h 7h(h+h )/2 (27)
y

The results by CUSENS et al [3] and NISHINO et al [4] are also presented in
Fig. 4 for comparison.

3. APPROXIMATE THEORIES

3.1 Approximate Theory with Eighth Order Differential Equation

The bimoments and the bending moments about z-axis of the ribs may be assumed

negligible, and this assumption, in view of Eqs. (21f,g), can be carried out by
setting B*,B*,C*,C*,D* and D* to zero in all equations involved. Alternatively,X y X y x y
this approximation can also be attained if the coefficients of t and t' in Eqs.
(4a) and (6a) are dropped. Accordingly, the number of the natural boundary
conditions, Eqs. (12) or (13), is reduced to eight, which indicates that the governing

equations for this approximate theory can be represented by a Single eighth
order partial differential equation in terms of one independent variable.
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Legend: • Experimental Result

Proposed Theory
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Fig. 4 Comparison of Pure Torsional Rigidities

3.2 Approximate Theory with Fourth Order Differential Equation

The fourth order differential equation of Huber's type [1], which is commonly
adopted in practice, can be derived as follows: substituting the Solution of the
anticlastic bending, Eqs. (25), into Eqs. (21b,d) yields

3zw

xy
0, N 0, M -D

yx xy xy dxdy yx
M -D

32w

yx 3y3x
(28a-d)

where D and D are as defined by Eqs. (26). Equations (11), in views of Eqs.
xy yx

(21a,c) and Eqs. (28), become

3zu
(B+B £¦

x 3x2

32v
(B+B —2.

7 3y2

+ VB
3x3y
.2..

o_ c 3^
x 3x3

+ vB

(D+DJ: + (D +D

u u 3

_o_c 3w
3x3y y 3y3

3U-

0

,3"w
x 3x

Rearranging Eqs. (29) leads to

+(D+D )— -C
xy yx 3x23y2 y 3y* x 3x3

3Jv

y 3y;
q(x,y)

(29a)

(29b)

(30)

32u
0

c
X 33w

3x3 "

33w

3y3
"

3*v
B 0

3x2

32v
0

3y2

B+B
X

c
Y

B+B
y

B+B
V

3x3y
x J

B 0

B+By
°

3x3y

(31a)

(31b)

Assume, in the similar way as adopted by MASSONNET [6], that u and v appearing
on the right hand side of Eqs. (31) take the forms
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u =e-r— v e ir- (32a,b)
o x dx o y dy

where e (h+h )/2, e (h+h )/2. In view of Eqs. (32), Eqs. (31) become
x x y y

3 Uo 33w „ 33w
3 Vo Ifw „ 33w

e1 '.2
e> J2-JS. _ e" -JLJZ- (33a,b)

3x2 x 3x3 ~x 3x3yz 3yz 7 3y3 7 3x23y

in which
C C

?- e' .r-£- (34a,b)
x B+B ' y B+B

x ' y
e" -J2- e e" -r^- e (34c,d)
x B+B y ' y B+B x

x J y

Substituting Eqs. (33) into Eq. (30) results in the fourth order governing equation

of the form
_ 3 w „TT 3w ,„ 3 w c -! c iD —r +2H —5 r +D —-r q(x,y) (35)

xx 3x* 3x23y2 yy 3y*

Integrating Eq. (33a) with respect to x and substituting the result into Eq.
(21c) yield

M _D a!--Dl4 (36a)
x xx ax2 i 3y2

In fact, the above equation contains an arbitrary function of y, but it is set
to zero to insure a vanishing M for the case of zero curvatures. Similarly,
M can be obtained in the form

M -D 7^-»2 -TT (36b)
y yy 3y2 2 3x2

Substituting Eqs. (28c,d) and (36) into Eq. (15e) yields

Q =-D ^-(D +0,)^^ Q - -D ^T-CD +D2)T%- C37a,b)
x xx 3x3 Yx ' 3x3y2 y yy 3y3 xy 2 3x23y

In Eqs. (35) to (37), there are following new notations;
D =D+D -e'C D D +D -e'C (38a, b)

xx xxx yy y y y
D. =VD+e"C D, =vD+e"C (38c,d)

1 XX ' '2 y y
D (1-V)D+H +2D' -2C'e D (l-v)D+H +2D'-2C'e (38e,f)
xy x yx y

2H D +D +D, +D, 2D+H +H +4D' - 4C e + e"C +e"C (38g)xyyx12 XY xxyy
which denote the elastic rigidities of an eccentrically stiffened plate.

Typicai numerical results based on these proposed rigidities are compared with
the experimental results obtained by ZEIDAN [9] and VICTORIANO [10] as shown

in Figs. 4 to 6.

4. COMPARISON OF RESULTS BY VARIOUS THEORIES

For the case of anticlastic bending, it can be seen that the two approximate
theories yield essentially the same Solution as the original theory of tenth
order differential equation. In the two following sections, results by these
three theories for two more simple problems are compared.
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Legend: • Experimental Result Proposed Theory
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4.1 Cylindrical Bending

Considering the case of a plate which is infinitely long in y-direction, is
subjected to a uniformly distributed load of intensity q and has two simply
supported edges at x ± a/2; it is obvious that v and all derivatives of u and w

with respect to y must vanish. It can be shown that, for the tenth order theory,
the Solution takes the form

u (x)
o

q a°C
o x

D (B+B
XX X

(X)3 3(x}
a 4 a

w(x)
q an
no

24D V 2V 16 (39a,b)

The same Solution of pertinent displacements and stress resultants can also be
obtained by the other two approximate theories.

4.2 Simply Supported Plate

Consider the case of a rectangular plate simply supported along the edges

x=0, x=a, y=0 and y b; its boundary conditions are

v =0, w 0, N =0, M =0, M r=0 ;
o ' ' x x z,£

u 0, w 0, N 0, M 0, M
o y y z>n ¦ ° ;

at x=0, x=a (40a-e)

at y =0, y =b (40f-j)
To satisfy these boundary conditions, the displacement functions are taken in
the form of double Fourier series as

OO CO OO OO

u (x,y) Z Z u cos(ax)sin(6y), v (x,y) - 1 Z v sin(ax)cos(ßy)
o ,J n=i m=l mn o n=l m=l mn

(.41a,b}
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oo oo

w(x,y) Z Zw sin(ctx)sin(ßy)
n=1 n^j mn

(41c)

where a mir/a, ß mr/b. The load function q(x,y) can be expressed also in the
form of a double Fourier series as

(42)
oo oo

q(x,y) Z Z q sin(dx)sin(ßy)
n=i m=i mn

where
4 i>k i»a

q » -r f q(x,y)sin(ax)sin(ßy)dxdy•»mn ab J J
(43)

o o

Substituting Eqs. (41) and (42) into Eqs. (24) yields, for each harmonic m and n,

0

0 > (44)
kll k12 k13

k12 k22 k23

k13 k23 k33

mn

mn
•7

mn

in which

k,. (B+B )a2 +B,ß2 +B11 x

k,„

B2aß

(B+B )ß2 +B,a2 +B a"
V 1 X-(C a3 +2C'aßz +C aßH) k,,X y ' 22

-(C ß3 +2C'a2ß + C*a'*ß)
y X

(D+D )a" + (2D+H +H +4D')a2ß2 + (D+D )ß* + D*a'*ß2 +D*azß
x X y y x y

2Q.

(45a,b)

(45c,d)

(45e)

(45f)

For the approximation with a Single governing differential equation of fourth
order, Eq. (35), the boundary conditions are

(46a,b)

(46c,d)
w 0 M =0x

0 M =0y

at x 0 x a

at y 0 y b

To satisfy these boundary conditions and Eq. (35), the Solution can be taken in
the form of Eq. (4lc), and w is obtained as^ mm

w ^ C47)

where
D a*+2Ha2ß2+D ß1*

xx yy
(48)

and q is defined by Eq. (43). Accordingly, the stress resultants can be deter-
mn

mined by means of Eqs. (28c,d), (36), (37) and (41c).

The typicai numerical results from the proposed theories, for the case of uni-
formly distributed load q(x,y) q are presented in Fig. 7 from which the accuracy

of the approximate theories can be recognized. In addition, the results
obtained by CUSENS, ZEIDAJM. and PAMA [3], and NISHINO, PAMA and LEE [4] are also
put in this figure for comparison.

5. DISCUSSIONS AND CONCLUSIONS

In this study, the governing equations and natural boundary conditions of a

plate with eccentric stiffeners are obtained by a rational analysis by means of
a variational principle. The contributions of the top slab, the stiffening ribs
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and the intersection of these ribs to the overall behavior of the System can
be identified clearly. For the intersection of the ribs, the_shear strain-
displacement relation is assumed in the form of Eq. (7) with h being proposed
as in Eq. (27). If disregarding the contributions by the in-plane displacements,

the assumption adopted in these equations is equivalent to Computing the
torsional moments, due to the intersection of two orthogonal ribs at x x and

y y., by assuming that the shear stress T in the intersection is constant
and equal to that in the top slab at x y. and z h/2.

Neglecting the lateral bending and the bimoments of the ribs appearing in the
original tenth order theory leads to the approximate theory with an eighth order
governing differential equation, which slightly differs from those obtained by
other investigators [6,7]. This difference is due to the appropriate incorpora-
tion of the stiffness of the rib intersection in this study. The approximation
with a fourth order governing differential equation of Huber's type [1] is de-
rived in the similar way as adopted by MASSONNET [6] and in such a way that the
Solution for the case of the anticlastic bending is essentially identical to
those by the tenth order and eighth order theories.

It can be shown analytically also that these theories give essentially the same

Solution for the case of a plate under a cylindrical bending. Furthermore, the
numerical results by these theories for a simply supported plate subjected to a

uniform load are compared in Fig. 7. Also included in these figures are the
results by fourth order theories by CUSENS, ZEIDAN and PAMA [3] and NISHINO,
PAMA and LEE [4]. It is obvious that the results by the eighth order theory
agree best with the tenth order theory. Among the three fourth order theories
compared, the proposed one agrees best with the tenth order theory for most slab
sizes considered herein.

Lastly, it should be mentioned that this study is based in part on the disserta-
tion of the senior author [11], in which the design Charts of reinforced
concrete slabs supported on rows of columns are also prepared by means of the
proposed fourth order theory.

NOTATIONS

A ,A cross-sectional area of the
' ribs in x and y-directions,

respectively
a length of plate in x-direction
B Eh/(1-V2)

B as defined in Eq. (22a)
x

B ,B' as defined in Eqs. (22g,j)

Bj (l-v)B/2+B'
(l+v)B/2+B'

length of plate in y-direction
2

b

b ,bx y
spacings of the ribs in x and

y-directions, respectively
C as defined in Eq. (22d)

C ,C as defined in Eqs. (22h,k)
x

D Eh3/12(l-V2)

D as defined by Eq. (22e)

D ,D' as defined by Eqs. (22j,H)

D ,D bending rigidities of an
yy orthotropic plate, in x and

y-directions, respectively

D ,D pure torsional rigidities
xy yx

D ,D coupling rigidities in x and

y-directions, respectively

e C'/B.

2H total torsional rigidity
H as defined in Eq. (22f)
x
h thickness of the top slab
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h ,hx' y

* *
M ,Mx' y

z,n

u,E'
u,n

heights of ribs in x and

y-directions, respectively
,/h(h+h )/2

y
subscript denoting intersection

of two orthogonal ribs
supplemented bending moments
in x and y-directions per unit
width along y and x axes,
respectively
bending moments about z axis
of the ribs in x and
y-directions per unit width
along y and x axes, respectively
bimoments of the ribs in x and
y-directions per unit width
along y and x-directions,
respectively

n ,n number of ribs in x and
x v3 y-directions, respectively

p subscript denoting top slab

R corner force

x y

U ,vo o

thickness of the ribs in x and
y-directions, respectively

displacements of the middle
plane of the top slab in x and
y-directions, respectively

V.. volume integral domain for rib
^ intersection at point (x.,y

w plate deflection in z-direction

£,n ribs spanning in x and

y-directions, respectively
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