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Analysis of cylindrical shell systems
Analyse des systemes de voiles cylindriques

Berechnung von zylindrischen Schalensystemen

I. HOLAND A. FISKVATN S. LOSETH
Professor, dr. techn. Assistant Professor Research Assistant, SINTEF

The Norwegian Institute of Technology, Trondheim, Norway.

SUMMARY

A method for analysis of cylindrical shell systems is described. The shells are simply supported
at the curved ends and can be connected in an arbitrary manner in the transverse direction.
A trigonometric expansion in the longitudinal direction is combined with a matrix displacement
solution for each series term in the transverse direction. The efficiency of the approach rests
on a transformation of shell element matrices to nodal (beam) parameters.

RESUME

Une méthode pour |'analyse des systémes de voiles cylindriques est présentée. Les voiles
sont appuyées simplement aux bords incurvés et sont attachés d’'une maniére arbitraire en
direction transversale. Une série trigonométrique en direction longitudinale est combinée a
une solution de déplacement sous forme matricielle en direction transversale. La réussite de
la méthode se base sur une transformation des matrices des voiles aux parametres nodaux.

ZUSAMMENFASSUNG

Eine Methode fiir die Berechnung von Systemen von Zylinderschalen wird beschrieben. Die
Schalen sind an den Schalenenden frei drehbar gelagert und in der Querrichtung beliebig
verbunden. Eine trigonometrische Entwicklung in Langsrichtung wird mit einer Verschiebungs-
formulierung in Querrichtung kombiniert. Die Effektivitat der Methode basiert auf einer Trans-
formation der Schalenelementmatrizen zu Knotenpunkt-(balken-)-parametern.
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1. INTRODUCTION

In the fifities and sixties the finite element methods grew up parallel with
the computers, and conquered gradually almost the whole market of complex
structural analyses. Illustrating examples of shell structures now analyzed

by the finite element method are the cellular rafts of the CONDEEP platforms
(Fig. 1). Such runs comprising 6000 elements, 100000 unknowns and with a total
computing time of 16 hours CPU on a UNIVAC 1108 have been described by Lindvik

[1].

Even if the finite element method in principle is applicable for nearly all
structural computations, a warning should be raised against the present tendency
of considering it as the only method for complex problems. In particular,
faster methods that allow a description of the main features of the structural
action can be very useful for parametric studies to establish principal
dimensions. A final finite element analysis can be run if deemed necessary to
account for structural performance not considered by the more rapid but perhaps
less accurate methods.

The purpose of the present paper is to demonstrate how rapid and efficient
analyses of systems of cylindrical shells may be established by a modern inter-
pretation of traditional cylindrical shell theory.

2. LINEAR THEORY OF CYLINDRICAL SHELLS

The traditional theory of cylindrical shells is based on a set of linear first
order differential equations in the two surface coordinates. The equations
express equilibrium of stress resultants, constitutive laws relating stresses to
strains, and kinematic relations between strains and displacements. Tradition-
ally, these equations were reduced to higher order differential equations. By
ignoring secondary terms rather simple equations could be obtained, the most
neat and systematic of which are due to Donnell [2]. The equations could be
integrated by expansion into single trigonometric series of the Levy type. The
solution of concern here uses trigonometric functions in the direction of the
generator, imposing the conditions of simple support at the shell ends.

This traditional shell theory is utilized also in the present paper, the only
difference being that the equations in the circumference coordinate for
individual shell panels are integrated by the transfer matrix method. This
method uses the set of first order equations directly, and secondary terms can
easily be included. Thus the accuracy of the shell theory used is on the same
level as the so-called improved Donnell theory [3]. The advantage of this
accuracy is that the limiting case of pure arch action is described correctly.
Details of the approach are omitted here, they may be found in the report [4].

3. FORMULATION OF SYSTEM CONNECTIVITY

Cylindrical shell panels seldom or never are used as independent structures, but
connected to edge beams, plates, walls or other shell panels. The connection
forces depend on the displacements, and thus an external redundancy exists in
addition to the internal redundancy in each panel expressed by the differential
equations. Traditionally, the redundant quantities were found by the force
method. A serious drawback of this method is its complexity if the system is
not of the very simplest kind.
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The transfer matrix method offers a simple and systematic way of formulating
the system connectivity if the topology is of the line type. It has thus been
used to some extent in shell programs [5]. However, the method in its proper
form fails as soon as a point is met on the transfer path, where two or more
shells branch off in different directions.

Experience from frame analysis has demonstrated that the matrix displacement
method is unsurpassed as far as a simple description of a general topology is
concerned. Thus the choice for the present method was

- a trigonometric expansion in the longitudinal direction
- a matrix displacement formulation of the solution for each individual term in
the transverse direction

4, SHELL ELEMENT MATRICES

The system analysis being carried through for each series term, the shell

element matrices refer to a single series term. The longitudinal distribution of
each term is either according to a sine or a cosine function. This is
illustrated in Fig. 2, showing the distribution of the shear force and the hoop
force for the first series term. The distribution of higher terms is analogous,
the only difference being that the shell length is divided by an integer n,

the number of the series term.

The notations used for stress resultants and displacements in the shell theory
are shown in Figs. 3 and 4. The quantities entering the element matrices are
denoted by the vector symbols

T
v

[ux u  w GS] (1)

NT

[NSx N, R M_] (2)

The longitudinal distribution of the quantities is

ugs W, es, NS, Rs’ MS : sinAx

u, N ! cosAx
x’ Tsx

where A = nmx/4%

The transfer matrix solution delivers a result in the form

Vo| = (Gn Gp | [Vif * |V, (3)

N| |6 G| M| N

In Eq. (3) and the following equations related to the system analysis, the vector
symbols refer to the amplitude values of the quantities in question, the trigono-
metric longitudinal distribution being tacitly understood. Subscripts 1 and 2
refer to the edges 1 and 2, respectively.
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FIGURE 2 LONGITUDINAL DISTRIBUTION OF HOOP AND SHEAR FORCES FOR
THE FIRST SERIES TERM

a MEMBRANE STRESS RESULTANTS b BENDING STRESS RESULTANTS

FIGURE 3 STRESS RESULTANTS IN SHELL THEORY-NOTATIONS AND SIGN
' CONVENTIONS

Vs
N

85

FIGURE 4 DISPLACEMENT COMPONENTS IN SHELL THEORY-NOTATIONS AND
SIGN CONVENTIONS
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In the matrix displacement method a relation is needed in the form

S| =1N,| =klv

1 1
S, N, v,

+ N, (4)

It is seen that Eq. (4) is easily obtained from Eq. (3) by part-inversion.

For the best possible numerical accuracy, the coordinate s should be kept with-
in certain limits in the computation of transfer matrices. For this purpose

each shell element in the actual program is automatically divided into a number
of shell segments. Stiffness and load matrices are computed for each segment
according to the procedure described above, and the segments are assembled to

a shell element by a standard stiffness method.

Plate elements are included as a limiting case of a shell element. Details of
the computation of G are given in [4].

5. BEAM ELEMENT MATRICES

The shell elements may be connected to beam elements along an arbitrary generator.
The state of displacement of the beam is described by four displacement quanti-
ties as given for the shell in Eq. 1. These displacements and the corresponding
stress resultants are expanded in trigonometric series in the same manner as the
shell quantities. A stiffness relation is established for each term by using
conventional bending theory and St. Venant's theory of torsion. The point of
gravity is assumed to coincide with the shear centre. If the beam is of an

open thinwalled type, the beam must be subdivided into plate elements or
possibly beams or shells, in such a manner that each element satisfies the
assumptions with sufficient accuracy.

The stiffness matrix of a beam element is a 4 by 4 matrix, and the displacement
components and stress resultants entering this matrix are referred to the centre
of gravity k, see Figs. 5 and 6. S_ 1is a shear force applied at the centre
line. It has a cosine distribution™as shown for the corresponding shell
quantity in Fig. 2, and is positive when it tends to elongate the beam. Those
interested in the detailed appearance of stiffness and load matrices should
study Ref. [4].

6. TRANSFORMATION OF SHELL ELEMENT MATRICES

As the unknowns of the system the 4 displacement components of each beam are
chosen. Thus the beam centres are defined as the nodes. Locally, the y- and
z-axes are with advantage taken in the direction of the principal axes of the
beam. The method as such allows that these axes are kept unchanged in the
stiffness assembly and final solution, but it was found convenient in the program
to use a common global x-y-z frame of reference. Thus all beam stiffnesses are
transformed to this system.

The four displacement components of the centre line of the beam define uniquely
the corresponding displacement components of an arbitrary generator of the beam
when the assumptions of technical bending and St. Venant torsion are used. Thus
the centre of gravity, the node, may be considered as master, and all other
points in the cross section as slaves, that follow the master, see Figs. 5 and
6. The stress and displacement components of a node k and a slave point k, are
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shown in Fig. 5. The transformation of displacements may be written

v, =T v (5)
kg k; 'k
Provided that the longitudinal distributions of displacements are
vV _cosAx , Vv _sinix , v_sinAx , 6OsinAx
X y z
the transformation written out in full is
v, =11 —yi)\ _Zi)\ 0 v (6)
v 0 1 0 -z. v
y 1 y
¥, 0 0 L4 4] v,
B |k 0 0 0 1 6 |k

The particular important aspect of this relation is the coupling between the
displacements v, and v, of the node, and the displacement v, of the slave.
This is easily uhderstood when the displacement component Vv 1is interpreted as
a description of longitudinal strain. The other transformations needed are
obtained by transposing and inverting Eq. (6).

The shell elements are generally connected to slave points. In the stiffness
and load assembly, however, all quantities must be referenced to the nodes.
Thus, the shell elements are considered as being eccentrically connected to the
nodes. Fig. 7 shows a shell element eccentrically connected to two nodes k and
(k+1). Suppose that a stiffness relation of the form (4) has been found for
the shell element, and that this relation has been transformed to the global
y-z system already. Denoting now element quantities related to the local
numbering 1-2 by index L and quantities related to the nodes k and (k+l) by
index G, the following relations apply

S : g

’-Vl = Tki 0 VJ (7)

Ve ¢ T(k+1)j_ Y

re 1 _ el 5 @

s,] =M, 0 |8 (8)
T

S:]¢ [0 (k+1) %)L

from which a global relation

S AR 9

is found. The approach of introducing only the beam centres as nodes and
transforming shell element matrices to these node parameters is one of the
decisive features of the method. It limits the number of unknowns to a
minimum, allows a simple and systematic programming, and takes care of all
linear relationships between the displacements of different points in a beam
ab initio.
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7. LOAD REPRESENTATION

As the analysis is based on a Fourier expansion longitudinally and a

numerical integration circumferentially, all loads can in principle be
handled. In the program, however, the longitudinal distribution has been
restricted to a piecewise linear variation, that in the program is obtained

by superposition of linear cases extending over part of the structure as shown
in Fig. 8. This distribution applies for load components in as well x-,y- and
z-directions, with the additional restriction that the resultant in the x-
direction must be zero.

N
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FIGURE 8 SUPERPOSITION OF LOAD DISTRIBUTIONS

The load on the shell elements is supposed to be constant in the circumferential
direction within each segment. A rapid variation in the s—direction must
therefore be reflected by narrow segments. All beam loads are line loads, in-
cluding line moments about the x-axis.

8. NUMERICAL EXAMPLE

As a numerical example consider the analysis of a cellular platform raft of the
type shown in Fig. 1. The load is supposed to be radial external pressure with
a slight variation over the height as shown in Fig. 9.

Due to the symmetry it is sufficient to analyze 1/12 of the total section, see
Figs. 10 and 11.

The program assumes a beam element to be associated with every nodal point. In
node 9, where only two shell elements meet, the beam must be assigned zero
stiffness. This node has been introduced to reduce the number of element types.

A more refined model was used in the numerical results included. In this model
fictitious shell elements were introduced between the shell and beam elements
to simulate the flexibility of the connection between shell and beam elements.
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FIGURE 11 MODELLING OF THE EXAMPLE STRUCTURE IN FIG. 12
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Characteristic data for the two models are given in Table 1. The example shows
that the number of degrees of freedom is kept small, even for a very complex
structure. This is also reflected in the computing time, that was 30 s CPU-
time for an analysis with 15 Fourier terms for the refined model.

TABLE 1 CHARACTERISTIC DATA OF RAFT ANALYSIS

MODEL FIG. 11 REFINED
SHELL SEGMENT TYPES 1 2
SHELL ELEMENT TYPES 3 4
SHELL ELEMENTS 10 24
BEAM ELEMENT TYPES 3 3
BEAM ELEMENTS (NODES) 10 24
DEGREES OF FREEDOM 26 88

Typical results from the analysis are shown in Figs. 12, 13 and 14, showing
direct forces, moments and shear forces in a ring section at midheight, 19 m
above the bottom. The more simple model of Fig. 11 showed an increase of peak
moments by about 5 per cent, whereas the differences in hoop forces were negli-
gible.

A typical feature of the results is the pronounced deviation from the membrane
action. The narrow shell elements 2-7 (see Fig. 11) behave like clamped arches
with large negative and positive bending moments. The wider shell elements 8
and 9 have a moment distribution similar to that which is known for short shell
roofs. The rigid connection between the cells prevents a development of the
full membrane hoop force, except in the mid-portion of the wide shells.

Figs. 12, 13 and 14 also include results from a finite element analysis
accomplished by CDC Data Centers in Stockholm and Oslo, on behalf of A.S. Hoyer-—
Ellefsen, Oslo. The results are included here by courtecy of A.S. Hoyer-Ellefsen.
For this analysis the MSC/NASTRAN program system was used, adapting quadrilateral
shell elements, beam and spring elements and rigid connections. The model in-
cluded the complete structure, that was of the type shown in Fig. 1.

As a whole, the results obtained by the two completely different models agree
remarkably well. Some discrepencies appear in the narrow shell panels in the
interior part of the raft (elements 2, 3 and 4, Fig. 11). Fig. 12 shows that
larger hoop forces are developed in these shells according to the finite element
model that according to the shell model. The difference can be explained by a
compression of the upper and lower dome systems (see Fig. 1) in the finite
element model. This effect is not accounted for in the shell analysis, assuming
plane end sections that are rigid in their plane. A correction for this effect
is, however, possible, if desired.

An advantage of the shell model is that it describes the gradients of moments and
shear forces in the boundary areas properly.
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FIGURE 12 HOOP FORCES N_ (Mp/m) 19m ABOVE THE BOTTOM
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FIGURE 13 HOOP MOMENTS Ms (Mp) 19m ABOVE THE BOTTOM
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FIGURE 14
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9. POST-PROCESSING

The results of an analysis of this type should be presented graphically to
facilitate the interpretation of the results. For this purpose a post-
processor has been written [6], presenting the different quantities com-—
puted as contour maps.
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