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Das Computerprogramm FLASH

The Computer Program FLASH

Le programme FLASH

u. walder e. anderheggen
Wissenschaftlicher Mitarbeiter am Institut Privatdozent an der ETH Zürich

für Baustatik und Konstruktion der ETH Zürich

D. GREEN
Lecturer an der Universität Glasgow

ehem. Gast am Institut für Baustatik und Konstruktion, ETH Zürich, Schweiz

Einleitung

In diesem Artikel wird das in den letzten drei Jahren am Institut für Baustatik
und Konstruktion der ETH Zürich entwickelte Computerprogramm FLASH
(Finite ELement Analysis of SHells) für die numerische Berechnung linear-elastischer
Flächentragwerke nach der Methode der finiten Elemente vorgestellt.

Wozu ein weiteres Statikprogramm?
Es ist heute unbestritten, dass der an Computeranwendungen interessierte

Bauingenieur in der Praxis imstande sein sollte, kommerziell angebotene Finite-
Element-Programme selbständig zu benützen. Dazu ist notwendig:
— Dass an der Hochschule die erforderlichen theoretischen Grundkenntnisse

vermittelt werden (eine neue Vorlesung über Computerstatik ist z.B. zu diesem
Zweck an der ETHZ vor kurzem eingeführt worden).

— Dass den Bauingenieurstudenten die Möglichkeit geboten wird, direkte Erfahrun¬
gen bei der Verwendung vorhandener Statikprogramme zu sammeln. Sie sollen
mit dem Computer etwas «spielen» können, was ihnen später in der Praxis
kaum mehr möglich sein wird. (Das Programm FLASH wird heute zur
Durchführung von Übungen der erwähnten Vorlesung «Computerstatik» sowie auch
für Semester- und Diplomarbeiten eingesetzt.)

— Dass die für die Praxis bestimmten Programme sehr leicht anzuwenden sind,
wobei sie aber gleichzeitig ein breites Anwendungsspektrum haben sollen.
(FLASH kann beliebige Scheiben, Platten, Schalen, Faltwerke sowie auch Rahmen
berechnen. Seine Programmbeschreibung umfasst jedoch lediglich vierzig Seiten.)

— Dass möglichst geringe Rechenkosten verursacht werden. Dem Programm-
benützer muss jedoch ein Maximum an Ein- und Ausgabekomfort angeboten
werden. (Zur Lösung des Gleichungssystems verwendet FLASH einen sehr
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effizienten Algorithmus (die «frontal Solution»), wodurch sich im Vergleich
zu anderen Programmen sehr schnelle Ausführungszeiten ergeben. Bezüglich
Benützerkomfort ist in erster Linie seine formatfreie problemorientierte
«Eingabesprache» zu erwähnen, deren syntaktische Struktur sich mit einem kurzen
und übersichtlichen Eingabeschema in allen Details beschreiben lässt.)

Damit sollen die mit der Entwicklung des Programmes FLASH verfolgten
Ziele ersichtlich sein. Gestützt auf langjährige Erfahrungen auf dem Gebiete der
Statikprogramme hat man versucht ein Instrument zu schaffen, das sich sowohl
für den Baustatik-Unterricht als auch für die Praxis optimal eignet. Zu erwähnen
sind zudem die zahlreichen für den Theoretiker interessanten Neuerungen, die im
Programm eingebaut wurden, und die seinen Anwendungsbereich in mancher
Hinsicht gegenüber demjenigen anderer Programme erweitern.

Dieser Artikel richtet sich in erster Linie an den Praktiker, der schon
einige Erfahrung in der Anwendung finiter Elemente besitzt. Mathematische
Herleitungen sowie auch die genaue Begründung der im Programm gewählten Lösungen

werden deshalb hier nicht angegeben und sollen Gegenstand einer späteren
Veröffentlichung sein.

Einzig die Herleitung der elastisch gestützten hybriden Plattenelemente, welche
erstmals in einem Computerprogramm verwendet werden, und die eine der
wesentlichsten theoretischen Neuerungen in FLASH darstellen, wird im Anhang angegeben.

Anwendungsmöglichkeiten von FLASH

FLASH berechnet nach der Theorie 1. Ordnung elastische, homogene:

— Schalen, versteift oder unversteift;
— Faitwerke;
— Platten und Rippenplatten;
— Scheiben;
— Stabtragwerke.
unter statischen Beanspruchungen.

Die folgenden Punkte sollen noch eingehender auf die vielfältigen Anwendungsbereiche

hinweisen:

— Fundamentplatten auf elastischer Unterlage, elastisch gebettete Schalen sowie
elastisch senkbare oder unsenkbare Stützen können dank neuentwickelten
Elementen erfasst werden.

— Die Berücksichtigung des Querkrafteinflusses bei Platten- und Schalenelementen
erlaubt die Berechnung relativ dicker Flächentragwerke (z.B. Bogenstaumauern).

— Elementweise konstante, linear-elastische isotrope oder orthotrope Material¬
eigenschaften können behandelt werden.

— Die Möglichkeit, Stabelemente exzentrisch anzuschliessen, erlaubt die Berechnung
von Rippenplatten als ebenes Problem.

— Alle wünschbaren Auflager- und Randbedingungen sind erfassbar.

— Flächen- und Knotenlasten sowie Auflagerverschiebungen sind in beliebigen
Richtungen möglich. Auch Temperaturlasten können behandelt werden.
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Als Resultate erhält man in den Knotenpunkten und z.T. in den
Elementschwerpunkten,

• Deformationen,
• Reaktionen,
• Auflagerdrücke elastisch gestützter Elemente,
• Momente aus Plattenwirkung,
• Spannungen aus Scheiben- und Membranwirkung,
• Hauptspannungen und Hauptmomente,
• Armierungsmomente.
Im weiteren ist es möglich, Schnitte am Gesamttragwerk zu definieren, in
welchen integrale Schnittkräfte berechnet werden. Dies stellt vor allem für die
Bemessung eine wesentliche Hilfe dar.

Problemeingabe und Programmtechnik

Erfolg oder Misserfolg eines für praktisch tätige Ingenieure entwickelten
Computerprogrammes hängen zum grossen Teil davon ab, ob es eine ihm schnell
vertraute und seiner gewohnten Terminologie entsprechende Dateneingabe besitzt.
Die Eingabe der Daten erfolgt bei FLASH mit Hilfe einer vorgeschriebenen
Folge formatfreier, aus Worten und Problemdaten bestehender Befehle, die klar
abgegrenzt nacheinander die Geometrie, Materialeigenschaften, Auflagerbedingungen,

usw. definieren [1]. Hat der Ingenieur einmal ein oder zwei Probleme
mittels FLASH gelöst, kann er auf die eingehende Beschreibung verzichten und
sich an ein nur dreiseitiges, streng logisch aufgebautes Schema der Befehlsfolge
halten. Obwohl dieses äusserst einfach und kurz ist, beinhaltet es doch einen

grossen Eingabekomfort, wie z.B. das automatische Generieren von Knoten- und
Elementmaschen, die Kreisgenerierung, etc.

Ebenso wesentlich wie die leichte Eingabe der Daten ist deren bequeme
Kontrolle. FLASH kann ohne etwas zu rechnen die Eingabefehle auf syntaktische
und logische Fehler kontrollieren. Hunderte von Fehlermeldungen helfen dabei
Korrekturen rasch anzubringen. Neben einem «Echoprint» der Daten kann auch
eine axonometrische Zeichnung der Elementmasche auf Film oder Papier verlangt
werden.

Eine weitere Forderung, welche an ein erfolgreiches Programm gestellt wird,
stellt die Einsparung von Rechenzeit dar. Tatsächlich benötigt FLASH gegenüber
herkömmlichen Programmen erheblich kürzere Rechenzeiten. Die folgenden
Hinweise sollen einen Eindruck der gewählten Programmtechnik im Hinblick auf
die Kostenersparnis geben:

— Die Steifigkeits-, Spannungs- und Lastmatrizen von Elementen gleicher Form
und gleichen Materials werden nur einmal berechnet.

— Wie erwähnt, erfolgt die Lösung des Gleichungssystems nach der «frontal-
solution »-Methode, d.h. das Zusammenstellen der globalen Steifigkeitsmatrix
geschieht gleichzeitig mit dem Lösen der Gleichungen.

— Die Datenspeicherung erfolgt voll dynamisch, d.h. kleine Probleme belegen
weniger Foldlänge im Computer und werden deshalb mit höherer Priorität und
niedrigeren Einheitskosten behandelt.
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— Die Problemgrösse wurde auf ca. 5000 Freiheitsgrade Anzahl zu lösender
Gleichungen) beschränkt, um den sogenannten «overhead», d.h. die Programmteile,

die nur Daten verwalten, auf ein Minimum zu reduzieren.

Die im weiteren angegebenen Beispiele sollen nicht nur die Genauigkeit der
Berechnungen selbst, sondern anhand der Eingabeanweisungen und Rechenzeiten
auch die Handlichkeit und Effizienz des Programmes FLASH aufzeigen.

Scheibenprobleme

Zur Lösung von Scheibenproblemen verwendet FLASH beliebig geformte
dreieckige und viereckige hybride Elemente. Diese stellen eine Weiterentwicklung
des ursprünglich von T.H. Pian [2] vorgeschlagenen Modelies dar. Dabei werden
bekanntlich die Steifigkeitseigenschaften einzelner Elemente, d.h. deren lokale
Steifigkeitsmatrizen und Lastvektoren aufgrund des Minimumprinzips der
komplementären Energie mit Hilfe elementinterner Spannungsansätze sowie kinematischer

Randverschiebungsansätze bestimmt. Die Elementzusammensetzung erfolgt
dann, wie bei den rein kinematischen Modellen, nach dem gewöhnlichen Matrix-
Deformationsverfahren.

Als wesentliche Merkmale der FLASH Scheiben- und Schalenelemente sind
die in den Knoten zusätzlich eingeführten Rotationsfreiheitsgrade Rz, welche einer
Drehung um eine senkrecht zur Scheibenebene stehenden Achse entsprechen sowie
die numerischen Integrationsprozeduren zur Berechnung der Flächen- und
Randintegrale zu erwähnen.

Abgesehen vom Befehl mit den Anweisungen FREI und NICHTFREI, welcher
die Auflagerbedingungen definiert, dürfte die Befehlsfolge in Bild 1 auch dem

Computerlaien verständlich sein. (Die Randbedingungen der Scheibe werden durch
Festhalten oder Freilassen der Verschiebungen u und v sowie der Rotation Rz

in den Auflagerknoten oder Symmetrieschnitten bestimmt.) Die Eingabebefehle
sind hier in ihrer ausführlichsten Form angegeben worden. Anstelle ganzer Wörter
darf auch nur der Anfangsbuchstabe stehen, einige könnten gar ganz weggelassen
werden.

Die Resultate zeigen neben dem guten Übereinstimmen mit der theoretischen

Lösung eine weitere positive Eigenschaft hybrider Elemente. Singularitäten
erscheinen deutlich, ohne jedoch die Resultate in den umliegenden Knoten zu
beeinträchtigen. Dies trifft nicht nur für die Scheibenelemente, sondern vor allem
auch für die Plattenelemente zu.

Die Scheibenelemente lassen sich auch ohne Schwierigkeiten zusammen mit
Stabelementen verwenden (z.B. ebene Rahmen mit Wandaussteifungen).

Plattenprobleme

Zur Berechnung von Platten werden ebenfalls hybride dreieckige und viereckige
Elemente verwendet [2]. Eine Neuentwicklung stellen die hybriden elastisch
gestützten Elemente dar. Ihre theoretische Herleitung ist im Anhang angegeben.
Sie erlauben eine wirklichkeitsgetreuere Berechnung von Flächenlagerungen als
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Beispiel 1: Ringspannungen.

Problem

E 30000

v 0

P 62 83185

Elementmasche.

U.V.S'y

**

55 56 57 58 59 60 g^V^^X

Resultate

976 [1015]

6 67 Singularität
[3 79]

Si Schnitt

874
[894]

FLASH
~ THEORIE [3]

276
[2 61]

^3

Eingabeanweisungen

BEGINN
BEISPIEL 1 RINGSPANNUNGEN
INPLANE 60 45 45
KNOTEN 1 0 10 PLUS 0 2
KNOTEN 55 10 PLUS 2
CIRCLE
CIRCLE
CIRCLE
CIRCLE
CIRCLE
CIRCLE

55 ZENTRUM 0 PLUS 8
56 ZENTRUM 0 PLUS 8
57 ZENTRUM 0 PLUS 8
58 ZENTRUM 0 PLUS 8
59 ZENTRUM 0 PLUS 8
60 ZENTRUM O PLUS 8

2 BIS 6
56 BIS 60

BIS 49 SCHRITT 6
8 BIS 50 SCHRITT 6
9 BIS 51 SCHRITT 6

10 BIS 52 SCHRITT 6
11 BIS 53 SCHRITT 6
12 BIS 54 SCHRITT 6

S*y Schnitt B-B

ISOTROP 30000 0 1 TYP 1 BIS 45

MASCHE 5 9 ELEMENT 1 KNOTEN 7 8 2 1

TYP 1 45 ELEMENT 1 BIS 45

NICHTFREI FREI NICHTFREI KNOTEN 1 BIS 6
FREI NICHTFREI NICHTFREI KNOTEN 55 BIS 60

PLOT 1 BLICKPUNKT 0 0. 1

LASTFALL RADIALE EINZELLASTEN
KNOTENPUNKT 0 -15 708 KNOTEN 6

LASTFALL 1

DEFORMATIONEN $ REAKTIONEN $ SPANNUNGEN KNOTENWEISE

Rechenzeiten (auf CDC -6500 CP-Zeit)

Steif igkeits -, Spannungs - und Lastmatrizen
Lösen des Gletchungssystems (180 Unbekannte)
Totale Ausführungszeit
Totale Rechenkosten am Rechenzentrum der ETHZ

21 sek / Element
2 38 sek

20 33 sek
- 14 50 SFr

Bildl

mit den üblichen hybriden Plattenelementen, welche lediglich in den Knotenpunkten

gestützt werden können. So lassen sich zum Beispiel die über Punktstützungen

auftretenden Momentensingularitäten durch die Approximation der Stützenköpfe

mit elastisch gestützten Elementen elegant vermeiden (siehe Beispiel 2).
Dem gewählten Modell liegt die Annahme eines gleichmässig verteilten Reaktionsdruckes

auf das Element zugrunde (Bettungszifferverfahren bei Fundamentplatten).
Die Elemente bleiben frei drehbar, d.h. die Stützen weisen keine Einspannung
in der Platte auf. Der Fall der nicht senkbaren Stütze kann ebenfalls behandelt
werden.
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Die folgenden Beispiele sollen auf die praktischen Anwendungsmöglichkeiten
der elastisch gestützten Elemente hinweisen.

Beispiel 2: Flachdecke mit Mittelstütze.

Problem+Elementmasche:

f

singespannt

aufgelegt^

i

X« 183

* 130
J

X

E 11 52
v 2
t 1

Belastung

9 1.

Eingabeanweisungen

BEGINN
DOPPELSYMMETRISCHE PLATTE MIT MITTELSTUETZE
PLATTE 196 169 2
MATRIX 14 14 KNOTEN 1 1 14 0 PLUS 0 5 UND 5

ISOTROP 11 52 2
ISOTROP 11 52 2

TYP1
FEDERKONSTANTE 100.93 TYP 2

MASCHE 13 13 ELEMENT 1 KNOTEN 15 16 2 1 TYP 1

•
TYP 2 ELEMENT 169

NICHTFREI NICHTFREI NICHTFREI KNOTEN 1 BIS 183 SCHRITT 14
NICHTFREI NICHTFREI FREI KNOTEN 1 BIS 14
F N F 28 B 182 S 14
F F N 184 B 195
F N N 196

rm •
Rx NO - PLOT

•
LASTFALL FLAECHENLAST
GLEICHMAESSIG -1 ELEMENTE 1 BIS 169

LASTFALL 1

DEFORMATIONEN $ REAKTIONEN $ AUFLA66RDRUCK $ MOMENTE KNOTENWEISE

Resultate:

M^757Tf55BJ
M_ «696.4 (6893)

W'(ä77tS)

(4689.58)

ly=0)

M„=2683(2672)
193 7(192 3) b

M,(x»0)

My*-4<B6J.404 frei aufliegend

¦eingesponnt

Rechenzeiten (auf CDC - 6500, CP-Zeit)

Steifigkeits-, Spannungs- und Lastmatrizen 1 86 sek
Losen des Gleichungssystems (588 Unbekannte) 17 98 sek
Totale Ausfuhrungszeit 29 35 sek
Totale Rechenkosten am Rechenzentrum der ETHZ ~25 — SFr

Bild 2

Die Resultate in Klammern wurden mit dem PLATE-FOURIER-Programm
[4] gerechnet.

Die drei Knotenfreiheitsgrade der Platte sind die senkrechte Verschiebung w
und die beiden Verdrehungen Rx und Ry. Die Auflager- und Symmetriebedingungen
werden wie bei den Scheiben durch Festhalten der entsprechenden Freiheitsgrade
beschrieben. Dieses Festhalten braucht übrigens nicht starr zu sein; auch in den
Knoten besteht die Möglichkeit einer gefederten Lagerung.
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Das zweite Plattenbeispiel zeigt einen Genauigkeitsvergleich mit der bekannten
Lösung der elastisch gestützten Kreisplatte unter einer Einzellast [5]. Die Voraussetzung

eines gleichmässig verteilten Reaktionsdruckes unter der Kreisplatte erlaubt,
unter Ausnützung der Kreissymmetrie, die Berechnung mit einem einzigen Element
durchzuführen.

Beispiel 3: Fundamentplatte unter einer Einzellast.

Bettungsziffer k
E =1» » 0, t ;

r 5 inch

FLASH Theorie [5]

43 10"3

391 10"s

43 10"3

391 10"s
uw(r=0)
"min (r - 5)

Bild 3.

Die Berechnung von Rippenplatten kann mit FLASH auf verschiedene Arten
durchgeführt werden. Will man zum Beispiel eine Kassettendecke als reines

Plattenproblem behandeln, können die Rippen durch exzentrisch angeschlossene
Stäbe approximiert werden. Der Vorteil einer solchen Berechnungsart besteht in
der geringeren Anzahl zu lösender Gleichungen (drei Freiheitsgrade pro Knoten)
gegenüber einer Schalenberechnung (sechs Freiheitsgrade pro Knoten). Als Nachteil
muss in Kauf genommen werden, dass sich die Platte wie auch die Rippen in
Plattenebene nicht verformen können. Die Schalenberechnung berücksichtigt diese

Verformung. Die Rippen können dabei ebenfalls mit exzentrisch angeschlossenen
Stäben oder aber mit Flächenelementen berücksichtigt werden.

Schalenprobleme

Die in FLASH verwendeten Schalenelemente sind eben und setzen sich aus

je einem der vorher erwähnten Scheiben- und Plattenelemente zusammen. Die
Knotenfreiheitsgrade sind die drei Verschiebungen und Verdrehungen, weshalb
sich die Elemente auch beliebig in räumliche Rahmensysteme integrieren lassen.

FLASH wurde mit Erfolg bereits für eine grosse Anzahl praktischer Flächentrag-
werksberechnungen eingesetzt (Kastenträgerbrücken, Unterführungen, Staumauern,
Schalendächer, Maschinenteile, etc.). Da für solche Probleme aber keine analytischen
Lösungen vorliegen, wird hier als Berechnungsbeispiel der Vergleich mit der Lösung
einer Schalenaufgabe aus [6] angegeben.

Die Dateneingabe für Schalenprobleme folgt dem gleichen Schema wie für
Platten und Scheiben. Nützt man alle Möglichkeiten der Knoten- und Element-
maschengenerierung aus, benötigt man zur Beschreibung des Problems des halb
gefüllten Rohres nur ungefähr 40 Befehle. Am gleichen Beispiel zeigt sich auch
besonders deutlich der Vorteil, die Elementsteifigkeitsmatrizen für Elemente gleicher
Form und gleicher Materialeigenschaften nur einmal berechnen zu müssen. Würde
man die Steifigkeitsmatrizen für jedes der 192 Elemente einzeln bestimmen, bedeutete
dies eine Erhöhung der Rechenkosten um ca. 300%.

Die Möglichkeit, als Resultate nicht nur die Schnittkräfte in den Knoten und
Elementschwerpunkten, sondern auch in ausgewählten Schnitten am Gesamttragwerk

zu verlangen, erweist sich speziell bei der Bemessung von Schalentrag-
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Beispiel 4. Halb gefülltes Rohr.

Problem Elementmasche:
*AE 1.

V 3 N$
sSr n04166(Fluss gkeit)

M«

-f-^
40

Lagerung ringförmig in Längsrichtung
frei verschieblich

12 Elemente radial
16 Elemente axial

Resultate

M*

80-

60- i^eze)

40-
20-

-20-
90° 120^V 150° 180° <X>

40-
(374)

FLASH
THEORIE [6]

(9555)!

"«(15434) «(997)

Rechenzeiten (auf CDC- 6500 CP - Zeit)

Steifigkeits-, Spannungs- und Lastmatrizen 2 2 sek I

Lösen des Gleichungssystems (1326 Unbekannte) 96 4 sek
Totale Ausführungszeit 121 8 sek
Totale Rechenkosten am Rechenzentrum der ETHZ ~95 — SFr

Bild 4

Mz rny,mxy

X
\M' J& yxy

y*^T

Bild 5 FLASH liefert neben den lokalen Beanspruchungen auch globale, integrale Schnittkrafte



DAS COMPUTERPROGRAMM FLASH 193

werken als sehr praktisch. Die ElementSchnittkräfte sind ja stets eine Summe der
Beanspruchungen aus Biegung, Torsion, Normal- und Querkräften, und eine
Trennung der verschiedenen Anteile ist besonders bei komplizierteren
Lagerungsbedingungen nicht möglich. Die integralen Schnittkräfte geben diese Anteile und
ersparen die grosse Arbeit um von den lokalen Beanspruchungen zu den für die
Bemessung massgebenden Gesamtschnittkräften zu kommen (siehe Bild 5).

Stabtragwerke

Das Programm FLASH wurde nicht zu einem eigentlichen Stabtragwerks-
programm ausgebaut. Die Stabelemente stellen vor allem eine Ergänzung zu den
Flächenelementen dar. Die grosse rechnerische Effizienz des Programmes kann jedoch
bei sehr grossen Systemen gleichwohl eine Berechnung mit FLASH rechtfertigen.
Als praktisches Beispiel sei die Berechnung von Stahlrahmen eines 64-stöckigen
Hochhauses mit jeweils mehr als 1500 Stäben erwähnt. Die Rechenzeit für einen
Rahmen lag unter drei Minuten auf der CDC-6500 Anlage des Rechenzentrums
der ETH Zürich, was einem Kostenaufwand von ca. SFr. 200.— entsprach.

Anhang

Elastisch gestützte hybride finite Elemente

Eine Lösung für das Problem elastisch gebetteter Elemente wurde erstmals für ein
Deformationsmodell in [8] angegeben.

Um den Rahmen eines Anhanges nicht zu sprengen, werden hier nur die neuen
Terme der elastischen Stützung in die Variationsgleichung für das hybride Spannungsmodell

eingeführt. Die Voraussetzungen und allgemeine Herleitung findet man in
[7, S. 87 ff], worin auch die hier verwendete Nomenklatur erläutert wird.

Das hybride Spannungsmodell basiert auf folgender Variationsgleichung
([7,S.91]):

5I(ct,v)=X J [Sap^-a-Av) + 5v(Va + g)]-dV + J... +J...
e Ve DR

Mit der Einführung des Stützendruckes s ergibt sich folgende erweiterte
Gleichgewichtsgleichung und folgende zusätzliche kinematische Bedingung:

Vo + g- s 0: Gleichgewichtsgleichung

v — t • s 0 : kinematische Bedingung

wobei: f Federkonstante, d.h. Druck pro Einheitsverschiebung v 1

v Plattendurchbiegung.

Die Variationsgleichung lautet dann wie folgt:

8I(a, v, s) X J [Sap-1 a - Av) + 5v(Va + g - s) - 5s(v -j-s)] -dV +
e Ve

J...+J...
D R
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Die Integration mit: 8v • s + v • 8s 8 (v • s)

und den weiteren in [7, Anhang E] gegebenen Formeln ergibt (Fe Elementfläche):

T(a,v,s)=X(4ja-D-1-a-dV + iJ4-s2-dF+ J v(Va + g - s) dV- J... - J...
e Ve Fe Ve DR

Die Lösung ergibt sich aus 81 0, d.h. aus der Bedingung, dass I(a, v, s)

stationär sein muss (Spezialform des Helliger-Reissner-Prinzips). Die finite
Elementformulierung schreibt sich folgendermassen:

I(a,v,s)=Xle(^v,s)=X(4jcr-D-1-a-dV + iJfs2-dF
e e Ve Fe

+ Jv(Va + g-s)-dV)-J...
Ve R

Hybride elastisch gestützte Plattenelemente

Es werden nur die von der allgemeinen Herleitung [7, S. 100 ff] abweichenden
Ansätze für die Spannungen g angegeben. Die Darstellung erfolgt in der gebräuchlicheren

Matrixschreibweise.

lokale Spannungsansätze: {a} [\|/] {ß} + {^o}» dh:

{<*}={
my
mxy

Qy

fßi

>=[{*!} — M>n} I {V|/n+l}]< + {*o}

ß»+1

[v|/] wird dabei so gewählt (in FLASH: Polynom 2. Grades mit n 17), dass

{Vv|/0} -g
{Vvh}... {ViK} o

{Vv|,n+1} 1

ßn+ 1 S

womit die Gleichgewichtsbeziehung der Platte:

mx,xx + 2mxy>xy + my>yy + g - s Vct + g - s 0

erfüllt ist. Die Formänderungsenergie des Elementes lässt sich dann folgendermassen
schreiben:

T«(a,vR,s)=4{ß}T [[F] + [Fs]]fß} +{ß}T {F0}
lx(n + l) L _|(n + l)xl lx(n + l) (n +1) x 1

We(a,vR)

wobei:

(n + 1) x (n + 1)

[F] =fMT[Dr1[«dF: Flexibilitätsmatrix
Fe

{F0} f[vl/]T[D]-1{v|/o}-dF
F.
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"0

f

Nullmatrix mit Fs —
(n+l),(n+l) f

(folglich: mit ßn+1 s:4 {ß}T [FJ {ß} =1 J ydFJ

Die Wahl der Ansätze für die Randverschiebungen vR ([7, S. 100 ff]), wie auch
die weitere Berechnung der lokalen Steifigkeits-, Spannungs- und Lastmatrizen
entspricht dem bekannten Vorgehen ([2], [7, S. 101 ff]). Den Stützendruck s

erhält man aus der Bestimmung der Spannungsparameter {ß} (s ßn+1). Auch
diese Berechnung folgt dem bekannten Algorithmus ([7, S. 102 ff]). Es bleibt zu
erwähnen, dass der eben dargestellte Algorithmus im Gegensatz zu dem in [8]
gegebenen, auch für Dreieckselemente anwendbar ist.
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Zusammenfassung

Das Computerprogramm FLASH berechnet nach der Methode der finiten
Elemente linear elastische Scheiben, Platten, Faltwerke, Schalen und Stabtragwerke
unter statischen Beanspruchungen. Es zeichnet sich durch eine sehr einfache
Benützung und hohe rechnerische Effizienz aus. Anhand einiger Beispiele werden
seine vielfaltigen Anwendungsmöglichkeiten erläutert. Das Programm verwendet
hybride Finite-Element-Modelle. Auf die zum ersten Mal eingeführten «elastisch
gestützten» Elemente wird im Anhang näher eingegangen.

Summary

The Computer program FLASH analyzes by the finite element method linear
elastic shells, folded-plates, plates in bending and stretching as well as frames
under statical loads. The main characteristics of the program are its simple applica-
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tion and its great numerical efficiency. The program FLASH uses a hybrid finite
element model. In the appendix the derivation of "elastic-supported elements»
which have been used for the first time is given in some detail.

Resume

Avec le programme d'ordinateur FLASH on calcule les plaques, les voiles et
les cadres elastiques par la methode des elements finis. Le programme offre une
facilite d'emploi remarquable et une grande efficacite numerique. Ses applications
pratiques sont demontrees par quelques exemples. FLASH utilise un modele
d'elements finis hybrides. Dans l'appendice on decrit en detail les «elements appuyes
elastiquement» qui ont ete utilises ici pour la premiere fois.
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