Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen

Band: 1(1977)

Heft: P-5: Dynamic analysis of a curved floating bridge
Artikel: Dynamic analysis of a curved floating bridge
Autor: Holand, I. / Langen, 1. / Sigbjérnsson, R.

DOl: https://doi.org/10.5169/seals-32457

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.08.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-32457
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

A IABSE PROCEEDINGS P-5/77 1

Dynamic Analysis of a Curved Floating Bridge
Analyse dynamique d'un pont courbe flottant

Dynamische Berechnung einer gekrimmten schwimmenden Briicke

I. HOLAND R. SIGBJORNSSON
Professor, dr. techn. Research Engineer, lic. techn.
Norwegian Institute of Technology SINTEF
Trondheim, Norway Trondheim, Norway
I. LANGEN

Research Engineer
SINTEF
Trondheim, Norway

SUMMARY

A curved floating bridge subjected to wave loading is analyzed. The structural model is made
up of straight beam elements, and the hydrodynamic model is based on the two-dimensional
potential theory. Results of forced deterministic vibration analyses are given for three sinusoidal
wave patterns. The response to irregular waves is investigated in the time domain by a Monte
Carlo technique. A sea state described by the JONSWAP spectrum is simulated, and expected
peak response and standard deviations are found by a statistical treatment of the time series.

RESUME

Un pont courbe flottant est soumis & I'action des vagues. Le modgle statique se compose
d'éléments de poutres rectilignes. Le modéle hydrodynamique est basé sur la théorie des
potentiels, & deux dimensions. Les résultats de I'analyse des vibrations de type déterministique
forcé sont présentés pour trois cas de houle de forme sinusoidale. L'effet, dans le temps,
de vagues irrégulieres est étudié au moyen de la technique de Monte Carlo. Des conditions
maritimes sont simulées selon le spectre JONSWAP et les valeurs extrémes et déviations
standard sont obtenues par traitement statistique de séries dans le temps.

ZUSAMMENFASSUNG

Eine von Wellen beanspruchte, gekrimmte schwimmende Briicke wird berechnet. Das sta-
tische Modell ist aus geraden Balkenelementen zusammengesetzt. Dem hydrodynamischen
Modell liegt eine zwei-dimensionale Potentialtheorie zu Grunde. Resultate von gezwungenen
deterministischen Schwingungsberechnungen werden fir drei sinusférmige Wellen gegeben.
Die Reaktion auf irregulare Wellen wird als Zeitfunktion mit einer Monte Carlo-Technik
untersucht. Ein Wellenzustand nach dem JONSWAP-Spectrum wird simuliert, und erwartete
Extremwerte und Standardabweichungen werden mittels einer statistischen Behandlung der
Zeitreihen gefunden.
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THE SALHUS BRIDGE PROJECT

The Norwegian Public Roads Administration considers a floating bridge or a sus-—
pension bridge to replace the ferry connection across the Salhus Fiord north of
Bergen.

The floating bridge, that shall be discussed here, is designed as a horizontal
arch, see Fig. 1. The traffic runs on a concrete slab supported by columns from
a continuous pontoon, see Fig. 2. The bridge is designed with the minimum
dimensions given in Fig. 2, except at the southern end. Here the slab has been
raised to allow sufficient free sailing space, see Fig. 1. The number of cells
(three in Fig. 2) is supposed to be increased to maximum 7 at the southern end.

To allow the bridge to follow the tide variation, hinge sections are provided
at the ends, see Fig. 3.

The governing loading originates from the waves. Thus a dynamic analysis is
mandatory. The Division of Structural Mechanics and the Engineering Research
Foundation at the Norwegian Institute of Technology have been engaged to carry
out these analyses, which have been reported in [1] through [6]. The main
features and results shall be described here. The project is still under evalu-
ation, and possible redesigns to improve the dynamic behaviour are being con-
sidered.

THE STRUCTURAL MODEL
The curved bridge was modelled by 20 straight beam elements (see Fig. 1), each
61.72 m long and with uniform cross section. In the part with variable cross-—

section, the midpoint of the element was chosen to be representative.

The standard equation of motion may be written

Kr + Cr + MF = R(t) (1)
in which
K = stiffness matrix, M = mass matrix,
r = vector of nodal displacement R(t) = vector of external forces,
parameters, t = time, and
C = damping matrix, . = time derivative.

In the displacement vector r the three translational and the three rotational
components at each node were included. The load vector R(t) contains the
corresponding load.

The stiffness matrix K was based on the traditional beam bending theory, ex-
cluding shear strain, and on the St.Venant theory of torsion, Axial strain was
included. The contribution from the bridge deck to the stiffness of the cross-
section was neglected because of large flexibility of the columns in comparison
with the box-shaped pontoon. Therefore only the cross-section of the pontoon
was considered to take axial forces and bending and torsional moments, and the
motion of the bridge was related to the centre of shear D of the pontoon alone
(see Fig. 2). Additional terms were added to the stiffness matrix for vertical
and torsional motion, to take into account the buoyancy effect.

The mass M is the sum of a structural mass matrix and a hydrodynamic mass matrix.
The whole cross-section was considered for mass calculation, and thus the centre
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of gravity G was located above the centre of shear D.

The damping in the structure is considered to be small compared with the hydro-
dynamic damping. Therefore only hydrodynamic terms were included in the damping
matrix C, which is not orthogonal with respect to the natural modes.

The buoyancy forces, the inertia forces and the damping forces were assumed to
be distributed along the bridge, and the corresponding matrices were consistent
with the assumed displacement field for the beam element.

The hinge structures at the end wvere simulated by the boundary conditions shown
in Fig. 3.

Sketch of hinge section Corresponding boundary
condition in the model

FIGURE 3 HINGE SECTION AND
BOUNDARY CONDITIONS 3)0 —

o= ELEVATION

N

Pro—r
b‘i: I — PLAN %___

-T1=1

Eq. (1) was solved by direct numerical integration using ''the constant average
acceleration method", which is also known as the Newmark method with B = 1/4.

The general finite element program used in the dynamic analysis is a modified
version of the computer program FEDA [3,7].

THE HYDRODYNAMIC MODEL

The water pressure on the pontoon induced by the motion of the pontoon itself
and the waves may be interpreted as a set of hydrodynamic mass, damping and
restoring buoyancy forces, and wave forces. The calculation of these forces is
herein based on three main assumptions: (1) linearity, (2) two-dimensional flow,
(3) potential flow.

Re. 1: A linear hydrodynamic model is used. This assumption implies that the
principle of superposition holds, that hydrodynamic damping and hydrodynamic
mass may be found assuming the pontoon acting like a wave generator in calm
water, that wave forces are equivalent to those due to wave action on a re-
strained pontoon, and that influence from the wavy surface is neglected when
calculating restoring buoyancy forces.

Re. 2: The evaluation of the hydrodynamic forces is based on two-dimensional
theory and experiments. This assumption is reasonably well satisfied when the
ratio between the width of the pontoon and the distance between two adjacent
nodes in the actual mode of vibration is small. This ratio is in the present
case about 1/10 for the modes in question. For the wave forces this implies
that they are related to a situation where the wave crests are tangential to
the bridge arch.
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Re. 3: The whole hydrodynamic problem is solved inside the framework of the
potential theory. Hence, the velocity potential is obtained by solving the two-
dimensional Laplace equation with the relevant initial and linearized boundary
conditions.

According to [8,9], these conditions are approximately fulfilled in many problems
associated with ship motions, with some reservations for viscous effects, with
increased damping in sway and roll. As all motion, in particular roll, is small
for the actual bridge in comparison with a ship, the assumptions above should be
satisfied with a reasonable degree of accuracy.

Let Oy'z' be a coordinate system which is fixed in space as shown in Fig. 2.

The y'-axis is placed in the water surface, and the z'-axis is vertical, positive
downwards. The origin O is the intersection of the centreline of the section and
the waterline. The body is assumed symmetric about the z-axis. In this co-
ordinate system the forces per unit length of the pontoon may be expressed for
sway as [8]

YI = -3 = [ b .18, S a "l - b : + Y‘ (2)
vy’ vy’ y¢¢ y¢¢ w
where
¢' = rotation in the y'-z'- a P coupling masses,
plane, about O, y _ y _ ; 3
by¢_b¢y = coupling damping, and

ayy hydrodynamic mass, Y; = wEve Foress

hydrodynamic damping,

b
yy
According to the model all these quantities depend on frequency.

Referring back to Eq. (1), the a-terms of Eq. (2) enter the mass matrix M, the
b-terms the damping matrix C and the force components Yé the load vector R(t).

The sway component of the exciting force induced by a sinusoidal wave with a unit
amplitude
L = sinwt (3)

may be expressed as

LY I _
YW Y351n(wt Ey;) (&)

where Yé is a frequency dependent amplitude, and EYE a frequency dependent phase

angle referred to wave elevation at 0 (see Fig. 2):

The heave and roll forces are governed by equations similar to Eqs. (2) and (4).
These equations show that the sway and roll forces are coupled.

In the structural analysis the reponse is best referred to the centre of shear
D (see Fig. 2). Therefore Eq. (2) is transformed to the Dyz-coordinate system
shown in Fig. 2 before substitution into Eq. (1).

Frank [10] and Vugts [8,9] have calculated the wave force amplitudes and the
hydrodynamic quantities for heave and roll for different types of ship-like
sections using different numerical schemes. Faltinsen [11] has compared the
methods for rectangular sections. The results show good agreement.

Vugts [8,9] has also compared his theoretical results with experimental results
over a large range of frequencies. For the Salhus bridge project two-dimensional
experiments with a rectangular pontoon were carried out for a limited number
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of frequencies [13]. Comparisons show that all the hydrodynamic quantities can

be computed with sufficient accuracy by potential theory. One important excep-—

tion is the roll damping, where the viscous effects are much more important than
in heave and sway.

The hydrodynamic quantities applied in the present study were mainly derived
from the results given by Vugts [8,9].

In the case of stationary forced vibration the hydrodynamic quantities were
evaluated for the wave period,and in the case of random vibration for the peak
period of the wave spectrum, while in the case of natural vibration an iteration
loop was devised to adjust the hydrodynamic quantities to the actual natural
period.

NATURAL VIBRATIONS

The analysis of natural vibration is a prerequisite for more exhaustive dynamic
analyses, but it does also provide considerable insight in the dynamic charac-
teristics of the structure.

The natural modes and periods resulting from the finite element analysis are

shown in Fig. 4 for modes 1 through 7 and mode 13. Modes 1 and 3 are sway modes
(horizontal motion), modes 2, and 5 through 7, are heave modes (vertical motion),
and mode 13 is a combined roll-sway mode. Modes 8 through 12, that are not shown,
are all heave modes with an increasing number of nodes of vibrationm.

The heave periods show only small differences. This is a result of the dominance
of the buoyancy in the stiffness matrix. The natural period T for vertical rigid
body motion of a floating beam or arch is given by the traditional formula

T = 2nv/m/k (5)

where m and k are mass and restoring buoyancy force per unit length, respective-
ly. Consider next a floating arch, idealized as a line rotating rigidly a small
angle 6 about an axis of gravity y = 0 (see Fig. 5). The undamped motion is
governed by

6fmy®ds + 6fky?*ds = 0 (6)
s s

where s is a coordinate measured along the arch. If m and k are constant along
the arch, the natural period in rigid body rotation will equal that for heave.
The same applies to rotation about the y-axis. Thus, an idealized arch has
three identical natural periods, for vertical motion and for rotation about two
horizontal axes. The finite width of the arch causes only a slight disturbance
of this conclusion.

Natural periods decrease only slightly when modes of vibration that include
moderate straining from bending and torsion are considered. This is easily
demonstrated for the case of a floating straight beam with simply supported ends.
The mode shapes will be sinusoidal, and the natural period is found to be

T = 21r/m/(k+EI(%)") (7)

where
EI = bending stiffness of the beam,
L beam length, and
n number of half waves.
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For beams of the length considered here, the bending stiffness term in the paran-
thesis in Eq. (7) is secondary, and Eq. (7) will give a natural frequency only
slightly different from Eq. (5) for moderate values of n.

The conclusion is that there will be a narrow band of natural periods close to
the rigid body period for heave, corresponding to a variety of mode shapes.
This fact implies that the bridge is particularly exposed to excitation from
wave spectra with peak frequencies close to the rigid body heave frequency.
Furthermore, for a structure with a certain mass per unit length, this band of
natural frequencies can only be shifted by a change of the water surface area.
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The natural periods predicted above are confirmed by the numerical results.
Data for maximum m and k give, by using Eq. (5),

T =7.03 s, to be compared to T, = 6.8 s

T, corresponds to heave motion of the end with maximum dimensions. The mode in-
ciudes considerable bending and also motion of sections with smaller dimen-
sions (see Fig. 4, No. 2). Hence, a reduction of the period for pure rigid

body motion of the largest section results.

Data for minimum m and k give, by using Eq. (5)

T = 5.857 s to be compared with T, = 5.857 s

The mode shape (see Fig. 4, No. 5) corresponds to a nearly rigid motion of the
bridge, where the enlarged southern part is at rest.

Modes 6 and 7 confirm the minor influence of bending predicted by Eq. (7).

Natural modes in roll are coupled with those in heave because of the curvature

of the bridge. Only in the case of a straight symmetric beam complete uncoupling
occurs. Natural modes in sway are coupled with those in roll partly due to coup-
ling in hydrodynamic sway and roll forces and partly because the centre of
gravity does not coincide with the shear centre,

Numerical results show, however, that coupling is insignificant for this struc-
ture in most cases. Thus coupling is on the noise level and not shown for all
vibrations up to and including No. 12.

FORCED DETERMINISTIC VIBRATIONS

Three cases of response due to regular wave patterns are shown in Table 1. Long-
crested waves with two different directions, based on observations and topo-
graphy, were selected (cases 1 and 2). In addition, "short-crested" waves at

the bridge centre were included (case 3).

The wave period was chosen
T =5.8s

close to a number of resonance periods in heave, in order to excite resonant
heave motion. This period is also fairly close to the resonant sway period for
mode No. 3 (see Fig. 4). The wave length determines the phase lag between forces
in different nodal points. It was chosen as 52.5 m in accordance with the Airy
wave theory for deep water, and the wave heights were chosen equal to 2 m (peak
to peak).

The results were obtained as functions of time and location, and showed that a
multitude of natural modes were excited (see [5]). Only the maximum displace-
ment values are included in Table 1. They are located at the middle of the
bridge for the cases 1 and 3, and at the southern end (x=y=0) for case 2. The
largest response is induced for load case 1. The reason is that the wave load
near the middle of the bridge is almost in phase over a width of, say, 300 m.
An important result is that the vertical motion exceeds the wave heights by 50
per cent.

In load case No. 2 only heave motion of the southern part of the bridge is
significant, and the forced mode is essentially a combination of the natural
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TABLE 1 Steady state vibra- boads Hax. G ap Acenens
tions of the bridge Case Shape Period Ux uy vz ¢x
Subjected to sinus- No. (s) (m)| (m) | (m) (rad)
oidal wave loading. 5
Load shapes and 1 —_——————— | s.8 0.12/1.52 | 1.50| 0.0050

maximum displacements )

observed. Single
wave amplitude equal

to 1 m ¥ Pl

2 A 5.8 =0 |0.01]0.82| o0.000u

Y ~}f-som
3 — 5.8 0.02{0.25 | 0.25| 0.0007
x

modes Nos. 2 and 4. This result indicates that a forced period of, say 6.8 s,
would have induced an appreciably larger heave response for load case 2.

Internal stress resultants obtained simultaneously from the finite element
analysis are omitted here, see [5].

RANDOM VIBRATIONS

The basic assumption in this analysis is that the surface elevation of the sea
can be approximated as an ergodic Gaussian process. It is felt that this assump-
tion is reasonable in an engineering analysis both from a theoretical (the cen-
tral limit theorem) and an experimental point of view (see [14]).

A basic representation of an ergodic Gaussian process {z(t); —o<t<w}, with zero
mean and a power spectral density Sc(m), O<w<w, is given by [15,16,17]

N
g(t) = o v £ } cos(w.t - ¢.) (8)
z N. 1 1
i=1
Here ¢1 i=1,2, ..., N, are independent random phase angles distributed uni-
formly between 0 and 2m and w;, i = 1,2 ..., N, are realizations of random fre-
quencies distributed accordlng to the distribution function

_oW
F(w) = OC éSC(u)du -(9)

where 2 denotes the standard deviation of wave elevation.

It is seen that z(t) as determined by Eq. (8) tends to be Gaussian by virtue of
the central limit theorem. It can be shown that Z(t) is ergodic at least up to
the second moment. Furthermore, it can be shown that the spectral den31ty of
t(t) converges to the tangent spectral density S (w) in the form 1/N* as N
approaches infinity.

The results of the analysis of wave records indicate that the one-dimensional
wave spectral density in the Salhus Fiord is more narrow and more peaked than
wave spectral densities in open sea [18]. The JONSWAP spectral density
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(Hu/wp)2
-5 -4 - — P
5 (o) = opla explea ey dpyeel-—g——3 (10)
s 4w
p
furnishes the desirable features [19].
llere
0 = Phillips' parameter, Y = peakedness parameter, and
g = acceleration of gravity, 0 = parameter defining the width
wp = peak frequency, of the spectral peak.

In this study w, is taken equal to 1.0833 rad/s, which corresponds to the period
5.8 s used in tge deterministic analysis. The parameter 0 is taken as

= 0.07 if w < wp and © = 0.09 if w > mp

The peakedness parameter Yy is taken equal to 7.0, which corresponds to a very
sharply peaked spectrum. The Phillips' parameter 0 is adjusted so that the
significant wave height is equal to 1 m, which gives o = 0.002. A reasonable
estimate of the expected highest wave in a record is then approximately 2 m
[6,18]. These parameters make it possible to compare the results from the pre-
sent study with the results from the deterministic approach.

Heuristically, the sway forces induced by irregular waves simulated by Eq. (8)
(see also Eq. (4) ) can be expressed as

Y(t) = OC//_;ZIY (m )cos(m t - ¢ yg(wi)) (11)

This equation combined with Eqs. (9) and (10) provides a straight forward proce-
dure to simulate the sway forces. The heave and roll forces can be obtained by
a similar procedure,

Since the wave spectrum is narrow banded, wave force amplitudes and phase lags
can with fair approximation be computed for the peak frequency.

The response can now be obtained by a numerical integration of the equations of
motion Eq. (1), when the bridge is subjected to stationary irregular longcrested
waves corresponding to load case No. 1 in Table 1. The length of the simulated
wave situation was selected 500 seconds. The number of frequencies N used in
the construction of the wave profile was taken equal to 999,

The results of the simulation are plotted in Fig. 6. The figure shows both the
wave profile and the structural response, i.e. axial deflection, sway, heave and
roll, as computed for the midpoint of the bridge.

The significant height calculated from the simulated wave situation is 0.95 m or
5 per cent less than the target significant wave height given by the spectral
density. The empirical probability functions for the wave amplitudes are plot-
ted in Fig. 7 together with the theoretical probability density functions. It
is seen that the initial distribution follows the normal distribution, while the
distribution of maxima and minima C is represented fairly well by the following
distribution [20]

V1-e2/e
p(x) = /l—[Eexp{ bx%/e?} + V1-€? yexp{-ix }}exp{ Jt2}de] (12)
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where X = [,/0r and € is the bandwidth parameter, which can be expressed in
terms of the moments of the distribution. The bandwidth parameter was estimated
to 0.7949, which is in agreement with the values derived from the wave measure-

ments in [18]. Fig. 8 gives an example of the probability density function of
the response.

It can be shown [20] by applying Eq. (16) that the expected largest maximum out
of m independent maxima Co is given by

E[l; ] =Jg [v21n(mv1—€2 + %} (13)
L & V21n(m/1-£2)

The standard deviation of the largest maximum 1s given by

(14)

T 1
U [T A S—
== E V6 21n(mv/1-€2)

The largest maximum and smallest minimum wave amplitude observed during the
simulation is 0.67 and -0.77 m, respectively. The theoretical prediction of
largest expected maximum (or minimum) is 0.77 m with a standard deviation equal
to 0.10 m. This indicates that the simulated wave heights are acceptable.

P
() 4
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B AN
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12
41
o3 -2 <1 0 1 2 T
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f.s \
4
T I T
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FIGURE 8 THE PROBABILITY DENSITY FUNCTIONS OF HEAVE MOTION AT TilE MIDPOINT
OF THE BRIDGE: (A) ALL AMPLITUDES, ¢ = 0.3135 m; (B) MAXIMA AND
MINIMA, m = 98, € = 0.3624
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TABLE 2 The largest observed response in the simulation compared with the
expected largest response

R Standard Largest observed Theoretical
esponse i % 2 A
deviation maximum | minlmum E[r ] o[r ]
max max
Axial def. 0.005 0.015 -0.014 0.017 0.002
(m)
Sway 0.31 0.90 -0.92 1.00 0.13
(m)
Heave 0.31 0.98 -0.95 1.00 0.13
(m)
Roll 0.0026 0.0069 | -0.0077 0.0089 0.0011
(m)
1.0
488.00 s
— 0.5
€ /\ /-\
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g
v - 0.57
-‘_0_
109
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FIGURE 9 THE MODES OF VIBRATION SHOWING THE MAXIMUM RESPONSE OBSERVED
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TABLE 3 Comparison of the response induced by

irregular and regular waves

1)

Response StanaFd E[rmax] Tmax
deviation
Axial def. 0.006 0.022 0.12
(m)

Sway (m) 0.33 1.30 152
Heave (m) 0.33 1.30 1.50
Roll (rad) 0.0028 0.0113 0.0050

1) Response induced by sinusoidal waves

expected largest response. The
agreement is found satisfactory.
The deviation between the ob-
served and the theoretical
values for sway and heave may be
due to the fact that the maxima
are not independent, but appear
in clusters (see Fig. 6). The
modes of vibration are plotted
in Fig. 9 showing the same over-
all characteristics as seen in
the deterministic analysis. The
maximum moments observed during
the simulation are plotted in
Fig. 10.

In the deterministic analysis
the response was calculated

for a sinusoidal wave with the
wave height equal to 2 meters.
Comparison of those results to
the present results can be ob-
tained by extrapolation, assum-—
ing the time series long enough
to yield the expected largest
wave amplitude equal to 1 m.
The extrapolated response values
are given in Table 3.

It is seen that the irregular
waves induce somewhat smaller
response than the sinusoidal
waves, as expected. The only
exception is the roll motion,
which is larger in the irregu-
lar case. This is mainly due
to the fact that the irregular
wave situation includes some
higher frequency components
which correspond to natural
modes including roll, the first
of which has a period of 3.7 s
(see Fig. 4, No. 13). The
reasons why the reduction in
the response is not larger, are
first of all rather high regu-
larity in the irregular wave
situation and rather large
amount of damping.
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CONCLUSION

Although analyses of natural vibrations and of motion in regular waves can pro-
vide considerable insight in the dynamic characteristics of the present struc-
ture, random vibration analysis appears to be the most rational means of pro-
viding response data applicable in design.

The stresses and displacements obtained by the analysis accomplished so far are
hardly tolerable. However, recent observations [18] have shown a peak period

in the wave spectrum of about 4 s, A change of the peak period from the applied
resonant period of 5.8 s to 4 s will cause a considerable reduction in heave
response and possibly also in sway response. An increase in roll response may,
however, be foreseen. Therefore, the net result rests on a complete reanalysis.

If the proposed design finally proves inadequate after a realistic analysis,
possibilities for improving the shape of the cross section exist. Such changes
should have two aims; to increase the natural heave periods and to improve the
hydrodynamic properties. This improvement should aim at a reduction of wave
forces and an increase of hydrodynamic damping.

The numerical results reveal that in spite of non-uniform cross-section and
several couplings in hydrodynamic and mechanical quantities, the dynamic charac-
teristics of the floating arch bridge are rather simple. Thus, the coupling
between different components of motion in the natural modes is weak, and natural
frequencies can be predicted with a high degree of accuracy by simple formulas.
This simplicity indicates that a far-going closed form stochastic analysis may
be possible and should be explored further.
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