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A Rational Analysis of Plates with Eccentric Stiffeners
Analyse rationnelle de plagues avec des raidisseurs excentrés
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Research Associate Associate Professor
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Bangkok, Thailand Asian Institute of Technology
Bangkok, Thailand
Fumio NISHINO Seng-Lip LEE
Associate Professor Professor and Head
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SUMMARY

A rational analysis of a rectangular plate with eccentric stiffeners is carried out by a variational
principle, leading to a governing differential equation of order ten and a set of natural boundary
conditions. Neglecting the lateral bending and the bimoments of the ribs yields an approximate
theory with an eighth order differential equation. To make this study more practical, a fourth
order governing equation is derived. The results by these two approximate theories for two
simple cases, are compared with the results by the original ten order theory.

RESUME

L'analyse rationnelle d'une plaque rectangulaire avec des raidisseurs excentrés est effectuée
au moyen du calcul des variations, conduisant a une équation différentielle du 10° ordre et
a un certain nombre de conditions aux limites naturelles.

Le fait de négliger la flexion latérale et les bimoments des nervures permet de développer une
théorie approchée avec une équation differentielle du 8¢ ordre. Une équation différentielle
du 4° ordre est établie afin de rendre cette étude plus pratique. Les applications de ces deux
théories approchées dans deux cas simples sont comparées aux résultats de la théorie générale
du 10 ordre.

ZUSAMMENFASSUNG

Anhand eines Variationsprinzipes wird zur Berechnung einer Rechteckplatte mit exzentrischen
Steifen eine Differentialgleichung 2. Ordnung mit entsprechenden natlirlichen Randbedin-
gungen gewonnen. Durch Vernachldssigung der Querbiegung und der Wélbmomente der
Rippen kommt man zu einer Ndherungstheorie mit einer Differentialgleichung 8. Ordnung.
Um die praktische Anwendung zu vereinfachen, wird eine Differentialgleichung 4. Ordnung
abgeleitet. Die Ergebnisse dieser Zwei Naherungsmethoden fiir zwei einfache Falle werden
mit denjenigen der urspriinglichen 10. Ordnung verglichen.
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1. INTRODUCTION

The analysis of an eccentrically stiffened plate by an orthotropic plate theory
was first developed by HUBER [1]. 1In his approach, the top slab and the stif-
feners are ''smeared" into an orthotropic plate of equivalent bending and tor-
sional rigidities. The bending rigidity was later reevaluated by BARES and
MASSONNET [2] taking into account of the full interaction between the slab and
the stiffening grid system. An analysis in which the effect of Poisson's ratio
was considered for the slab and for the actual contact area between the inter-
secting ribs was developed by CUSENS, ZEIDAN and PAMA [3]. NISHINO, PAMA and
LEE [4] considered the interaction between the slab and the grid system in the
determination of these rigidities. Various attempts also made to develop a more
exact theory for this problem lead to governing differential equations with
higher orders than Huber's equation, e.g., PFLUGER [5], MASSONNET [6], and
CLIFTON, CHANG and AU [7]. However, the torsional rigidity proposed by all these
investigators does not agree well with the experimental results.

The principal objective of this study is to establish a rigorous and feasible
approach to the problem of the design of plates with eccentric stiffeners. By
means of a variational principle, natural boundary conditions and three coupled
differential equations are obtained involving one parameter, whose value is as-
sumed in such a way that the anticlastic solutionby this theory agrees closely
with the experimental results. These governing differential equations are re-
duced in order from ten to eight by neglecting the lateral bending and the bimo-
ments in the ribs. Furthermore, a single governing equation of Huber's type is
obtained. The solutions by these two approximate theories are compared with the
original tenth order theory, for the cases of a plate under a cylindrical bending
and a simply supported plate subjected to a uniform load.

2. PROBLEM FORMULATION BY VARTATIONAL PRINCIPLE

2.1 Sign Convention and Basic Assumptions

Significant dimensions of a typical element of a plate with eccentric stiffeners
are shown in Fig. 1. The positive directions of the corresponding displacement
components are also indicated. For stresses, the sign convention as adopted by
TIMOSHENKO and GOODIER [8] is used. The pertinent assumptions in this regard
are as follows: all displacements are small; the slab and ribs are made of thin
plates; points initially lying on the normal to the middle surface remain on the

- V,
Original - (x,y;,0)
Configuration -\ —— ——f”

(o]

-——t e
(I

w ’,l—’L
yEN X.ypZ) Z

Configuration

(x,yj+t,z)

Fig. 1 Typical Element of Plate with Fig. 2 Original and Displaced
Eccentric Stiffeners Configurations of &-Rib,

at y =y,
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normal after deformation; cross sections of the ribs do not distort; shear
strains along the middle plane and also across the thickness of the thin ribs
are small and can be neglected.

2.2 Strain-Displacement Relations

According to the above assumptions, displacements and strains can be written as
follows; for the top slab,

w(x,y,z) = w(x,y) (1a)
u(x,y,z) = u (x,y) -z L. (x,y), vix,y,z) = v (x,y) -2 o (x,y) (1b,c)
) ot 9% s ’ ) - ay ’ )
and
x 9x ax2 'y dy oy? ’ ny ny dy 9x 9xdy
(2a-c)
€, = A sz = Yzy =iy Yox = Yxz = 0 (2d-£)

for a &-rib, spanning in x-direction, at y = Yyo

dw - -z (¥
W(x,yi‘*t,Z) = w(x,yi) +t(3—y)y=yi " v(X.yi+t.Z) = vo(x,yi) Z(BY)Y:yi (3a,b)
R,y 4t,2) = 1 (x,5,)-2C5) z(—az—Y’—) - av—°(x vt (3c)
S o i ox’y=y 9xdy Y=y, ox i
and Bu ( " [ 324 3%v ] -
e = - (x, + = ’ a
x *:¥y Z( 2y =y, 1> %xtay vy, o e (574)

Yxz = Yzx = Zt(axay)y =y » B¢ T 0, €2 © Os Yxt T Yex T Ds Yez = Yor © .

(4b-£)

in which t is an arbitrary coordinate axis normal to the middle plane of the
E-rib as shown in Fig. 2. Similarly for an n-rib, spanning in y-directiom, at
X = X,,

n

w(xj+t‘,y,z) w(x ,y)+t' ( ) ’ u(xj+t',y,z) = i, (x ,¥)- z( ) (5a,b)
j ™

Bu

1 - _ ﬁ 82w _ o '
v(xj+t »¥s2) = vo(xj,y) Z(By)x=xj+[265;§;)x=x3 3 (xj,y) t (5¢)
and
aV azw 82u

€, = 5;—(x »y)- z(g—;)x_xj [ (axayz)X=xj_ - 2(x.,y)] (6a)

'Y ='Y =2tl(82w) €=0€=0'Y ='Y =0-Y =-Y =0

yz 9x9y x=xj’ ¢t Tz * lyt! t'y > Tzt! t'z
(6b-£)

where t' is an arbitrary coordinate axis normal to the middle plane of the n-rib.
At the intersection of the &-rib at y = Yy and the n-rib at x = x,, the strain-
displacement relations are assumed to take the same forms as thosg for the ribs,
excepting that ny and ny are assumed in the form similar to that of the slab,
i.e.,

R - Pl P (7)
ny ny dy 9x 0xdy x=xj,y=yi
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where x. -t /2 < x<x, +t /2, y,.-t_/2<y<y, +t /2 and h/2 <z < h/2+h_,
j oy J Y i x i x y

assuming that h_ < hx' The term h will be determined in such a way that the pure

torsional rigidity obtained from this formulation agrees reasonably well with the
experimental results.

2.3 Equilibrium Equations and Boundary Conditions

The virtual work principle can be written as

Wi = We (8)

where Wi and We are the internal and external virtual work, respectively, and can
be expressed in the forms

W, =J'”[o Se_+0 8 +0_ 8e_+T_ 8y. +T 8y _+t__08y ]dv %)
i v X X y y z z Xy Xy yz 'yz zZX ' zX

bg - - _ X=a,
W = J. fq(x,y)6wdA+[I I (0 Su+t_Sv+T Gw)dzdy]
e A b,%z x xy Xz -a,

a, _ _ _ y=b2
+|:‘[ J. (c Sv+T xGu +T z(Sw)dzdx] (10)
adz 7 y y o,

where q(x,y) is the applied transverse load, a bar (") denotes a boundary trac-

tion, x = a ,a, and y = b ,b, are the four edges of the plate.

Substituting Eqs. (9) and (10) into Eq. (8), in views of Egqs. (1) to (7), and
applying Green's formula lead to the equilibrium equations, for an eccentrically
stiffened plate with identical and equally spaced ribs in each direction, as
follows

BNx oN - oN ﬁz
ox + dy =0, ox ¥ dy = 8 S
aznx 32M 3%M < 32M

+—ZL 4+ —Z 4+ —L + qx,y) = 0 (11c)

ax? 9xdy 9x9y dy

and the natural boundary conditions are, along the edges x = a and x = a,s

- = ﬁx , or u. = constant (12a)
=N , or v_ = constant (12b)
Xy Xy o
- . -
Vx = Qx+ 5% (Mxy -sz’g) , or w = constant (12¢)
oM
* -
M =M + —8.8 , Or LA constant (124)
b3 b dy 9x
M =M or -av—o = constant (12e)
Z’E.: Z,g ? 3x a
along the edges y = b1 and y = b2 5
- = ﬁyx , or u = constant (13a)
N =N , or Vv = constant (13b)
y y o
- 9 -
vV = + —M -M or w = constant 13c
y Qy 9% yx yz’n) ) n ( )
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* -
M = My - '7§fﬂ s or %%‘ = constant (134d)
- auo
Mz,n = Mz’n , or 3y = constant (13e)
and, at the corners,
R = M +M -M -M , or w = constant (14a)
Xy yX  Xz,& yz,n
A _ o a_w _
Mx = Mm,g , or = = constant (14b)
A = ow
My = Mm’n , or 5 - constant (14c)
where
aMz ’
N ] + =
N N ot g N Neyp iy 1t ——L‘czax (15a,b)
amm £
M = M s, M = M 2M + —= 15¢,d
X P Xs& Xy Xy,P Xy, xz’g ox ¢ ’ )
BMX oM < oM
= — 4+ = = - - =
Q, Py —Y—ay , vx Q + —’—‘Y—ay , R Mxy Myx (15e-g)
oM
* A
Moo= Mo+ =28 f - u (15h,1)
X X ay x w,§
and
h h
N = 2 d N L dA, N = 'r? 16
x5P - J_hox i N bx nrA«[Gx > xy,p - -ETxde (I6are)
2 2
X
h
N = L J:[IT dv, M - ] % o_zdz, M = —l-J’.rG zdA (16d-£)
xy,1 b b xy °’ X,p h x° 7’ "x,& b x
Xy V.. - X A
ij x
h
M - [ T__zdz, M = A .f”'t hdv, M = —1-I J"c tdA (lég-i)
XY ,P h xy  ° xy,I b_b xy > "xz,& b Xz
-3 Xy VlJ X Ax
= L - 'J‘ ;
Mz,g = bx IAJ GxtdA, L J' o_ztdA (16j,k)
X

In Eqs. (15) and (16) are stress resultants in x-direction. Those in y-direction
can be written in similar forms. It is of interest to note the presence of M

and M , which are b1moment streis resultants. This 1nduces the supplemente
’
moment stress resultants M and M , and the corner moments Mx and M 3 which are

analogous to the induction of the’ supplemented shear stress resultants and the
corner forces by M. and M__.
Xy yx

2.4 Stress—Strain Relations

The stress-strain relations are, for the slab,

& - (e +ve ), o (e +ve ), T E £17ac)

E
X 1-v2 X y y 1-v2 Yy X Xy 2(14V) Txy

where v and E are the Poisson's ratio and Young's modulus of the slab; for &-ribs,
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g, = EEEx » Ty = G&;sz (18a,b)
and, for n-ribs,

o = € T = G 1 b

y Enfy » Ty n'yz e

where E_ and GE; are the Young's modulus and the modulus of rigidity of &-ribs,
while E and G are those of n-ribs, respectively. In addition, the stress-—
strain relations for rib intersections are
o = o] E € T =G (20a-c)
x y ny’ ‘xy 1 xy

in which GI is the shear modulus of the intersections.

EEEX s

2.5 Stress Resultant - Displacement Relations

Substituting the stress-strain relations above into Eqs. (15), in view of Egs.
(16), leads to the stress resultants in x-direction as the followings.

ou ov

_ ‘o ‘o o %
N = (B+B )5+ VB 5y Cy ™ 3 (21a)
du v 2 0°v L
= A=v) ' o Oy _npt O W _a¥ o, . * 0w
ny =R+ ](ay i )-2C 3x3y B_ 52t " axPay (21b)
au
_ 3%w 3%w 0
M= -(D+D) o -vD 72 +C_ = (21c)
Ju oV 33y i
92w o) o) * o) * 9w
= L ' 1 - 9o w
Mxy [(1-v)D +H_+2D'] 53y +C (,ay + 52 )-Cy - +D_ 253y (214)
933 53y Bzuo 9%u 82v0
= - (D+D_) —5 - (D+H +2D' +C +C' +
% ¢ ux) ax? ¢ y ) 3xdy? ¥ 93x? (8y2 3x0y
o'u 5
* [¢) * 3w
-C — 21
v 3y Y axdy" st
. 9%y 32y
* 3y * o * 33 * o
M = C -B. —— M = D -C 21f
2,E° % axfay X ax? W& X ax%dy X ox? Bl
in which
B = Eh/(1-v2) , D = En%/12(1-v®) , B, = E,A (22a-c)
X EE
C. = ES D = E,I H = t2aA 3 22d-f
X Ey,8 ©ox £y,& B X EGE/ ¢ )
= 2 = 2 = 2 -
B, = thx/12 ,» Cy txcx/lz » D txDx/lZ (22g-1)
t t
B' = -b—x—blh G , C'= B'h , D' = C'h (225-2)
X y y
and
1 J'J‘ i} 1 2
A= — dA , S = .szA I = — Lr z“dA (23a-c)
£ bx AX y»& bx IAX ’ ¥,& bx Ax

The stress resultants in y-direction, which can be written in similar forms,
are omitted in this paper for the sake of brevity.

2.6 Governing Differential Equations

Substituting the stress resultant-displacement relations above into the equili-
brium equations yields the governing differential equations of the form
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3%u 3%u 92%v 9*u

(B+B_)—2 +B ——= +B —> -C 93‘; T I i aswq =0 (24a)
x" 9x%2 1oy? 23xdy X 3x dxdy2 Y 9y ¥ 9xdy
32 32 e 3"
(B+B_ ) Yo gl 0 4p_ 0 ¢ B _,n B gk Yo ot % 0 (24b)
v 9y T 13x? 23xdy ¥ oy’ ox23y X 9x* X 9x"dy
3 3
" " i 3°u 9 v
@+ )2 ¥ 4 (2p+H_+H_+4D")—¥— +(D+D_) ¥ ¢ 2 —C :
X 9x Xy 0x“dy y 9y X 9x Yy oy
3 3 5 5
-2¢C" ( " + i o) c* " % +c. "oyt o B = gy
axdy?  0x%3y ¥ axdy* X ax"dy X ax*ay? ¥ ox%oy* ’
(24¢)

where B, = (1-v)B/2+B', B, = (1+v)B/2+B'. Note that there are ten boundary con-

ditions in each direction, hence the above simultaneous governing equations can
be, if required, reduced into a single partial differential equation of order
ten with only one independent variable, i.e., u  Or v_ or w.

2.7 Determination of h

0 X
Considering the case of the anticlastic ~—
bending shown in Fig. 3; the governing equa-
tions, Eqs. (24) for q(x,y) = 0, the condi- r 4 P b

tions of zero stress resultants along the
plate edges, the conditions of zero deflec- a
tion at the three supported corners, and the y
condition R(a,b) = P at the loaded corner
are satisfied by taking the displacement
functions in the form

Fig. 3 Anticlastic Loading

-4 :) 4 - -
Uy =eg » V(y) =eqs » wixy)=Pxy/(D 4D ) (25a-c)
in which e = C'/B1 and
D = (1-v)D+H +2D' -2C'e s, D = (1-v)D+H +2D' -2C'e (26a,b)
X yx y

Xy

In good agreement with the experimental results [9,10] as shown typically in
Fig. 4, the value of the pure torsional rigidity, ny.+Dyx’ can be obtained with

h being proposed as

i = Jhh +hy)/2 (27)

The results by CUSENS et al [3] and NISHINO et al [4] are also presented in
Fig. 4 for comparison.

3. APPROXIMATE THEORIES

3.1 Approximate Theory with Eighth Order Differential Equation

The bimoments and the bending moments about z-axis of the ribs may be assumed
negligible, and this assumption, in view of Eqs. (21f,g), can be carried out by
setting B;,B;,C;,C;,D; and D* to zero in all equations involved. Alternatively,

this approximation can also be attained if the coefficients of t and t' in Egs.
(4a) and (ba) are dropped. Accordingly, the number of the natural boundary con-
ditions, Eqs. (12) or (13), is reduced to eight, which indicates that the govern-
ing equations for this approximate theory can be represented by a single eighth
order partial differential equation in terms of one independent variable.
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Legend: e Experimental Result ——— Cusens et at [3]
Proposed Theory @ ———-—- Nishino et al [4]
mg T T % 4 T //'
l Models G1,62,63,64.[9] | Models J1. (9] A= .
- 8 = < 3 /1/ _/‘
= T L T s —
> /—-"' A
e 4 Jﬂ_— .__—'___,—_——’ C?~2 “’/' ° I
- /// /":"— _ - +h .’-—7’___——.-———'—"—___.-
s %r— St Ox
0 2 4 6 8 9 | 2 3
Ny (hy+h)/h
ns 4 T T % T T
(o |Models A1,A2, A3. [10] 4w | Models B1,82,83.[I0]
’:;n ’—‘-‘—‘/ B ,-—-‘4 ; /”/.
A T2 oo
> s W, o ) ) > __._——_:‘H—-———-:"
s S A 2 h=hy
0 2 4 6 8 9 ol 2 3 &
N, (he+h)/h

Fig. 4 Comparison of Pure Torsional Rigidities

3.2 Approximate Theory with Fourth Order Differential Equation

The fourth order differential equation of Huber's type [1], which is commonly
adopted in practice, can be derived as follows: substituting the solution of the
anticlastic bending, Eqs. (25), into Eqs. (21b,d) yields
_ _ 32w _ 3%w
ny = G Nyx =05 Mxy - ny 9xdy °’ Myxh Dyx dyodx
where DX and D © are as defined by Eqs. (26). Equations (11), in views of Egs.

Y y
(2la,c) and Eqs. (28), become

(28a-d)

82u BZV aaw
(B+B ) —2 + VB—=-C 7 = 0 (29a)
S 9x0oy % gx
32y 3%u 33y
(B+B ) —2 + VB —=-C —3 = 0 (29b)
Yy Qy 9Xdy y oy
3%u 33
3w dtw 34w o)
(D+D_) +(D_ 4D )—— +(D+D ) -C -C = q(x,y) (30)
x3x" | xyyx gx?ay? v ay"  Xox® Y 3y’ Ll
Rearranging Eqs. (29) leads to
2 2
9 Y _ Cx 33w __B ¢ Yo (31a)
N2 B¥B_ 5y  BHB_ V 3xdy
2 2
Yo 0 G 2w B 0% (31b)
dy? B+By dy? B+By axdy

Assume, in the similar way as adopted by MASSONNET [6], that u_ and v_ appearing
on the right hand side of Eqs. (31) take the forms
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- 9w - ow
u = e 3., VYV, = ey 3y (32a,b)
where e = (h+hx)/2, ey = (h+hy)/2. In view of Eqs. (32), Eqs. (31) become
2 2
9 Yo ' 33w nw d Vo : 33w i 33w
2 = e ~ 3" e 2 ’ 2 = e 3~ e 2 (33aab)
ox X 9x X 9x9y ay Yy 9y Y 9x“9y
in which
Cx C
1 - 1 =
e = BB 5 ey EI%_ (34a,b)
X y
woo_ VB nwoo_ VB
e, = B+Bx ey 5 ey = B+By e (34c,d)

Substituting Eqs. (33) into Eq. (30) results in the fourth order governing equa-
tion of the form
8'w +2H 2w +D 8w = q(x,y) (35)
xx 9x* ox2oy? Yy oy* ’
Integrating Eq. (33a) with respect to x and substituting the result into Eq.
(21c) yield

32w 3%w (36a)
M = D "=D 7
X XX 3x dy
In fact, the above equation contains an arbitrary function of y, but it is set
to zero to insure a vanishing M_ for the case of zero curvatures. Similarly,

My can be obtained in the form

2 2
M = -p ¥ _p 2¥ (36b)
y ¥y 3y 9x
Substituting Eqs. (28c,d) and (36) into Eq. (15e) yields
3%w 33w a3 33w
= -D ———--(D D e = -D -(D__ 4D ) (37a,b)
% XX jx? oxay? Y YY oy Xy x2dy ’
In Eqs. (35) to (37), there are following new notations;
D =D+D -e'C , D =D+D -e'C (38a,b)
XX X XX yy y vy
D, = v+e'C s , D, =vuv+e'C (38c,d)
1 X X 2 vy
D = (1-v)D+H +2D' -2C'e , D = (1-v)D+H +2D'-2C'e (38e,f)
Xy X yx y
2H =D +D +D,+D, = 2D+H +H +4D' -4C'e+e''C_+e'C (38g)
xy “yx 1 72 x 'y XX ¥y

which denote the elastic rigidities of an eccentrically stiffened plate.

Typical numerical results based on these proposed rigidities are compared with
the experimental results obtained by ZEIDAN [9] and VICTORIANO [10] as shown
in Figs. 4 to 6.

4, COMPARISON OF RESULTS BY VARIOUS THEORIES

For the case of anticlastic bending, it can be seen that the two approximate
theories yield essentially the same solution as the original theory of tenth
order differential equation. In the two following sections, results by these
three theories for two more simple problems are compared.
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Legend: e« Experimental Result Proposed Theory

120 T T 120 T
Models G1,62,63,64.[9] | Models A1, D1,61.[9] /
e® e o ® L/
~N
> F o3
> bl
O 40 7 O 40 //
he=h
0 0 ./ A y
0 2 4 6 8 9 | 3

Ny s(hx+h)/h !

Fig. 5 Bending Rigidity Dxx

Legend : e Experimental Result Proposed Theory

15 . , 30 ,
Models A1, A2,A3. [10] //, Models B1,B2,83.[I0]
o 10 - a 20
Mg ~
> / = /
S s // S o -
1/ / h‘=hy
% 2 4 6 8 9 O 2

Fig. 6 Bending Rigidity Dyy

4.1 Cylindrical Bending

Considering the case of a plate which is infinitely long in y-direction, is sub-

jected to a uniformly distributed load of intemsity q , and has two simply sup-

ported edges at x = * a/2; it is obvious that v_ and all derivatives of u_and w

with respect to y must vanish. It can be shown that, for the tenth order theory,

the solution takes the form
q ac

o) X X 3 ,x
u,(®) = T Ers )[(Z) - Z(Z)] » Wix) =
XX X

4
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qO

24D
XX

X 3.% 5
[Q;)h- E(g)2+‘ig] (39a,b)

The same solution of pertinent displacements and stress resultants can also be
obtained by the other two approximate theories.

4.2 Simply Supported Plate

Consider the case of a rectangular plate simply supported along the edges
x=0, x=a,y=0andy =b; its boundary conditions are

*

¥ - 0, w=0, Nx =0, M_ =0, Mz,E =0 s at x=0, x=a (40a-e)

‘l.l0 = 0, w 0, Ny = 0, My 0, Mz’n = ; at y=0’ y=b (l&Of—j)

* 2

To satisfy these boundary conditions, the displacement functions are taken in
the form of double Fourier series as
[ee] oo [=o]

uo(x,y) = I I umncos(ax)sin(ﬁy), vo(x,y) = I I

v sin(ax)cos (By)
n=1 m=1 n=1 m=1 mn y

(41a,b)
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=]

wix,y) = I m;=:°1 w -sin(ox)sin(By) (41c)

where 0 = mm/a, B = nm/b. The load function q(x,y) can be expressed also in the
form of a double Fourier series as

q(x,y) = I I q__sin(ox)sin(By) (42)
m=1 M0

where

mn

b a
Uy = % Jlo J‘o q(x,y)sin(ax)sin(By)dxdy i)

Substituting Eqs. (41) and (42) into Eqs. (24) yields, for each harmonic m and n,

kll k'12 k13 umn 0
ke %o ki Voo = 0 (44)
kxa Kys ksa - 9mn
in which
k.. = (B+B )o?+B.B2 +B B k., = B,oB (45a,b)
11 - Lo tBBT+ v s Ky = B0 a5
* *
k,, = —(Cxa3+2C‘a82+Cya8") s k,, = (B+By)32+51a2+nxa" (45c,d)
*
k,, = -(Cy83+2C‘a28 +C_0"8) (45e)
* *
k,, = (DD Yo + (2D+H +H +4D')a?BZ + (D+D )R" +D a2 +D 2B (45€F)
X X y y X y

For the approximation with a single governing differential equation of fourth
order, Eq. (35), the boundary conditions are

w = 0, Mx = 0 ; at x=0, x=a (46a,b)
w = 0, My = 0 $ at y=0,y=b>D (46c,d)

To satisfy these boundary conditions and Eq. (35), the solution can be taken in
the form of Eq. (4lc), and Mo is obtained as

9nn
v T (47)
mn
where
A = D _o"+2Ho?R%? +D R" (48)
mn XX vy

and is defined by Eq. (43). Accordingly, the stress resultants can be deter-
mined by means of Egqs. (28c,d), (36), (37) and (4lc).

The typical numerical results from the proposed theories, for the case of uni-
formly distributed load q(x,y) = qo,arepresented in Fig. 7 from which the accu-
racy of the approximate theories can be recognized. In addition, the results
obtained by CUSENS, ZEIDAN and PAMA [3], and NISHINO, PAMA and LEE [4] are also
put in this figure for comparison.

5. DISCUSSIONS AND CONCLUSIONS

In this study, the governing equations and natural boundary conditions of a
plate with eccentric stiffeners are obtained by a rational analysis by means of
a variational principle. The contributions of the top slab, the stiffening ribs
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and the intersection of these ribs to the overall behavior of the system can
be identified clearly. For the intersection of the ribs, the_shear strain-
displacement relation is assumed in the form of Eq. (7) with h being proposed
as in Eq. (27). 1If disregarding the contributions by the in-plane displace-
ments, the assumption adopted in these equations is equivalent to computing the

torsional moments, due to the intersection of two orthogonal ribs at x = xj and

Yy =Yy by assuming that the shear stress Txy in the intersection is constant
and equal to that in the top slab at x = xj, ¥ =¥ and z = h/2.

Neglecting the lateral bending and the bimoments of the ribs appearing in the
original tenth order theory leads to the approximate theory with an eighth order
governing differential equation, which slightly differs from those obtained by
other investigators [6,7]. This difference is due to the appropriate incorpora-
tion of the stiffness of the rib intersection in this study. The approximation
with a fourth order governing differential equation of Huber's type [1] is de-
rived in the similar way as adopted by MASSONNET [6] and in such a way that the
solution for the case of the anticlastic bending is essentially identical to
those by the tenth order and eighth order theories.

It can be shown analytically also that these theories give essentially the same
solution for the case of a plate under a cylindrical bending. Furthermore, the
numerical results by these theories for a simply supported plate subjected to a
uniform load are compared in Fig. 7. Also included in these figures are the
results by fourth order theories by CUSENS, ZEIDAN and PAMA [3] and NISHINO,
PAMA and LEE [4]. It is obvious that the results by the eighth order theory
agree best with the tenth order theory. Among the three fourth order theories
compared, the proposed one agrees best with the tenth order theory for most slab
sizes considered herein.

Lastly, it should be mentioned that this study is based in part on the disserta-
tion of the senior author [11], in which the design charts of reinforced con-
crete slabs supported on rows of columns are also prepared by means of the pro-
posed fourth order theory.

NOTATIONS
Ax,Ay cross-sectional area of the D Enh3/12(1-v?)
. ) —di ;
izzzez:i:ei;d y-directlons, D, as defined by Eq. (22e)
*
length of plate in x-direction DX,D' as defined by Egs. (22j,%)
42
En/(1-V7) x,D bending rigidities of an
B as defined in Eq. (22a) XYY orthotropic plate, in x and
* y-directions, respectively
B ,B' as defined in Eqs. (22g,j)
b — ny’Dyx pure torsional rigidities
. -
B, (14+v)B/2 +B' D,,D, coupling rigidities in x and
-directions, respectively
b length of plate in y-direction ¥ ’
L}
bx’by spacings of the ribs in x and e C'/B,
y-directions, respectively 2H total torsional rigidity
C, as defined in Eq. (22d) H_ as defined in Eq. (22f)

5
Cx,C' as defined in Egqs. (22h,k) h thickness of the top slab
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hx,h heights of ribs in x and ,n_ number of ribs in x and
y y-directions, respectively y y-directions, respectively
h h(h+hy)/2 subscript denoting top slab
I s?bscript denoting inter§ec— R corner force
tion of two orthogonal ribs
* : 2 X
M ,M supplemented bending moments oty thickness of the ribs in x and
x in x and y-directions per unit y-directions, respectively
:Z:tzcziszﬁ y and x axes, A displacements of the middle
e ¥ plane of the top slab in x and
Mz £ bending moments about z axis y-directions, respectively
M ? of the ribs in x and ) ) )
z,n y-directions per unit width Vij volume integral doyaln for rib
along y and x axes, respectively intersection at point (Xj’yi)
M, £’ bimoments of the ribs in x and w plate deflection in z-direction
M » y-directions per unit width
w,MN along y and x-directionms, £,Nn ribs spanning in x and
respectively y-directions, respectively
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