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Theory of Dynamic Analysis of Box Girder Bridges
Théorie d’une analyse dynamique de ponts a poutres en caisson

Theorie einer dynamischen Berechnung von Kastentrdigerbriicken
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Professor of Civil Engineering Project Engineer FMC Corp.,
Illinois Institute of Technology, Environmental Equipment Division,
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Introduction

In almost all the studies on bridge vibration subjected to moving loads
(known to bridge engineers as impact loads), the bridge is idealized as a beam.
A review of the literature and extensive list of references are omitted herein as it
can be found in a recent (Oct. 1970) article [11]. While the aforementioned
idealization is reasonable for computing bending moments and shears for the
bridge asa whole, it is not possible to evaluate dynamic effects on stresses in various
elements of the bridge. For instance, in the box girder bridges, such as those shown
in Figure 1, dynamic effects on membrane forces, transverse moments and shears
in plate elements cannot be evaluated by the beam method. Although the total
bending moment due to dynamic effect is found, the distribution of longitudinal
stresses in a cross section can be obtained approximately by the beam theory only
when the load is symmetrical to the longitudinal centerline.

The purpose of this study is to make a more exact analysis of the dynamic
effects on the deflections, stresses, and moments in all plate elements of box girder
bridges. In order to reduce the problem to one consisting of finite number of
degrees of freedom, the distributed masses of the plate elements were replaced by
equivalent concentrated masses applying at the joints. (The edge where the plate
elements joint together is referred to as a joint.) Since both inertia forces due to
vertical and rotational displacements of the plate elements are considered, consistent
masses [ 1] concentrated along the joints are used. Moreover, since taking each plate
between two joints in a bridge cross section as an element would not provide enough
accuracy of both frequency (eigenvalue) and mode shape (eigenvector), each plate
element is further divided into several longitudinal plate strips and new joints are
introduced along the edges joining the plate strips (see Fig. 2).

With the structure divided into many plate elements and each element involving
a number of consistent masses, the matrix size become fairly large. In order to
simplify the problem, only simply supported box girder bridges with end diaphragms
but no intermediate diaphragms will be considered. Also instead of the elaborate
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idealization of a truck the live load is simplified as consisting of four identical
wheel loads represented by spring supported masses with the force in the spring
distributed over a rectangular area (see Fig. 3). Unsprung masses and internal
damping of the truck as well as structural damping of the bridge are neglected
since their effects are relatively small [4, 11]. Although without the above sim-
plifications, no great complication in formulation and programming results. The
simplifications were introduced in order to save computer time and storage.

—— .
—— 4 i F

Truck Load Wheel Load

(plan view) (spring force distributed
uniformly on base area)

Fig. 1. Typical Box Girder Fig. 2. Plate Element in a Fig. 3. Simplified Live Load.
Bridge Cross Section. Box Girder Bridge.

2b

The static relationships between displacements and internal forces are essentially
those developed for folded plate analysis by GOLDBERG and LEVE [5] and others
[2, 10]. Since these relationships and definition of symbols are virtually the same
as given in reference [ 2] they will be omitted in the text. The main assumptions of
the folded plate analysis are (a) plate elements are perfectly elastic, rectangular in
shape and rigidly jointed along the longitudinal edges, (b) the transverse end of
the plates are framed into diaphragms which are infinitely stiff in their own plane
but perfectly flexible normal to their own plane and (c) no interaction exists between
bending resisting forces (moments and shears) and membrane forces.

The approach of replacing the applied distributed forces by joint forces based
on virtual work concept is believed to be novel. The expansion of distributed
forces into a double Fourier series using normal mode functions is based on the
work of IYENGAR and JaGapisH [7]. The matrix formulation of the equation of
motion is based on a classical method [ 6].

A computer program was written in Fortran to be used in Univac 1108.
Verification of the accuracy of the program were made by comparing the static
and dynamic results obtained by the proposed method with those obtained by
existing methods or with examples taken from published articles. Static and dynamic
analysis were also performed for an example box girder bridge. However, since
the inclusion of the above results will result in a paper too lengthy for publication,
the results will be presented in a separate paper.

Equations for the dynamic Analysis of Box Girder Bridges

Equation of Motion of the Structure

With masses concentrated at the joints, the equation of motion of the structure
neglecting damping may be written in the following form

[Pma] [Ma] [Pmn] Penn + [Prmn]' [Kin] [Pona] Pona = [Pinn]* [ Q] (1)
Of Winp + O ¥ina = [M*]™ [ @] [Qu] ()
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in which

Y. .. = time function for m-th mode n-th Fourier component.

¥.. = double dots denotes second derivative of ¥, with respect to time (t).

[®mn] = matrix (vector) of m-th mode for n-th Fourier component.

[®mn]' = superscript t denotes transpose of matrix [ @p, |-

Omn = natural frequency of the m-th mode n-th Fourier component.

[Q.] = applied joint force matrix (vector) of n-th Fourier component to be
defined later. .

[M,] = assembled consistent mass matrix of n-th Fourier component to be
defined later.

[M*] = [®ma] [Ma] [Pma] (3)

[M*]~! = inverse of [ M*].

[K.] = assembled stiffness matrix of n-th Fourier component[K,] is an assembly
of the stiffness matrices [ K,]..

[Kal: = [R]:[Kal[R]. 4

in which

[Ks] = local stiffness matrix of n-th Fourier component.

[R] = rotation matrix relating local and global displacements.

[R]* = transpose of [ R] and suscript r denotes r-th plate element.

Frequency Equation

The m-th natural mode ®,,, and frequency ®y, of the n-th Fourier component
are given respectively by the eigenvector and eigenvalue of the following equation

(OJ,Zm, [ﬁ[ﬂ] - [Kn]) [(Dmn] =0 (5)

Applied Joint Forces

If a moving force is applied along a joint line, Eq. (1) can be solved by
representing the force as a Fourier series in the space variable. However, if a
distributed force is applied on a portion of a plate element, it must be converted
to forces applied on the edges of the element such that the edge forces will cause
the same dynamic effect as the distributed force.
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Fig. 4. Coordinates of the Wheel Loads. Fig. 5. Displacement Component in Local co-
ordinate System.

As shown in Figure 4 the force Q is distributed on an area 2a x 2b, the center
of which is at a distance ¢ from the longitudinal centerline and a distance
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d =Vt from x =0 in which V is the velocity and t is time. Let the force function
Q(x, y, t) be expressed in the following form (6):

AxT.9= 5 3 ) Bpn(3) sin 0 ©

m=1 n=1
Q:IaQ_bford—b<x<d+bandc—a<'y'<0+a (7a)

= 0 elsewhere (7b)

in which Q is a time function defined below and ®(y) is a plate deflection function
due to the mode displacement ®,,, along the longitudinal edges. (Expression of
the deflection function will be given later in the section on consistent mass matrix).

Q is also taken as equal to ‘% when the load enters the bridge with d >0 and
a
b>d> —b.

- n
Multiplying Eq. (6) by @ /() sin ™

thogonality property of @, and the sine function, one obtains

d+b (—2
— —d dy
Jl: a.[d b4ab nel3) sin L Y
B2 [L
J J 2.4(y) sin? ——dx dy

dx dy and integrating, then using the or-

-B/2 (8)
c:+aA
_ O(y) dy
4 [ Q L_a (¥) dy . nmb . nmVt
= nn\4ab) 572 SIS
J ®*(y) dy
—B/2

The term [®@pn,]' [Qa] in Eq. (1) may be considered as the virtual work of the
force Q, due to virtual displacement ®@,,,. In order that the edge forces will cause
the same dynamic effect as the distributed force, the virtual work due to the edge
forces must be equal to that due to the distributed force. Thus

B/2 B/2
[uma] [Qn] = f ,, Fmn 2 00) dy‘=n(t)f ®24(3) dy

-B/2
)
_4 Q nntb . nnVt
mn d s
" nr 4ab (J‘ ® y) sin L o L

If there are several forces Q, applied at y = ¢, and x = Vt — d,, (see Fig. 4) then

[@ma]' [Qn] = Znnab (f

pta

Dne(Y) dy) sin n1£b sin nn‘(VtL— dy) (10)

Cp—a
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Equations of Motion of the Wheel Loads
As stated previously, a wheel load is considered as consisting of a mass M,

supported by a spring with sprmg constant =k, The deflection of the mass
M, from its equilibrium position is {P. For the mode component mn, the plate

Vt—d,
deflection at y = ¢, and x = Vt — d,, is given by ¥ (1) (I)m,,(cp) sin n(—L—) Then
_ " Vt—d
Q=Mpg+k,| I: ZZ W mn(t) @om(c,) sin M:I (11a)
Q,=0when Vt—d,<0Oand Vt—d, =L (11b)
. ~ Vt —
and MLP + k, | € [ ZZ W () Prmn(Cp) sin IE(—L—dp):' =0 (12)
in which g is the gravitational acceleration.
Final Equations
From Egs. (2) and (10)
cota b Vt—d
Vo + 0 Yo =[] T ( J ) dy) sin m]': sin ™™ . ) (13

in which Q, is given by Eq. (11). If there are four wheel loads, the final equations
consist of the above equation plus four equations of Eq. (12) with p =1, 2, 3, 4.
Consistent Mass Matrix

The matrix [M] is an assembled mass matrix of [M] for all plate elements.
For plate r

[M]: =[R]: [M]; [R], (14)

in which [ M], is the consistent mass matrix. The element M3} of [M]; is given by (1)
—B/2

M:h =J ptna np; dy (15)
-B/2

in which p is the density, t is the thickness of the plate, ng is a displacement
function due to unit displacement of & =(u, v, W, or 0) at edge i with other
displacements equal to zero, and mg; is defined similar to ng. The mass M is
corresponding to the stiffness K} in which ¥ =(T, N, S or M) is corresponding to
o =(u, v, w or 0) with T corresponding to u, etc. The mass distribution in the x
direction is a Fourier cosine series for the u displacement and Fourier sine series for
the displacement v, w and 0.

The local displacement functions W, u, and v, and the elements for the consistent
mass matrix [ M ], with subscript r omitted are given in Reference 8.
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Method of Solution and Final Results
Method of Obtaining Eigenvalues and Eigenvectors

The success of the mode superposition method depends on the accuracy of the
eigenvalues and eigenvectors. In the present study, the eigenvalues and eigenvectors
are obtained by means of a method given in Reference [12]. Briefly, the method
is as follows, for an eigenvalue problem of the following standard form;

[A] {®} = X{®} (16)

The largest eigenvalue, X and its corresponding eigenvector, @, are obtained by the
usual method of iteration except that the pivot of the trial vector is taken in the
same row as that of [A] containing the largest absolute element. The eigenvector
is normalized so that the sum of the squares of its components equal unity.

In the process of iterating for @4, a vector ®F is obtained at a few iterations
before reaching the final ®;. The vector ®F contains components of many modes
¢1, O3 ..., etc. Let ¢ -—-[A——Xl Il¢T in which I is the identity matrix. Then in
vector ¢, the ¢, component is removed and the ¢, component will predominate.
Using ¢ as the starting trial vector, and using Eq. (16) for iteration, one obtains
the eigenvalue X, and its corresponding eigenvector ¢.,.

Let ¢% be the vector obtained at a few iterations before reaching the final ¢,.
The components of ¢, and ¢, in ¥ are removed by taking ¢3 = [A i Il¢% and

[A X2 I]¢3. The vector ¢7 is used as the starting trial vector in Eq. (16) for
1terat10n to obtain X; and ¢3. After a number of iterations, a vector ¢j
is obtained which may contain errors due to components of ¢; and ¢,.
These components are removed by taking &% = [A X1 I]¢3 and ¢4 =
[A-1X, I]d)3 The vector ¢ is again substituted back into Eq. (16) for iteration
to obtain A3 and ¢.

Procedures similar to the one described above and used for obtaining other
eigenvalues and eigenvectors. In order to save both time and storage, only single
precision was used in the computation. As a result, a certain loss of accuracy
becomes inevitable. Some indication of the accuracy of the results will be given in the
numerical examples.

Reduction of Degrees of Freedom for Dynamic Analysis

In order to save computer time and storage, the sizes of the matrices used in
the dynamic analysis were reduced by limiting the degrees of freedom taken into
consideration. Since the loading is in vertical direction and may be unsymmetrical
to the bridge centerline, vibrations of the bridge are considered to cause inertia
forces only in the directions of global vertical displacement (A,) and rotation about
longitudinal axis (Ag). Since there are no longitudinal and lateral oscillations,
inertia forces in these global directions (A,, A,) will be assumed negligible. In Egs.
(1,2 and 5), a reduced stiffness matrix as shown in references (6, 9) relating forces and
displacements in the A, and A, directions will be used instead of [K,] and a
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mass matrix consisting only of the masses causing inertia forces in these directions
will be used instead of [M,]. The reduced stiffness matrix [K]* is obtained in

the following manner. Let
A, Ay
Al =(:Ae:|, A2 =|:AJ (17a,b)

rom [ ]2l [ o

with ?2 = 0 it can be shown that [f]* = [?1 1] = [?12] [?22]_1 [I=<21] (19)

Solution of the Dynamic Equations

The dynamic equations 11, 12 and 13 were solved simultaneously for &, and
Wmn by the 5th order Abam's method [ 3] using a Runge Kutta starting procedure.

Displacements, Forces and Stresses

Upon solution of the dynamic equations, the resulting displacements and forces
must be obtained. The matrix (vector) of coefficients of the n-th Fourier com-
ponent of edge displacements in global coordinates is given by

[An] =2 ¥onn [Prma] (20)
The matrix [ A,] is the assembled matrix of [ A, ],
[An]r = [Azi Ayi Axi Aei Azj ij ij Aej]:' (21)

in which A, A, A, and A, are displacements in global z, y, x and 8 (rotation about x)
directions respectively and i and j denote longitudinal jointing edges of plate
element r.

The matrix of coefficients of n-th Fourier components of local displacements
[64] is given by

[5n]r = [eni 05j Wi Whnj Unj Unj Vnj an]t = [R]r [An]r (22)

in which u, v, w, 8 are displacements in the local x, y, z and 0 (rotation about x)
directions respectively (see Fig. 5 for positive directions of 0,;, wy;, etc) and [R]
is the rotation matrix defined previously.

The matrix of coefficients of n-th Fourier components of local edge forces acting on
plate element r is given by

[Fn]r = [Mni 1’\.’/Inj Sni Snj Tni Tnj Nni Nnj]: = [Kn]r [Sn]r = [Kn]r [R]r [An]r (23)

in which [K,] = local stiffness matrix as defined previously, M = transverse bending
moment per unit length, S = transverse shear per unit length, T = membrane shearing
stress resultant, N = membrane normal stress resultant and forces are acting along
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edges i and j as indicated by subscripts. The positive directions of [Mni, 1\7[,,]-, Shi,
Suj> Tais Taj N, Np;] are corresponding to the positive directions of [0y, 0,5, Wai,
Wnj» Uni, Unj, Vni, Vaj] respectively.

The final edge displacements and forces for plate r are given by

[8] = Z [8n 8a 8n S Ca Ca8n Sa] [Ba]r (24)

[F]r = Z [gn §n gn §n E:n En §n §n:l [Fn] (25)
n=1

in which §, = X &a= — cos I? (264, b)

The longitudinal stress at edge iin plate r is given by
o,):.=E Z um )r sin mth + = Z )r sin r? (27)

n=1

in which E = modulus of elasticity and v = Poisson’s ratio.
The interior moments in any plate strip are given by

_ 2 ( )2 (1= v) (M), sin’iLx (28a)
M, = i D(r%)2 (1—v) (M, sin riLx (28b)

The coefficients of (M), and (M), are given in Reference 8.

Static Solution and Impact F actor

As indicated in Ref. [7], the static solution may be simply obtained by the
following considerations: (a) In Eq. (11), consider only the term M,g (omit the
dynamic force in the spring). (b) In Eq. (1), consider only the effect of stiffness
matrix (omit the term depending on time derivative of ¥). Letting the solution of ¥

thus obtained = ¥, Eq. (13) becomes
Gmaly) dy) sin 3 sin (29a)

oi b0 T ([ L

M, =0 when Vt —d,<0and Vt —d, = L (29b)

Since Wyuo(t) depends only on Vt=d, W,(t) is a function of d. Thus the static
solution of [A,] denoted by [A,] can be obtained by replacing ¥y, with ¥p,

in Eq. (27)

cpta

ntb . nn(Vt—d,)

[B] = £ ¥ [ @] (30

with [Zn] known, the responses (deflections, forces, moments, and stress) may be
obtained by the same equations as given in the previous section.
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The amplification factors Ay and A, for dynamic responses I'y and static
response I' respectively are defined by
1_‘d l_‘s
Ay = A=
N g Com

(31a,b)

is which I',, is the maximum static response. The impact factor 1, is defined as
I=max|Aq| —1 (32)

It should be noted that in the evaluation of Ay, A, and I, the values of I'y,
I's and Iy, should be taken for the response at the point under consideration,
for example, the deflection at a specific plate joint at midspan, the moment at
center of top plate at midspan, etc.

Conclusions

Theoretical formulation for the exact analysis of dynamic effects due to moving
load on deflections, stresses and moments in all plate elements in simply supported
box girder bridges is presented. Each plate element is further divided into several
longitudinal plate strips and consistent masses are applied along the lines joining the
strips. The truck is simplified into 4 identical wheel loads represented by spring
supported masses with the force in the spring distributed over a rectangular area.
Unsprung masses and internal damping of the truck as well as structural damping
of the bridge are neglected. The spring force is expressed in the form of double
Fourier series and the distributed force is replaced by forces along the joint lines based
on the principle of virtual work. The general method is essentially based on mode
superpositions and the method chosen for obtaining the frequencies and mode
shapes are given. Governing matrix equations, displacement functions, consistent
mass matrix and expressions for plate moments at interior points are presented.

Although numerical studies will be presented in a companion paper, two general
observations may be made herein.

1. In order to obtain accurate results, many plate strips must be taken and many
modes must be included. However, the higher the number of modes included,
the smaller the time increment (which is proportional to the period of the
highest mode) required in a dynamic analysis. As the computer tie is inversely
proportional to the time increment, it becomes impractical to include large
number of modes.

2. Since the proposed method is based on mode superposition, it is essential that
not only the eigenvalues (frequencies) but also the eigenvectors (mode shapes) be
determined efficiently and accurately. Many methods are available to determine
accurate eigenvalues but such is not the case for eigenvectors. It is beyond
the scope of this study to make an exhaustive evaluation of all available
methods. However, it is hoped that more powerful methods will be developed
in the near future.

As pointed out previously, practical application of the theory will be presented
in a companion paper mainly for the reason of shortening the paper to reasonable
length. By knowing more precisely the dynamic effects of moving loads on box
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girder bridges, the theorectical formulation presented herein would undoubtedly
make a meaningful contribution to the safety and economy on the design of
such bridges.
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Summary

Theoretical formulation for elastic analysis of dynamic effects due to moving
loads on deflections, stresses and moments in all plate elements in simply supported
box girder bridges is presented. The truck is simplified into 4 identical wheel loads
represented by spring supported masses with the force in the spring distributed
over a rectangular area. Governing equations, displacement functions, consistent
mass matrix and expressions for plate moments are given. Practical application
of the theory will be given in another paper to demonstrate its contribution to
the safety and economy of box girder bridge design.

Résumé

L’article présente une théorie pour I'analyse élastique des effets dynamiques
des charges mobiles sur les déflexions, tensions et moments dans tous les éléments
de ponts a poutres en caisson sur appuis simples. Le véhicule est simplifié en
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4 charges de roue qui sont représentées par des masses supportées par ressorts et
dont la force du ressort est distribuée sur une surface rectangulaire. On établit les
équations principales, les fonctions de déplacement, la matrice des masses et les
moments des plaques. L’application pratique de la théorie sera présentée dans
’article suivant montrant aussi la contribution a la sécurité et a I’économie d’un
pont a poutres en caisson.

Zusammenfassung

Es wird eine theoretische Formulierung der elastischen Berechnung von Durch-
biegungen, Spannungen und Momenten in allen Plattenelementen einfach gelagerten
Kastentragerbriicken unter dynamischen Einfliissen bewegter Lasten vorgelegt. Die
Belastung wird durch 4 gleiche Radlasten mit elastisch aufgelagerter Masse dar-
gestellt, wobei die Federkraft {iber eine rechteckige Fliche verteilt wird. Es werden
bestimmende Gleichungen, Verschiebungsfunktionen, die folgerichtige Steifigkeits-
matrix und Ausdriicke fiir die Plattenmomente angegeben. Die praktische An-
wendung der Theorie im Hinblick auf Sicherheit und Wirtschaftlichkeit der
Kastentragerbriicken wird im anderen Beitrag dargelegt.
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