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Eléments spatiaux de barres courbes
Réumlich gekriimmte Balkenelemente
Space-curved Rod Elements

M.-H. DERRON J. JIROUSEK, Dr es sc.
Professeurs a I’Ecole polytechnique fédérale de Lausanne, Suisse

Introduction

Bien que la méthode des ¢éléments finis soit aujourd’hui tres €élaborée dans le
domaine des milieux continus (parois, dalles, coques, structures massives), il n’a
été accordé jusqu’ici que relativement peu d’attention a I'étude de systémes com-
prenant des ¢éléments spatiaux de barres courbes. Le champ d’application des
études antérieures (voir [ 7] par exemple) est le plus souvent limité par de séricuses
restrictions d’ordre géométrique. Dans notre étude, nous avons cherché a développer
des €léments trés généraux satisfaisant les conditions suivantes:

— La géométrie de I’élément doit permettre de réaliser avec une précision suffisante
une courbe axiale aussi compliquée qu’on le désire et un taux quelconque de
variation de la section le long de l'axe. Par ailleurs, il faut pouvoir tenir
compte de I’excentricité éventuelle des nceuds par rapport a 'axe de I'élément.

— En vue de l'application au calcul des coques nervurées, le développement de la
matrice de rigidité de P’élément doit &tre basé sur la méthode directe des
rigidités plutét que sur linversion de la relation déplacements-forces. Un choix
convenable de fonctions paramétriques de déplacements généralisés permettra de
satisfaire automatiquement les conditions de continuité aux interfaces des
éléments.

— L’¢lément doit s’appliquer sans restrictions a tous les rapports entre la hauteur
de la section et la longueur de la barre. En plus des déformations dues aux
moments fléchissants et aux moments de torsion, il doit par conséquent tenir
compte également des déformations dues aux efforts normaux et aux efforts
tranchants.

Ci-apres, nous proposerons deux familles d’é¢léments spatiaux courbes du type
superparameétrique. La premiére est une famille d’éléments de section rectangu-
laire qui peut étre représentée avec un minimum de données. La seconde est une
famille d’¢léments de section quelconque, pour autant que le centre de torsion de
cette derniére se confond (au moins approximativement) avec le centre de gravité.



66 . M.-H. DERRON ET J. JIROUSEK

1. Considérations géométriques
1. Définition d’une famille d’éléments de section rectangulaire variable

La figure 1 montre deux membres typiques de la famille d’¢léments étudice
dans ce paragraphe. Chaque élément sera défini par une correspondance biuni-
voque entre les coordonnées globales x, y, z et les coordonnées curvilignes
€, n, . En pratique, il est commode d’établir ces relations de telle fagon que les
coordonnées &, m, { varient entre — 1 et + 1 sur les diverses faces de I'élément
(voir figures 1Ab et 1Bb, ou l'on a choisi pour des raisons pratiques des échelles
différentes pour la coordonnée & et les coordonnées n et §).

§=1

Fig. 1. Deux membres de la famille d’¢léments spatiaux de barres courbes de section rectangulaire
variable (a) obtenus par distorsion de leurs éléments de base (b): élément quadratique (A), élément
cubique (B).

Pour définir 'axe de I’élément dans I’espace, on fixera sur cet axe un certain
nombre de nceuds L=1, 2 ... M, répartis plus ou moins régulicrement, et on
fera passer par ces points une fonction d’interpolation. En désignant par x,, y, et z,
les coordonnées globales de 'axe, on peut par exemple écrire:

X, M XLI

Yor= Z NL (g) Yo, (1)
Z, L

ou les fonctions de base N (&) sont représentées par des polyndmes de Lagrange:

C—-8)E8—8) .. €—8&-1)(E—&+r) --- (E—EM
(EL—8)(EL—82) ... (B —EL-1) BL —E&r+1) --- (L —Ew)

Ny(&) = (1a)
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Notons que les noms des éléments représentés dans la figure 1 («quadratique»
pour M =3, «cubique» pour M =4), indiquent le degré des fonctions de base
appliquées pour leur description. De méme, pour M =5, 6, etc., nous parlerons
des éléments « quartique», « quintique», etc.

On remarquera que les triplets de points L, L' et L” (fig. 1), chacun affecté de
ses coordonnées cartésiennes X, y, z connues, définissent les dimensions des sections
nodales £ =const. et leur orientation dans l'espace. En  partant de ces points, il
devient possible de représenter la famille d’éléments considérée par la relation

X M XL XL/ - XL XLU — XL
ye= > Nu@) v+ nyw —yop+ C{YL" -y )- (2a)
z) L=l 7 Zy — 7y Zir — 7y

Cette relation s’écrit plus briévement

T= Z,NLF:) rL+nBL+CC) (2b)
ou encore
At} =([Go]+ M [Gs] + ¢ [Gc]) (N}, (2¢)
ou { N} est la matrice-colonne des fonctions de base,
{N}T = [N1 N2 . e NM], (33)

et les matrices géométriques [ Go],[Gg] et [ G.] ont pour expression:

X1 X2 ... XM (Xlr = Xl) (le — X2) . (XM’ — XM)
[Go] = Y1Y2 .- Ym LOe]=| (yy—y) (=¥ - - (yw—ym|> (3b,¢)
Z1Zy ... Zy (er — Zl) (Zzl - ZZ) oo (ZMr - ZM)
(Xyr —X1) (X2 —X3) .. (Xmr — Xy)
[Gel= {(Yl" —y1) (2r=y2) - (ywr — ym)} (3d)
(Zlu - Zl) (Zz/r — Z2) “en (ZMII - ZM)

. 2. Simplification des données géométriques

Au moyen des relations (2), il s’agissait d’exprimer approximativement la forme
d’un élément par une expression analytique unique et mieux adaptée aux besoins
du calcul. Pour définir un élément de cette maniére, que nous pouvons qualifier de
passive, il est nécessaire de définir un nombre appréciable de données, soit IM
coordonnées des triplets de points L, L’ L"” qui définissent les sections nodales
de la barre réelle.

Le nombre de données géométriques peut étre considérablement réduit si ’on
détermine la forme de I’élément de maniére active: si I'on fixe convenablement
dans I'espace un nombre approprié de points L, la relation (1) permet d’engendrer
une forme aussi compliquée que I'on désire. On l'adopte alors comme axe réel
de la barre. Puisque les sections nodales doivent étre perpendiculaires a cet axe
(cette condition n’est satisfaite qu’approximativement si 'on applique les relations
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(2) de maniére passive), chacune d’elle sera définie de mani€re univoque par
trois paramétres seulement. En pratique, il suffit de spécifier par exemple les données
suivantes (fig. 2):

Plan ¢ L au plan xy

Fig. 2. Définition géométrique d’une section Fig. 3. Section § = const. et section perpendicu-
nodale. En partant des valeurs xp, y;, z; et by, laire a laxe en un point intermédiaire de
h;, @ données, les nceuds auxiliaires L' et L” I’élément.

seront déterminés a I'aide des relations résumées
dans ’'appendice.

a) les coordonnées x, y1, z; desneeuds (L=1,2 ... M),

b) le «dévers» représenté par I'angle @, entre le plan xy et I'axe principal y§¥ des
sections nodales (L=1,2 ... M),

c¢) les dimensions by et h;, des sections nodales(L=1,2 ... M).

Si le dévers et/ou les dimensions de la section sont constants, les données
b) et/ou c) ne seront indiquées que pour une seule section de I’élément.

A partir des données a), b), c) et des bases du calcul vectoriel, on peut développer
une routine permettant de déterminer les points L’ et L et se ramener au cas
fondamental du paragraphe 1. Les relations nécessaires sont données dans 'appendice
en fin d’article.

3. Définition des axes locaux d’'une section de I'élément
Généralités

Afin de pouvoir tenir compte des hypothéses et des lois fondamentales de la
théorie classique des barres, on considérera en tout point de I'axe de I'élément
un systéme dit local d’axes orthogonaux, constitué par I'axe x* tangent a l'axe
de I’élément et des axes y* et z* confondus avec les axes principaux de la section
(voir par exemple la figure 3). La détermination de ce systéme local recéle quelques
difficultés, propres a la méthode utilisée pour la définition géométrique de ’élément,
définition qui, forcément, ne représente qu'imparfaitement la réalité. Il faut notamment
remarquer qu’une section & = const. n’est en général quapproximativement perpen-
diculaire a l'axe de I'élément (fig. 3). Nous nous en rendrons facilement compte
en étudiant de plus prés certaines propriétés de la définition (2).

On remarquera tout d’abord qu’en tout point I intermédiaire (£ =&;#§&.) de
'axe, les vecteurs
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M M

B= Iy —I1= Z NL(Fo) BL et C= Iy — Iy = Z NL(&) CL (43, b)
L=1 L=1

restent perpendiculaires 'un a l'autre, puisque les produits scalaires ﬁL : éL des

vecteurs nodaux sont par définition nuls. En revanche, la comparaison des expressions

du vecteur A de la normale a une section § = const.,

M M
A=Y Ny B, x Y N (§C., 4c)
L=1 ]
et du vecteur t de la tangente & Paxe de I'élément,
1[0 MOgN, . M )
t = —_— = e r —_ NI r , 5
(a&>n=c=o L§1 dg L L; i(8) 1o (5)

montre que la définition géométrique(2) de I'’élément n’implique pas que la normale
de la section § =const. est paralléle a la tangente de I'axe, si les sections nodales sont
perpendiculaires a 'axe.

Premiére méthode de définition

Il découle de la discussion précédente que les sections & = const. ne peuvent
en général étre perpendiculaires a 'axe qu’en un nombre limité de points parti-
culiers (par exemple en tous les nceuds L, si 'on applique la définition active de
la forme de I'élément selon le paragraphe 2). Dans ce cas, si le nombre M de
nceuds est suffisant et si la distorsion de I’élément n’est pas excessive, on peut
approximativement choisir les axes x*, y* et z* suivant les vecteurs A, B et C
(relations (4c,a,b)). Les vecteurs unités i*, j* et k* suivant ces axes s’expriment
alors simplement par les relations

.. BxC - B - C
1k — 1k — *
= 5=, 7= = k* = —=, 6a
Bxa U T €] (62)
et les dimensions b et h de la section ont pour valeur
b=2|B| et h=2|C| (6b)

Deuxiéme méthode de définition

Une méthode plus précise et plus générale de définition des axes locaux consiste
a couper le solide défini par (2) par un plan perpendiculaire a I'axe (1). La section.
obtenue n’étant en général pas tout a fait rectangulaire, il s’agira de déterminer une
section rectangulaire de remplacement. Ce probléme n’est pas univoque et plusieurs
formulations ont été tentées. Nous avons finalement retenu celle qui parait la plus
simple. Elle consiste a projeter sur le plan perpendiculaire a l'axe la section
& = const., soit la section rectangulaire ABCD de la figure 4a, et & ramener ensuite
le parallélogramme (A) (B) (C) (D) ainsi obtenu a un rectangle A*B*C*D* (fig. 4b)
par les rotations appropriées 9; et 3, de ses axes (n) et ({). On admettra que
les rotations 3; et 3, sont telles que les arcs circulaires (I')I* et (I')I*” parcourus
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pendant la rotation (fig. 4b) sont de longueur égale. La simplicité de cette hypo-

thése se justifie par le fait qu’en pratique, les corrections angulaires sont généralement
faibles.

a)

Plan 1a§

Fig. 4. Projection de la section & = & sur le plan perdiculaire & I'axe et détermination des axes locaux
x* y* et z¥.

Cette méthode conduit aux relations suivantes:

- —{ - _.* - _’*
i*=, = _E__’ k* = Sr_, (7a)

13 | B¥| |C*|
b=2|(B)l, h=2|(C)| (7b)

ot le vecteur t est défini par la relation (5) et les vecteurs B* et C* ont pour
expression:

E*:(B +§ [sin @ cotg (® —9;) — cos ®] ((j;), (7¢)
C*=(C)+ ¢ [sin - cotg (0 —9;) — cos o] (B),
- — - ?‘ﬁ—» — - g -{‘6—»
avec (B)=rmy-n——t, O =1rp—15— 5 t, 7d
B=f—h-'m L O=fe-fi- o (19)
= arc co 4(§(6 Te
® = arc cos ) (C), (7e)
h T b T
\9=—— ey S:—-———— - =< 7
! b+h(m z)’ 2 b+h(m 2) (70

Expression matricielle des relations définissant les axes locaux

Pour le calcul sur ordinateur, il convient de remplacer '’ensemble des relations
définissant les vecteurs-unités i¥, j* et k* par un ensemble équivalent de relations
matricielles conduisant aux matrices-colonnes {i*}, {j*} et {k*}. On opérera les
substitutions suivantes:
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V={VL Vi=V=V{VJT{V} V;-Vo={Vi}J7 {Va} (82)
N - Vly'Vlz"’Vlz'VZy
VixV,={V," V) =V, Vs, (8b)
V1x’V2y - V1y’V2x

ou V, V, et V, sont des vecteurs quelconques, et ou l'indice supérieur T désigne
la matrice transposée. Par ailleurs, en tenant compte de (2b), on aura:

{B} =[Gs] {N}, {C}=[Gc]{N}, (9a,b)

{r} =[Go] {N}, (9¢)

{tr} =([Go]+ [Gs)) {N}, {r}=([Go]+[Gc]) {N}, (9d, e)
{t} =[Go] {N} (9f)

ou {N} est la matrice-colonne des premiéres dérivées des fonctions de base par
rapport a &.

4. Définition d’une famille généralisée d’éléments de section quelconque

La figure 5 montre deux membres typiques de la famille généralisée d’¢léments
spatiaux de barre courbe. La section supposée varier lentement le long de I'axe
peut étre quelconque, pourvu que son centre de torsion se confonde (au moins
approximativement) avec le centre de gravité. Outre les sections pleines, on peut
admettre également des sections a parois minces de contour fermé, a condition que
la torsion fléchie soit négligeable vis-a-vis de la tension de Saint-Venant.

A) =t B)

Fig. 5. Deux membres de la famille d’¢léments spatiaux de barres courbes de section quelconque:
¢lément quadratique (A), élément cubique (B).

Comme dans le cas de I’élément de section rectangulaire, ’axe de I’¢élément
sera représenté par 'équation (1) et les axes principaux des sections nodales seront
définis par les triplets de points L, L’ et L”. Pour définir les axes locaux x*, y*, z* d’une
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section quelconque, on appliquera directement les relations développées au para-
graphe 3. Les grandeurs b et h intervenant dans ces relations ne sont maintenant
que de simples valeurs auxiliaires, ne permettant pas de déterminer la forme et les
dimensions de la section correspondante; il faut donc définir de fagon indépendante
les constantes géométriques caractérisant la section dans les considérations statiques.
Il s’agira des six grandeurs suivantes:

F aire de la section;

Fyx, F,x aire réduite pour le calcul des déformations dues au cisaillement selon
les axes principaux y* et z*;

J moment de résistance a la torsion;

I, I+ moments d’inertie par rapport aux axes principaux y* et z*.

La méthode la plus simple consiste a définir les valeurs nodales de ces grandeurs
et a déterminer les valeurs intermédiaires par I'interpolation suivante:

(F ) (Fp )

I};y* M F\Y*L

I = T NLE (10)
L=1 L

Iy* Iy*L

LIZ* LIz*L

Ajoutons encore que le principe de la définition active de la forme de I'élément
énoncé au paragraphe 2 ainsi que les relations servant au calcul des points auxiliaires
L’ et L” données dans I’Appendice restent valables pour les éléments de section
quelconque. Toutefois, le groupe c) de données (valeurs by, et h;, qu’il est maintenant
possible de remplacer par des valeurs fixes quelconques non nulles — par exemple
unitaires — égales pour tous les L et pour tous les éléments) sera remplacé par:

C) FL; Fy*L’ Fz*La JL’ Iy*L9 Iz*L (L = 1, 2 . e M).

2. Considérations statiques
1. Généralités

Considérons I'¢lément courbe de la figure 6a repéré dans un systéme global de
coordonnées cartésiennes X, y et z. En un nceud quelconque L de I'élément, on
admettra six degrés de liberté:

les déplacements u, v, w selon les axes x, y, z,

les rotations @, B, Y autour des axes x, y, z.

Pour simplifier I’écriture, on désignera par &, le sous-vecteur des déplacements
nodaux défini par la relation

ol = [uL, Vi, Wi, o, B, Yo, (11)

et on attribuera le symbole s; au sous-vectéur des forces nodales équivalentes
associé a §;. Par ailleurs, on désignera respectivement par {A} et {S} le vecteur
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des déplacements nodaux et le vecteur des forces nodales constitués respectivement
par tous les sous-vecteurs §; et par tous les sous-vecteurs s; de I'’élément. Afin
de pouvoir convenablement tenir compte des effets du poids propre, de la variation
de température et des déformations initiales, la relation forces-déplacements de
I’élément sera exprimée sous la forme

{8} ={S} +[K] {A}, (12)

ou {S} est le vecteur des forces nodales primaires équivalentes de I'élément. On
remarquera que la matrice [K] est d’ordre 6M, ou M est le nombre de nceuds.

G) T

X, u

Fig. 6. Elément spatial de barre courbe et ses forces nodales.
a) Cas fondamental: tous les neeuds sont considérés comme nceuds de liaison et se situent sur I'axe de
I’élément.
b) Exemple d’un cas dérivé du cas fondamental: les nceuds A et B sont seuls considérés comme nceuds
de liaison. (Ils peuvent étre excentrés par rapport a I'axe.) Les degrés de liberté des nceuds internes
(en traitillé) sont éliminés de la relation forces-déplacements.

La situation représentée sur la figure 6a sera considérée comme cas fondamental.
Lorsque le vecteur {S} et la matrice [K] sont connus, d’autres cas peuvent en
étre dérivés par des transformations appropriées. Dans les applications concernant
les structures constituées uniquement de barres, seuls les naceuds des extrémités
interviendront dans le processus d’assemblage. Par ailleurs, si 4 la suite d’une forte
différence entre les dimensions des sections, les axes des barres ne se coupent pas
aux croisements des barres, on peut étre amené a considérer des éléments possédant
des nceuds de liaison excentrés par rapport a leur axe. L’€lément type représenté sur
la figure 6b satisfait a toutes ces exigences.

Les déplacements nodaux des nceuds intermédiaires peuvent €tre éliminés par
le processus standard de condensation statique. En posant, pour simplifier:

(5} ={§;} et {5} ={} (13a)

on aboutit a la relation forces-déplacements suivante:
{s} = {5} + [k] {8} (13)
avec {5} =S, + K.Ki'(P.—S), [k]=K. — K;K;i'KJ (13b)

Dans ces relations, le vecteur P; est formé de sous-vecteurs p; des charges nodales
données aux nceuds intermédiaires de I’élément
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PI=[p:...Pm1] (13¢)

tandis que la signification des autres termes découle de la partition suivante de la
relation matricielle (12):

o1 S| |S.| |K.|Ka||A
Sm
(S}={s: r={=y=7+ (139
: S; S; Kie | Ki| [A
SM-1

Pour passer a I’élément avec nceuds de liaison excentrés, on admettra que ces
nceuds sont liés aux extrémités de I'axe par des barres rigides (fig. 6b). Les dépla-
cements 8;, 8y et les déplacements 8,, &g seront alors liés par des relations
linéaires du type

81 =T18A, 8M =TM837

ou les matrices de transformation T; et Ty découlent de simples considérations
géométriques. La matrice Ty, par exemple, a pour expression:

1 0 0 0 A21 — Ayl-
0 1 0 — Az, 0 Ax,
0 0 1 Ay, — Ax, 0
T1 = > - (14a)
0 0 0 1 0 0
0 0 0 0 1 0
[ 0 0 0 0 0 | .
aveCc Ax; =X; —Xa, Ay;=Y; —Ya, Az;=12z;—2,. (14b)

Pour obtenir la matrice Ty, il suffit de remplacer les indices 1 et A par M et B.
En définissant maintenant les vecteurs

= J 8a —J)Sa

{Sexc} = 16B ’ {sexc} = Sp s (14C)

on peut transformer la relation (13) en la relation forces-déplacements suivante:
{Sexc} = {gexc} + [kexc] {80X0}5 (14)
avec {Sexc} =[T]" {8}, [Kexe]=[TT" [KI[T] (14d)

T 0

t T]=|a' : 14e
: m-lst 1] (140

2. Définition du champ des déplacements et du vecteur des efforts internes

Le modéle de calcul permettant de tenir compte de leffet du cisaillement
consiste & admettre qu’une section plane avant déformation restera plane aprés
déformation, mais que son plan ne sera plus nécessairement perpendiculaire a
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laxe déformé de la barre. Ceci signifie que les rotations des sections doivent étre
définies indépendamment de la déformée de I'axe. La déformation de I’élément
sera alors donnée de maniére univoque par trois composantes u, v,, W, du
déplacement du centre de gravité de la section selon les axes globaux x, y, z et
par trois composantes a, B, Y de la rotation de la section autour de ces axes.
On les définira de maniére analogue a celle que 'on a utilisée pour les coordonnées
globales (équation (1)).

U, M uL o M oy,
Vor= X N (®)ivep et {Bl=Y NL(®{Br-  (15ab)
W, L=1 Wy y L=1 To

Les efforts internes dans une section de I’élément sont définis dans la figure 7,
ou y* et z* sont les axes principaux. En partant des hypothéses courantes de la
théorie des barres, ces efforts peuvent étre exprimés en fonction des déformations
par la relation matricielle suivante:

yiv®
Fig. 7. Composantes de la résultante des efforts Fig.8. Positionsrelatives d’une section et de I'axe
internes agissant sur la face positive de la section. d’un élément déformé, compte tenu de Peffet du
cisaillement.
T - 7 (duX A
( N EF I+ 1 (08,(*
0 dvg
Qy* GFy* dx* - Y* 08)’*
dw¥
J Q.+ GF, T T B[ | s
b= { o =< - §(16a)
T GJ I °x
dp*
O
My* 0 EIy* ax'—* y %
dy*
M.« ElL .« s 00, %
\ J L — \ dX J L 7
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ou u¥, v¥ wX et a* p* v* sont respectivement les déplacements et les rotations
rapportés aux axes locaux de la section, et g, “dyx, °3,x, °Ix*, %%, %, sont les
valeurs initiales des déformations associées aux efforts internes. Dans le cas d’une
variation uniforme de température, par exemple, on aura:

SX*—QTAT Sy*—S*-Sx*— y*—'z*=0,-

ou oy est le coefficient de dilatation thermique de la matiére.

La relation (16a) appelle quelques commentaires. On remarquera que les défor-
* *

) dv dw .
mations Oyx = a—o;— T* et 8% = —d~°;+ B* représentent les composantes de la dévia-
X X

tion de la normale n a la section par rapport a4 la tangente t a4 laxe (fig. 8).
De plus, on notera que dans le cas d’une section rectangulaire, les surfaces réduites
F,+ et F,« multipliant ces déformations sont égales a 2 F.

Pour simplifier I'écriture, nous écrirons symbohquement la relation (16a) sous

la forme
{M} =[D] ({s¢} — {"*)), (16)

ou {M} désigne le vecteur des efforts internes, [D] la matrice de transformation
efforts internes-déformations, {56} le vecteur des déformations totales et {°%¢} le
vecteur des déformations initiales.

3. Expression de la relation forces-déplacements de I'élément

Le vecteur {s¢} défini au paragraphe précédent peut étre exprimé en fonction
du vecteur {A} des déplacements nodaux. La matrice [®], qui définit la ttans-
formation orthogonale

{Vi=[e]{v*} et {v*}=[0] {V}

entre les coordonnées cartésiennes globales {V} et locales {V*} d’un vecteur, aura
pour expression

[©] = [{i*} {*} {k*}] (17a)

ou {i*}, {j*} et {k*} sont les matrices-colonnes des coordonnées cartésiennes
globales des vecteurs unités définis par les relations (6a) ou (7a); d’autre part,

Fy {V*} = C[®]T {V} =c[e]" {V},

ou le coefficient c est égal a la valeur inverse de la longueur du vecteur-tangent t

1 1
TR NG 1G] (N (170)

On aboutit a {} = % [ eNi [O]' } N;Ef:%@%?il o = Lil by -6 (17)
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‘ 0 0 0
avec [A]= l:O 0 - 1] (17¢)
0 1 0

Afin de rendre possible la condensation statique [équations (13)], les sous-
vecteurs &, constituant le vecteur {A} seront considérés dans I'ordre suivant:

(AYT=[8T6%(57 %] (182)
En posant [B] =[bibm|by — by] (18b)
on obtient {oe} =[B] {A} (18)

Pour calculer I'effet du poids propre du matériau, de poids spécifique v, intro-

duisons les vecteurs
YX uO
{v}=<v et {dj=<vo -
Yz W,

Les ¢léments du premier vecteur sont les composantes du poids spécifique y selon
les axes globaux x, y et z. Le second vecteur peut encore s’écrire a partir de
(15a), en fonction de {A}:

{do} =[crem|e2 —en]{A}=[C] {A}, (19)
1 0 0 0 0 0
avec c.=N; |0 1 0 0 0 0ol -
0 0 1 0 0 0

En appliquant maintenant le théoréme de stationnarité de I’énergie potentielle
totale, OIT=0V + dU =0, on aboutit a:

)= - { (BT D1 (o905 - [*FICT tryos, (K= [BT [D[B]ds

Sachant que ds = td&, ou t = t() est la valeur absolue du vecteur tangent

t=[tl=/{N]T[Go]"[Go] {N'} - (20a)

il est ais€ de remplacer les intégrales suivant 'axe de I'’élément par les intégrales
selon la coordonnée curviligne £ entre les bornes —1 et +1, de sorte que I'on
obtient finalement:

1

§}=- |t [BI D] wids—~ |t F[CT (rjde,
(k1= | 1[B] [DI[BJaE

On calcule numériquement les intégrales en appliquant par exemple la quadrature
de Gauss. Notons que les quantités F, Fyx, F x, J, I,x et I« intervenant dans
ces relations (matrice [D]) s’obtiennent soit & partir des dimensions b et h des
sections rectangulaires (équations (6b), (7b)), soit par I'application de la relation (10)
dans le cas d’une section quelconque.
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4. Calcul des efforts internes

Une fois les déplacements nodaux {A} connus, les efforts internes des éléments
peuvent étre calculés au moyen des relations (16) et (17), d’ou I'on tire:

{M} = —[D] {%¢} +[D] Y, bu:- (21)

Quand Ia relation {S}={S}+[K]{A} ne sert que de point de départ pour
développer les relations forces-déplacements telles que (13) ou (14), la résolution de
'assemblage des éléments ne fournit que les sous-vecteurs &;, &y ou 0, 0g. En
partant de (13d) et en remarquant que {8} =[T] {Sexc},0U la matrice [T] est
définie par les relations (14a,€), on trouve:

{ss;} = (8} =[T] {Busc):
[

3, ~ ~
U } = —Ki' S;— Ki'K( {8} = — Ki' S; —Ki'K¢ [T] {8} (21b)
8M—l .

Bien que les deux familles d’éléments présentées dans cette étude donnent géné-
ralement avec une trés bonne précision les déplacements et les forces nodales des
¢léments pour tous les M = 3, I'expérience montre que les efforts internes obtenus
avec les membres inférieurs de ces familles (éléments quadratiques M = 3 et éléments
cubiques M = 4) ne sont pas suffisamment précis, & moins que les éléments soient
relativement courts. Ceci est dii au fait que les fonctions de base de ces €léments
ne sont pas suffisamment riches pour représenter convenablement certaines varia-
tions des efforts internes. Il est intéressant de remarquer que, dans ces cas-la, on
obtient toutefois d’excellents résultats en partant des forces nodales équivalentes
et en appliquant les conditions d’équivalence statique. Pour les efforts internes
aux extrémités d’un élément, on obtient par exemple les formules suivantes:

My} = —[O1]s; = —[T1] [O1]sa, (22a)
Mum}= [Owmlsu= [Tu][Owu]ss, (22b)

ou les matrices [ ©,] et [ ©y] peuvent €tre calculées en appliquant la relation (17a).

3. Analyses numériques et applications
1. Etude de la convergence

Pour examiner Pefficacité des deux familles d’é¢léments proposces, nous avons
étudié la poutre hélicoidale représentée a la figure 9. Les calculs ont été tout
d’abord effectués avec des €léments de la premiere famille (¢léments de section
rectangulaire). Les mémes calculs ont été répétés avec des €léments de la deuxieéme
famille (relations (10)), comme s’il s’agissait d’'une barre de section quelconque.
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Les différences entre les deux solutions étant rarement apparues avant le cinquiéme
chiffre des résultats, nous présenterons uniquement I'analyse basée sur la premiére
famille d’¢léments.

L’étude de la convergence a été effectuée par comparaison des résultats obtenus
au moyen d’¢léments quadratiques (M = 3), cubiques (M = 4), quartiques (M = 5)
et quintiques (M =6) et pour un nombre N d’éléments variant entre 2 et 32. Le

Tableau 1. Etude de la convergence. Poutre hélicoidale (fig. 9).
Effet du poids propre y = 2,5 t/m3.

Variables M N 2 4 8 12 16 32 Unités
3 || -0,0548 | -0,2328 | -0,3%07 | -0,3634 | -0,3658 | -0,3669
w 4 |l -0,2861 | -0,3644 | -0,3670 | -0,3670 | -0,3670 | -0,3670
(B = 120°) 5 || -0,3615 | -0,3670 | -0,3670 | -0,3670 | -0,3670 m
6 || -0,3665 | -0,3670 | -0,3670
3 | 2,060 2,158 2,147 2,152 2,153 2,156
s 4 || 2,138 2,152 2,157 2,157 2,157 2,158 N
(B = 240°) 5 | 2,169 2,158 | 2,158 | 2,158 2,158
6 | 2,160 | 2,158 2,158
3 || 1,688 1,627 1,628 1,621 1,617 1,613
O m 4 | 1,625 1,616 1,613 1,612 1,612 1,612 "
(B = 0% 5 || 1,599 1,611 1,612 1,612 1,612
6 Il 1,610 1,612 1.612
3 | 0,103 0,172 0,251 0,256 0,256 0,255
T 4, | 0,249 0,270 0,257 0,256 0,255 0,255
(B = 240°) 5 | 0,249 0,255 0,255 0,255 0,255 tm
6 | 0,251 0,255 0,255
3 | 0,514 0,633 0,798 0,813 0,815 0,816
M 4 || 0,763 0,814 0,816 0,816 0,816 0,816
(8 = 120°) 5 | 0,813 0,816 0,816 0,816 0,816 tm
6 | 0,816 0,816 0,816
3 §-1,515 | -1,704 | -2,025 | -2,054 | -2,058 | -2,060
M i 4 ) -1,815 | -2,088 | -2,053 | -2,060 | -2,061 | -2,060
(B =0% 5 || -2,027 -2,0860 -2,060 -2,060 ~2,060 tm
6 |-2,060 | -2,060 | -2,060
Tableau 2. Comparaison de I'élément courbe (quintique) avec élément droit.
Poutre hélicoidale (fig. 9); effet du poids propre y = 2,5 t/m2.
Elément droit Elément courbe
Variables N=4 8 16 32 N=2 4 Unites
w (g=120°) || -0,282 | -0,341 | -0,360 | -0,365| -0,367 | -0,367 mm
N (B=240°) 2,17 2,18 2,17 2,17 2,16 2,16 t
Qo erax (B= 0 %) 1,50 1,57 1,69 1,60 1,61 1,61 €
T (R=240°) || -0,26 | -0,07 0,08 0,16 0,25 0,25 tm
M amax (B=120°) || 0,58 0,75 0,80 0,81 0,82 0,82 tm
Mysmin (8= O °y {-2,13 | -2,18 | -2,15 | -2,11 [ -2,06 | -2,06 tm
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tableau 1 montre quelques résultats caractéristiques de cette étude. Il en ressort
clairement que des éléments quartiques et quintiques conduisent a des résultats
pratiquement exacts méme avec un nombre trés restreint d’éléments. Par contre,
il faut un nombre beaucoup plus grand d’éléments quadratiques ou cubiques
pour obtenir des résultats de la méme qualité. L’expérience montre que les €léments
quadratiques et cubiques sont aussi notablement moins économiques sur le plan de
la préparation des données et du temps de calcul.

10t

5 2003 (cm)
E =2,1-10"kg/cm?2
Y = 0,15
¥ 150cmy| X 150cm
60cmy !

Fig. 9. Poutre hélicoidale. Exemple considéré dans I’étude de la convergence.

En complément, le tableau 2 donne encore la comparaison entre la solution
basée sur I'¢lément quintique et les résultats obtenus en remplagant la poutre
hélicoidale par une succession de segments rectilignes. Il apparait clairement que
méme avec 32 éléments rectilignes, on n’atteint pas la qualité des résultats obtenus
avec deux €léments courbes seulement.

Notons que des résultats en tout point semblables a ceux des tableaux 1 et 2
(poids propre) ont également été obtenus pour une force isolée (fig. 9).

2. Applications pratiques

Calcul d’une coupole sphérique constituée de barres

La coupole représentée sur la figure 10, qui rappelle par sa conception la halle
de la Foire d’échantillons de Hanovre, est constituée par des tubes d’acier
(E=2,1.10° kg/cm?, v=0,3) de section circulaire (F=2F,4=2F,«=46 cm?
J = 21 % = 2L, = 5020 cm*) liés rigidement entre eux a leurs intersections. Projetés
verticalement, les axes des barres apparaissent comme des paraboles quadratiques
réguliérement espacées sur le plan xy de I'ouvrage. Les figures 11 & 13 montrent
quelques résultats obtenus pour une charge isolée P = 10 t au sommet de la coupole.
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fx
Fig. 10. Coupole sphérique

constituée par un grillage de
barres courbes de I'espace.
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Fig. 11.. Déplacements globaux v (selon y) et w (selon z) engendrés
par une force verticale P = 10 t, appliquée au sommet de la coupole

sphérique de la figure 10.
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Fig. 12. Effort normal et efforts tranchants engendrés dans les barres de la coupole sphérique de la
figure 10 par une force isolée P = 10 t, appliquée au sommet. L’axe principal y* des sections est hori-
zontal (¢ = 0).

o,
az c

034 e

\ 2,

-137

~-028

Fig. 13. Moment de torsion et moments fléchissants engendrés dans les barres de la coupole sphérique
de la figure 10 par une force isolée P = 10 t, appliquée au sommet. L’axe principal y* des sections est
horizontal (¢ = 0).



82 M.-H. DERRON ET J. JIROUSEK

Calcul d’un pont courbe a trois travées continues

Le pont courbe représenté sur la figure 14 est un ouvrage en acier
(E=2,1.10° kg/cm?, v=0,3) constitué par 5 poutres maitresses (F =660 cm?,
Fyx = 250cm? F,« = 300 cm?,J = 996923 cm*, L+ = 1512720 cm®, L« = 414236 cm?)
et 13 entretoises (F = 300 cm?, Fy s = 133,3 cm?, F,« = 116,7 cm?, J = 174222 cm*,
Iyx = 253336 cm*, Lx = 77385 cm*). Les figures 15 et 16 montrent les diagrammes
des moments fléchissants My« et des moments de torsion T engendrés dans le
pont par la force P = 1 t appliquée au milieu de la premiére poutre maitresse.

b)

UY
Falal

X

Fig. 14. Pont courbe & trois travées continues: a) Axonométrie du pont, b) Schéma de la mobilité
directionnelle des appareils d’appuis.
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Fig. 15. Diagrammes des moments fléchissants Fig. 16. Diagrammes des moments de torsion
dans les poutres maitresses du pont courbe de la dans les poutres maitresses du pont courbe de
figure 14. la figure 14.

Calcul d’'une rampe hélicoidale en béton armé

La figure 18 montre quelques résultats intéressants d’une étude de leffet de
I'excentricit¢ des poutres aux intersections. La structure de la figure 17
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(E = 210000 kg/cm?, v=0,15) a été calculée en supposant a tour de role que les
entretoises sont soit surélevées soit surbaissées de 20 cm par rapport a l'axe
de la poutre hélicoidale, ou encore qu’elles coupent I'axe de cette derniére. On
remarquera que I’excentricité affecte ici essentiellement I'effort normal.

Fig. 17. Rampe hélicoidale. La numérotation des nceuds correspond a la subdivision de la structure
en éléments finis.

4. Aspects économiques des nouveaux éléments et leur importance pour la sécurité
des structures

La comparaison donnée dans le tableau 2 montre clairement la supériorité des
nouveaux €léments sur le calcul coutumier consistant a remplacer une barre courbe
par une succession de segments droits. Le fait que ’assemblage de 32 éléments
droits, conduisant a un systéme de 198 équations, ne suffit encore pas pour obtenir
la méme précision qu’avec 2 éléments «quintique» seulement (18 équations) est
¢loquent. Méme si 'on admet que le temps de calcul ne croit qu’avec le carré du
nombre d’équations, 'économie de temps de calcul et par conséquent également du
cout de calcul est extraordinaire. Par ailleurs, la préparation des données pour un
nombre trés réduit d’éléments est beaucoup plus aisée et le risque d’erreurs
diminue. ‘

Dans certains cas, il pourrait devenir pratiquement impossible de subdiviser
la barre courbe en un nombre suffisant de segments droits, & cause des limitations
imposées par la mémoire centrale de 'ordinateur. (On remarquera par exemple que
la succession de 32 segments droits remplagant une structure aussi simple que
celle étudiée dans le tableau 2 donne encore une erreur de 36% sur le moment de
torsion.) L’utilisateur obligé de se contenter d’un nombre d’¢léments insuffisant
peut se trouver devant un dilemme: ou bien il accepte les résultats obtenus et ne
pourra garantir une sécurité ¢élevée de 'ouvrage, ou bien il sera obligé de dimen-
sionner plus largement sa construction, de maniére peu économique, pour tenir
compte de I'imprécision des résultats.

Remarquons encore que dans le calcul des coques nervurées, les éléments proposes
sont les seuls capables de satisfaire aux conditions de compatibilit¢ avec les
¢léments superparamétriques de coque.
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Fig. 18. Efforts internes engendrés dans la rampe hélicoidale de la figure 17 par une force P=1 t:
appliquée au nceud 6. ’

entretoises surélevées de 20 cm par rapport a 'axe de la poutre hélicoidale.
—-—+— - — axes des entretoises coupant 'axe de la poutre hélicoidale.
—————— entretoises surbaissées de 20 cm par rapport a I'axe de la poutre hélicoidale.
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Appendice
Calcul des vecteurs {By}

On commence par calculer, pour tous les L de 'élément (L =12 ... M), les
vecteurs-tangents

t.L M . M Xk
t= {tYL} = = Nk (E=&)1x = K=Zl Nk (E=&L) {YK} (23)

tzL Zx

Les coordonnées orthogonales des vecteurs {B, } seront alors obtenues par I'applica-
tion des relations suivantes:

a) zy — 7y = 7 by sin @, (24)
—b+./b%—4ac
b) Yy —yL= - 3 avec +,/ pourt, SO, (25)
a

etola=t3 +th, b=ty tybysin@, c=zbf(th sin 2@, —tZ cos?@y). (25a)

(On remarquera que dans (25) la racine carrée est nulle si t, = 0.)

t, t,
) Xpy — XL = — LL‘(YL' - YL) - _L(ZL’ - ZL), (263)
th th

ou encore, si t, =0,

Xy — XL =432~ (v —y)? —(zv —z)? avec £,/ pourt,=0. (26b)

La formule (25) n’est pas applicable si t,;, =t,; =0, d’ou la restriction suivante:
en aucun des points nodaux L, I'axe de I'élément ne doit étre paralléle & I'axe global z.
Remarquons également qu’en donnant le «dévers» @, on ne peut pas dépasser
le complément a T de I'angle de la tangente par rapport au plan xy (il est facile de
s’en cofivaincre par une simple analyse géométrique). L’angle ¢ doit alors satisfaire
a la condition suivante:

| tzL.l

N

|1 =T —arctg 27)

Notons encore que la relation (24) découle directement de la figure 2. Par
ailleurs, les relations (25) a (26) s’obtiennent par la résolution du systéme de
deux équations vectorielles:

tL (I'Lr—I'L)=0 et lrLr'—rLl =%bL,

dont la premicre exprime le fait que le nceud auxiliaire L’ se trouve dans un plan
normal a I'axe de I'élément et la seconde définit la longueur du vecteur LL'".
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Calcul des vecteurs {Cp}

. Les coordonnées du vecteur {C_L} s’obtiennent au moyen du produit vectoriel
t, X B, le vecteur ainsi défini étant ramené a la longueur 7 h;. On trouve ainsi:

DxL
{CL} = 1511;_1‘ DyL
L DzL
DxL tyL BzL - tzL ByL
avec Dyt ={t, By —ty B+ et Dy=./D + D3 +D3. (28a)
DzL th ByL - tyL BxL
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Résumeé

L’étude analyse deux familles d’éléments spatiaux de barres courbes: I’'une formée
d’éléments superparamétriques de section rectangulaire variable, et ’autre d’éléments
de section quelconque dont le centre de torsion se confond (au moins approxima-
tivement) avec le centre de gravité.

Les exemples pratiques se réferent principalement au calcul des ponts courbes
et des coupoles constituées par des grillages de barres.



ELEMENTS SPATIAUX DE BARRES COURBES 87
Zusammenfassung

Die vorliegende Studie legt zwei Familien gekriimmter rdumlicher Balkenele-
mente vor. Bei der ersten handelt es sich um eine Familie supraparametrischer
Elemente mit verdnderlichem Rechteckquerschnitt. Die zweite umfasst Elemente
beliebigen Querschnitts, deren Schubmittelpunkt (zumindest anndhernd) mit dem
Querschnittsschwerpunkt identisch ist.

Die Resultate dieser Arbeit finden insbesondere Anwendung bei der statischen
Berechnung gekriimmter Briicken und rdumlich gewdlbter Tragerroste.

Summary

The study presents two families of space-curved rod elements: the first one is
that of superparametric elements with variable rectangular cross section, the second
one concerns the elements of arbitrary cross section provided that its shear centre
identifies (at least approximately) with the centre of gravity.

The study is of special interest for the analysis of curved bridges and curvilinear
grid system domes.
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