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Elements spatiaux de barres courbes

Räumlich gekrümmte Balkenelemente

Space-curved Rod Elements

M.-H. DERRON J. JIROUSEK, Dr es sc.

Professeurs ä l'Ecole polytechnique föderale de Lausanne, Suisse

Introduction

Bien que la methode des elements finis soit aujourd'hui tres elaboree dans le

domaine des milieux Continus (parois, dalles, coques, structures massives), il n'a
ete accorde jusqu'ici que relativement peu d'attention ä l'etude de systemes com-
prenant des elements spatiaux de barres courbes. Le champ d'application des
etudes anterieures (voir [7] par exemple) est le plus souvent limite par de serieuses
restrictions d'ordre geometrique. Dans notre etude, nous avons cherche ä developper
des elements tres generaux satisfaisant les conditions suivantes:

— La geometrie de l'element doit permettre de realiser avec une precision süffisante
une courbe axiale aussi compliquee qu'on le desire et un taux quelconque de
Variation de la section le long de l'axe. Par ailleurs, il faut pouvoir tenir
compte de l'excentricite eventuelle des noeuds par rapport ä Taxe de l'element.

— En vue de l'application au calcul des coques nervurees, le developpement de la
matrice de rigidite de l'element doit etre base sur la methode directe des

rigidites plutöt que sur l'inversion de la relation deplacements-forces. Un choix
convenable de fonctions parametriques de deplacements generalises permettra de

satisfaire automatiquement les conditions de continuite aux interfaces des

elements.

— L'element doit s'appliquer sans restrictions ä tous les rapports entre la hauteur
de la section et la longueur de la barre. En plus des deformations dues aux
moments flechissants et aux moments de torsion, il doit par consequent tenir
compte egalement des deformations dues aux efforts normaux et aux efforts
tranchants.

Ci-apres, nous proposerons deux familles d'elements spatiaux courbes du type
superparametrique. La premiere est une famille d'elements de section rectangulaire

qui peut etre representee avec un minimum de donnees. La seconde est une
famille d'elements de section quelconque, pour autant que le centre de torsion de
cette derniere se confond (au moins approximativement) avec le centre de gravite.
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1. Considerations geometriques

1. Definition d'une famille d'elements de section rectangulaire variable

La figure 1 montre deux membres typiques de la famille d'elements etudiee
dans ce paragraphe. Chaque element sera defini par une correspondance biuni-
voque entre les coordonnees globales x, y, z et les coordonnees curvilignes
£, r\, £,. En pratique, il est commode d'etablir ces relations de teile fagon que les

coordonnees £, r\, £ varient entre — 1 et +1 sur les diverses faces de l'element
(voir figures lAb et lBb, oü l'on a choisi pour des raisons pratiques des echelles
differentes pour la coordonnee £ et les coordonnees r| et Q.

S-, !¦'
Aa) Ba)

0-i'.° zlZ
1

5: >*// ////
¦n-in-itM «M

wô\
Bb)Ab)

&&hii 1 i

Vkvs
^>J/3

\^L

Fig. 1. Deux membres de la famille d'elements spatiaux de barres courbes de section rectangulaire
variable (a) obtenus par distorsion de leurs elements de base (b): element quadratique (A), element

cubique (B).

Pour definir l'axe de l'element dans l'espace, on fixera sur cet axe un certain
nombre de noeuds L 1, 2 M, repartis plus ou moins regulierement, et on
fera passer par ces points une fonction d'interpolation. En designant par x0, y0 et z0

les coordonnees globales de Faxe, on peut par exemple ecrire:

X0] M (XL)
y0 KInl(9W> (i)

oü les fonctions de base NL(£) sont representees par des polynömes de Lagrange:

K-yK-y ...k-$l-i)k-il+i)...K-^NlK)
Kl " Si) Kl - kl) ¦ ¦ ¦ Kl - Sl- i) Kl - $l+ i) • • • Kl - Im)

(la)
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Notons que les noms des elements representes dans la figure 1 («quadratique»
pour M 3, «cubique» pour M 4), indiquent le degre des fonctions de base
appliquees pour leur description. De meme, pour M 5, 6, etc., nous parlerons
des elements «quartique», «quintique», etc.

On remarquera que les triplets de points L, L' et L" (fig. 1), chacun affecte de
ses coordonnees cartesiennes x, y, z connues, definissent les dimensions des sections
nodales £ const. et leur orientation dans l'espace. En partant de ces points, il
devient possible de representer la famille d'elements consideree par la relation

M / f Xl1 fXL' ~ Xl1 fXL" ~ Xl1

lZNlK)I yL +t! yL,-yLUdyL"-yL
\1ZlJ lZL'—ZlJ lZL"—ZlJ

Cette relation s'ecrit plus brievement

r= I NLK)(rL+riBL + ^CL)
L l

ou encore

{r}=([Go]+T![GB] + ^[Gc]){N},
oü (N} est la matrice-colonne des fonctions de base,

{N}T [N1N2...NM],

et les matrices geometriques[G0],[GB] et [Gc] ont pour expression:

[G0]
xlx2 • • • XM

yi Y2 • • • Ym

zl z2 • • • Zm

[GB]
(xv - xx) (x2/ - x2) (XM/ - xM)

(yi' - yi) (yv - y2). • • (yM' - yM)

_(zv - zx) (z2, - z2)... (zM, - zM)

[Gc]
(Xj// — X2) (X2// — X2) (xM" — XM)

(yi" - yi) (y2" - y2) • • • fy*» - Ym)

(zVf — Zj) (Z2// — Z2) (ZM// — ZM)_

(2a)

(2b)

(2c)

(3a)

(3b, c)

(3d)

s
2. Simplification des donnees geometriques

Au moyen des relations (2), il s'agissait d'exprimer approximativement la forme
d'un element par une expression analytique unique et mieux adaptee aux besoins
du calcul. Pour definir un element de cette maniere, que nous pouvons qualifier de
passive, il est necessaire de definir un nombre appreciable de donnees, soit 9M
coordonnees des triplets de points L, Lr, L" qui definissent les sections nodales
de la barre reelle.

Le nombre de donnees geometriques peut etre considerablement reduit si l'on
determine la forme de l'element de maniere active: si l'on fixe convenablement
dans l'espace un nombre approprie de points L, la relation (1) permet d'engendrer
une forme aussi compliquee que Ton desire. On l'adopte alors comme axe reel
de la barre. Puisque les sections nodales doivent etre perpendiculaires ä cet axe
(cette condition n'est satisfaite qu'approximativement si l'on applique les relations
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(2) de maniere passive), chacune d'elle sera definie de maniere univoque par
trois parametres seulement. En pratique, il suffit de specifier par exemple les donnees
suivantes (fig. 2):

rLii^

*/n *y

b const.

Ran y 1 au plan xy

Fig. 2. Definition geometrique d'une section
nodale. En partant des valeurs xL, yL, zL et bL,
hi., <Pl donnees, les noeuds auxiliaires L' et L"
seront determines ä l'aide des relations resumees

dans l'appendice.

x*,§,t

iXt
n<y

/,

/
Fig. 3. Section \ const. et section perpendicu-
laire ä Taxe en un point intermediaire de

l'element.

a) les coordonnees xL, yL, zL des nceuds (L 1, 2 M),
b) le «devers» represente par l'angle cpL entre le plan xy et l'axe principal yj des

sections nodales (L 1, 2 M),
c) les dimensions bL et hL des sections nodales (L 1, 2 M).

Si le devers et/ou les dimensions de la section sont constants, les donnees
b) et/ou c) ne seront indiquees que pour une seule section de l'element.

A partir des donnees a), b), c) et des bases du calcul vectoriel, on peut developper
une routine permettant de determiner les points L' et L" et se ramener au cas
fondamental du paragraphe 1. Les relations necessaires sont donnees dans l'appendice
en fin d'article.

3. Definition des axes locaux d'une section de l'element

Generalites

Afin de pouvoir tenir compte des hypotheses et des lois fondamentales de la
theorie classique des barres, on considerera en 'tout point de l'axe de l'element
un Systeme dit local d'axes orthogonaux, constitue par l'axe x* tangent ä l'axe
de l'element et des axes y* et z* confondus avec les axes principaux de la section

(voir par exemple la figure 3). La determination de ce systeme local recele quelques
difficultes, propres ä la methode utilisee pour la definition geometrique de l'element,
definition qui, forcement, ne represente qu'imparfaitement la realite. II faut notamment
remarquer qu'une section £ const. n'est en general qu'approximativement perpen-
diculaire ä l'axe de l'element (fig. 3). Nous nous en rendrons facilement compte
en etudiant de plus pres certaines proprietes de la definition (2).

On remarquera tout d'abord qu'en tout point I intermediaire (^=^^:^L) de

l'axe, les vecteurs
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M M

B -~r, £ NLK) BL et C r,„ -r, £ NLK) CL (4a,b)
L=l L=l

restent perpendiculaires l'un ä l'autre, puisque les produits scalaires BLCL des
vecteurs nodaux sont par definition nuls. En revanche, la comparaison des expressions
du vecteur A de la normale ä une section £ const.,

M M

Ä= I nlK)blx £nlK)Cl, (4c)
L=l L=l

et du vecteur t de la tangente ä l'axe de l'element,

- /dr\ M dNt M

t \i) -Z-JrrL-ZNKQr,, (5)
Vd^/T1=|;=0 L l d^ L l

montre que la definition geometrique*(2) de l'element n'implique pas que la normale
de la section £ const. est parallele ä la tangente de l'axe, si les sections nodales sont
perpendiculaires ä Faxe.

Premiere methode de definition

II decoule de la discussion precedente que les sections £ const. ne peuvent
en general etre perpendiculaires ä l'axe qu'en un nombre limite de points parti-
culiers (par exemple en tous les nceuds L, si l'on applique la definition active de
la forme de l'element selon le paragraphe 2). Dans ce cas, si le nombre M de
nceuds est süffisant et si la distorsion de l'element n'est pas excessive, on peut
approximativement choisir les axes x*, y* et z* suivant les vecteurs Ä, B et Ö

(relations (4c,a,b)). Les vecteurs unites i*, j* et k* suivant ces axes s'expriment
alors simplement par les relations

BxC B - C

^IB^C? j =|If k*=|C? (6a)

et les dimensions b et h de la section ont pour valeur

b 2|B| et h 2|C|. (6b)

Deuxieme methode de definition

Une methode plus precise et plus generale de definition des axes locaux consiste
ä couper le solide defini par (2) par un plan perpendiculaire ä l'axe (1). La section,
obtenue n'etant en general pas tout ä fait rectangulaire, il s'agira de determiner une
section rectangulaire de remplacement. Ce probleme n'est pas univoque et plusieurs
formulations ont ete tentees. Nous avons finalement retenu celle qui parait la plus
simple. Elle consiste ä projeter sur le plan perpendiculaire ä l'axe la section

\ const., soit la section rectangulaire ABCD de la figure 4a, et ä ramener ensuite
le Parallelogramme (A) (B) (C) (D) ainsi obtenu ä un rectangle A*B*C*D* (fig. 4b)
par les rotations appropriees 9X et 92 de ses axes (r|) et (Q. On admettra que
les rotations §x et 92 sont telles que les arcs circulaires (I')I*' et (1")!*" parcourus



70 M.-H. DERRON ET J. JIROUSEK

pendant la rotation (fig. 4b) sont de longueur egale. La simplicite de cette hypo-
these se justifie par le fait qu'en pratique, les corrections angulaires sont generalement
faibles.

b)a)

Plan±ä| b%Cb)(b)Plan 1 a | C) (D)

<ni
-»(r\)(h)// h*(h

WTy*t
section

i-ii const:
(M/j$* i(B) CA)

(B) v %2
tf **?f.* l,x

Fig. 4. Projection de la section £ — & sur le plan perdiculaire ä Taxe et determination des axes locaux
x*, y* et z*.

Cette methode conduit aux relations suivantes:

t* t -? B* C*

itf ib*i' ic*r
b=*2|(B)|, h=2|(Q|

(7a)

(7b)

oü le vecteur t est defini par la relation (5) et les vecteurs B* et C* ont pour
expression:

B* (B) +1 [sin co • cotg (co - 9X) - cos co] (C),
C* (C) + £ [sin co • cotg (co - 92) - cos co] (B),

-v - - t B - - - - t-C -avec (B) rv-tl--^- t, (C) r,„-r,- —~ t,
|t|2 |t|2

co are cos — (B) • (C),

9, -I co-1 — 7" I w I, 9- 1 CO — -1 b + hl 2 2 b + hl 2.

(7c)

(7d)

(7e)

(7f)

Expression matricielle des relations definissant les axes locaux

Pour le calcul sur ordinateur, il convient de remplacer Fensemble des relations
definissant les vecteurs-unites 1*, j* et lc* par un ensemble equivalent de relations
matricielles conduisant aux matrices-colonnes {i*}, {j*} et {k*}. On operera les
substitutions suivantes:
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V=>{V}, |V|*V V/{V}T{V}, Vr^iViV {V2}, (8a)

(8b)
_ _ fViy-Vj.-Vi.-Va/
VlxV2^Vlz-V2x-Vlx-V2z

lvlx-v2y-vly-v2x.

oü V, V1 et V2 sont des vecteurs quelconques, et oü l'indice superieur T designe
la matrice transposee. Par ailleurs, en tenant compte de (2b), on aura:

{B} [GB]{N}5 {C} [GC]{N}, (9a, b)

{ri} [G0]{N}, (9c)

{rr} ([G0] + [GB]) {N}, {r„,} ([G0] + [Gc]) {N}, (9d,e)

{t}=[G0]{N}' (9f)

oü {N}' est la matrice-colonne des premieres derivees des fonctions de base par
rapport ä £.

4. Definition d'une famille generalisee d'elements de section quelconque

La figure 5 montre deux membres typiques de la famille generalisee d'elements
spatiaux de barre courbe. La section supposee varier lentement le long de Taxe

peut etre quelconque, pourvu que son centre de torsion se confonde (au moins
approximativement) avec le centre de gravite. Outre les sections pleines, on peut
admettre egalement des sections ä parois minces de contour ferme, ä condition que
la torsion flechie soit negligeable vis-ä-vis de la tension de Saint-Venant.

A) B) !•'S-'

§-*
f-° /*. •*

n

l-i S-

Fig. 5. Deux membres de la famille d'elements spatiaux de barres courbes de section quelconque:
element quadratique (A), element cubique (B).

Comme dans le cas de Telement de section rectangulaire, l'axe de l'element
sera represente par l'equation (1) et les axes principaux des sections nodales seront
definis par les triplets de points L, L' et V. Pour definir les axes locaux x*, y*, z* d'une
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section quelconque, on appliquera directement les relations developpees au
paragraphe 3. Les grandeurs b et h intervenant dans ces relations ne sont maintenant
que de simples valeurs auxiliaires, ne permettant pas de determiner la forme et les

dimensions de la section correspondante; il faut donc definir de fagon independante
les constantes geometriques caracterisant la section dans les considerations statiques.
II s'agira des six grandeurs suivantes:

F aire de la section;
aire reduite pour le calcul des deformations dues au cisaillement selon
les axes principaux y* et z*;
moment de resistance ä la torsion;
moments d'inertie par rapport aux axes principaux y* et z*.

La methode la plus simple consiste ä definir les valeurs nodales de ces grandeurs
et ä determiner les valeurs intermediaires par Finterpolation suivante:

Fy*, Fz*

J

lyHe, xz%

Fy*
Fz*
J }= INLK)

L l

z*

fFL
"

Fy*L
Fz*l
Jl
Iy*L
Iz*L

(10)

Ajoutons encore que le principe de la definition active de la forme de l'element

enonce au paragraphe 2 ainsi que les relations servant au calcul des points auxiliaires
L' et L" donnees dans l'Appendice restent valables pour les elements de section

quelconque. Toutefois, le groupe c) de donnees (valeurs bL et hL qu'il est maintenant
possible de remplacer par des valeurs fixes quelconques non nulles - par exemple
unitaires - egales pour tous les L et pour tous les elements) sera remplace par:

c) FL, Fy*L, FZ*L, JL, Iy*L, IZ*L (L 1, 2 M).

2. Considerations statiques

1. Generalites

Considerons l'element courbe de la figure 6a repere dans un systeme global de

coordonnees cartesiennes x, y et z. En un nceud quelconque L de l'element, on
admettra six degres de liberte:

les deplacements u, v, w selon les axes x, y, z,
les rotations a, ß, y autour des axes x, y, z.

Pour simplifier l'ecriture, on designera^ar 5L le sous-vecteur des deplacements
nodaux defini par la relation

8l [uL, vL, wL, ocL, ßL, yL], (11)

et on attribuera le symbole sL au sous-vectdur des forces nodales equivalentes
associe ä 5L. Par ailleurs, on designera respectivement par {A} et {S} le vecteur
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des deplacements nodaux et le vecteur des forces nodales constitues respectivement
par tous les sous-vecteurs 8L et par tous les sous-vecteurs sL de l'element. Afin
de pouvoir convenablement tenir compte des effets du poids propre, de la Variation
de temperature et des deformations initiales, la relation forces-deplacements de
l'element sera exprimee sous la forme

{S}={S}+[K]{A}, (12)

oü {S} est le vecteur des forces nodales primaires äquivalentes de l'element. On
remarquera que la matrice [K] est d'ordre 6M, oü M est le nombre de nceuds.

a

ej5

z,w

O*
M C6-'.

W
x,u

b)

CT:»

X 2"^ r->
tf j X L

Z.W

CJ>r

*ey y,v

x,u

Fig. 6. Element spatial de barre courbe et ses forces nodales.
ä) Cas fundamental: tous les nceuds sont consideres comme nceuds de liaison et se situent sur Faxe de

l'element.
b) Exemple d'un cas derive du cas fundamental: les nceuds A et B sont seuls consideres comme nceuds
de liaison. (Ils peuvent etre excentres par rapport ä l'axe.) Les degres de liberte des nceuds internes

(en traitille) sont elimines de la relation forces-deplacements.

La Situation representee sur la figure 6a sera consideree comme cas fondamental.
Lorsque le vecteur {S} et la matrice [K] sont connus, d'autres cas peuvent en
etre derives par des transformations appropriees. Dans les applications concernant
les structures constituees uniquement de barres, seuls les nceuds des extremites
interviendront dans le processus d'assemblage. Par ailleurs, si ä la suite d'une forte
difference entre les dimensions des sections, les axes des barres ne se coupent pas
aux croisements des barres, on peut etre amene ä considerer des elements possedant
des nceuds de liaison excentres par rapport ä leur axe. L'element type represente sur
la figure 6b satisfait ä toutes ces exigences.

Les deplacements nodaux des nceuds intermediaires peuvent etre elimines par
le processus Standard de condensation statique. En posant, pour simplifier:

(6} Si et {s} (13a)

on aboutit ä la relation forces-deplacements suivante:

{s} {s} + [k]{5}

avec {s} Se + KeeKH1(Pi-Si), [k] Kee - K^Kä
Dans ces relations, le vecteur Pi est forme de sous-vecteurs pL des charges nodales
donnees aux nceuds intermediaires de l'element

(13)

(13b)
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P? [pl...p£-i], (13c)

tandis que la signification des autres termes decoule de la partition suivante de la
relation matricielle (12):

{S}

f ~\ r ~\ r -\ r r "\

Si
sM

Se

f <l

Se

> +

Kee Kei Ae

V
S2 — y \

Si |s, Kie K„ 4
<SM-1. >* L _

L J

(13d)

Pour passer ä l'element avec nceuds de liaison excentres, on admettra que ces

nceuds sont lies aux extremites de Taxe par des barres rigides (fig. 6b). Les
deplacements &!, 8M et les deplacements 8A, &b seront alors lies par des relations
lineaires du type

*i =Ti öA, öM Tm6b,

oü les matrices de transformation T\ etTM decoulent de simples considerations

geometriques. La matrice Tl9 par exemple, a pour expression:

ri 0 0 0 Azt -Ayr
0 i 0 — Azi 0 Axt
0 0 i Ayi — Axi 0

0 0 0 1 0 0
0 0 0 0 1 0

Lo 0 0 0 0 1

T1

avec Ax! xj - xA, Ayt yt - yA) Azx zt - zA.

(14a)

(14b)

Pour obtenir la matrice TM, il suffit de remplacer les indices 1 et A par M et B.
En definissant maintenant les vecteurs

<s~> -{£}•<*-> -{::}• (14c)

on peut transformer la relation (13) en la relation forces-deplacements suivante:

{Sexc} {Sexc} + [^exc] {8exc}? (14)

avec

et

{Sexc}=[T]T{s}, [kexc] [T]T[k][T] (14d)

(14e)

2. Definition du champ des deplacements et du vecteur des efforts internes

Le modele de calcul permettant de tenir compte de l'effet du cisaillement
consiste ä admettre qu'une section plane avant deformation restera plane apres
deformation, mais que son plan ne sera plus necessairement perpendiculaire ä
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Taxe deforme de la barre. Ceci signifie que les rotations des sections doivent etre
definies independamment de la deformee de Taxe. La deformation de l'element
sera alors donnee de maniere univoque par trois composantes u0, vOJ w0 du
deplacement du centre de gravite de la section selon les axes globaux x, y, z et

par trois composantes a, ß, y de la rotation de la section autour de ces axes.
On les definira de maniere analogue ä celle que l'on a utilisee pour les coordonnees
globales (equation (1)).

u0| m uL

VnU_ZNL(9jvL
w( L l

(OL) M faL]
(15a, b)

Les efforts internes dans une section de l'element sont definis dans la figure 7,

oü y* et z* sont les axes principaux. En partant des hypotheses courantes de la
theorie des barres, ces efforts peuvent etre exprimes en fonction des deformations

par la relation matricielle suivante:

a

Qy» M.»
y*

Q*

r^

dv
3x»

Vlu
ftt,«y^v

X*. u"

Fig. 7. Composantes de la resultante des efforts
internes agissant sur la face positive de la section.

Fig. 8. Positions relatives d'une section et de Taxe
d'un element deform*, compte tenu de l'effet du

cisaillement.

N
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dv*
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da*
>-<

°5Z*

dx*
°9x*

dß*
dx* °^* /
dY*
dx^ j X* /

(16a)
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oü uj, v*, w* et a*, ß*, y* sont respectivement les deplacements et les rotations
rapportes aux axes locaux de la section, et °ex*, °5y*, °52*, °9X*, °5fy*, °2ez* sont les

valeurs initiales des deformations associees aux efforts internes. Dans le cas d'une
Variation uniforme de temperature, par exemple, on aura:

%* otTAT, °8y* °8Z* °9X* °$ey* 0$ez* 0, -

oü ocT est le coefficient de dilatation thermique de la matiere.
La relation (16a) appelle quelques commentaires. On remarquera que les defor-

dv* dw*
y* et 8Z* —dx* dx*

tion de la normale n ä la section par rapport ä la tangente t ä l'axe (fig. 8).

De plus, on notera que dans le cas d'une section rectangulaire, les surfaces reduites

Fy* et Fz* multipliant ces deformations sont egales ä £F.
Pour simplifier Fecriture, nous ecrirons symboliquement la relation (16a) sous

la forme
{M} [D]({*}-{**>}), (16)

oü {M} designe le vecteur des efforts internes, [D] la matrice de transformation
efforts internes-deformations, {#} le vecteur des deformations totales et {°Sf} le

vecteur des deformations initiales.

3. Expression de la relation forces-deplacements de l'element

Le vecteur {#>} defini au paragraphe precedent peut etre exprime en fonction
du vecteur {A} des deplacements nodaux. La matrice [0], qui definit la
transformation orthogonale

{V} [0] {V*} et {V*} [0]T {V}

entre les coordonnees cartesiennes globales {V} et locales {V*} d'un vecteur, aura

pour expression

[0] [{i*}{j*}(k*}]> (Ha)

oü {i*}, {j*} et {k*} sont les matrices-colonnes des coordonnees cartesiennes

globales des vecteurs unites definis par les relations (6a) ou (7a); d'autre part,

^{V*} c[0]T|{V} c[0]T{V}',

oü le coefficient c est egal ä la valeur inverse de la longueur du vecteur-tangent t

1 1

c" |7[" yiNTTGoTTGoTlN7}'
(17b)

Onaboutitä {se} £ I" cNL [Bf
l=i L o

MlÖ5L=Zb,8L (17)
cNL[0]T J L l^i
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avec [A]
0 0 0
0 0 -1
0 1 0

(17c)

Afin de rendre possible la condensation statique [equations (13)], les sous-
vecteurs 8l constituant le vecteur {A} seront consideres dans l'ordre suivant:

En posant

on obtient

{A}T [öl 8£| 81 _&£_!]
[B] =[b1bM|b2__bM-i]

{se} [B]{A}

(18a)

(18b)

(18)

Pour calculer l'effet du poids propre du materiau, de poids specifique Y, intro-
duisons les vecteurs

et

Les elements du premier vecteur sont les composantes du poids specifique y selon
les axes globaux x, y et z. Le second vecteur peut encore s'ecrire ä partir de
(15a), en fonction de {A}:

Y d„

avec

{<U [Cl cM I c2 __Cm-i] {A} [C] {A},

:l N,

(19)

"1 0 0 0 0 Ol
0 i 0 0 0 0

Lo 0 1 0 0 OJ

En appliquant maintenant le theoreme de stationnarite de l'energie potentielle
totale, 8n 8V + SU 0, on aboutit ä:

{S}= -/[B]T[D] {**}6&-f F[C]T{Y}ds, [K] f [B]T [D] [B]ds.
0 0 0

Sachant que ds td£, oü t t(£) est la valeur absolue du vecteur tangent

t ft| >/{N'}T[Go]T[Go]{N'} > (20a)

il est aise de remplacer les integrales suivant l'axe de l'element par les integrales
selon la coordonnee curviligne 2; entre les bornes — 1 et +1, de sorte que l'on
obtient finalement:

{S}=- J t [B]T[D]{°3e}di;-_J t F[C]T{Y}d^,

[K]= j+1t[B]T[D][B]dt
- 1

On calcule numeriquement les integrales en appliquant par exemple la quadrature
de Gauss. Notons que les quantites F, Fy*, Fz*, J, Iy* et Iz* intervenant dans
ces relations (matrice [D]) s'obtiennent soit ä partir des dimensions b et h des
sections rectangulaires (equations (6b), (7b)), soit par Fapplication de la relation (10)
dans le cas d'une section quelconque.
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4. Calcul des efforts internes

Une fois les deplacements nodaux {A} connus, les efforts internes des elements
peuvent etre calcules au moyen des relations (16) et (17), d'oü l'on tire:

M

{M} - [D] {«*} + [D] £ bL8L (21)
L l

Quand la relation {S} {S} +[K]{A} ne sert que de point de depart pour
developper les relations forces-deplacements telles que (13) ou (14), la resolution de

l'assemblage des elements ne fournit que les sous-vecteurs 81? 8m ou 8a, 8ß. En
partant de (13d) et en remarquant que {8}=[T] [8exc},oü la matrice [T] est
definie par les relations (14a,e), on trouve:

{£}-w-mÄ->.

- KJ S, - Ks1 Kls {8} - Kn1 S, - K^Kj [T] {8exc}. (21b)
8,

Um-!

Bien que les deux familles d'elements presentees dans cette etude donnent gene-
ralement avec une tres bonne precision les deplacements et les forces nodales des

elements pour tous les M > 3, l'experience montre que les efforts internes obtenus
avec les membres inferieurs de ces familles (elements quadratiques M 3 et elements
cubiques M 4) ne sont pas suffisamment precis, ä moins que les elements soient
relativement courts. Ceci est du au fait que les fonctions de base de ces elements
ne sont pas suffisamment riches pour representer convenablement certaines variations

des efforts internes. II est interessant de remarquer que, dans ces cas-lä, on
obtient toutefois d'excellents resultats en partant des forces nodales äquivalentes
et en appliquant les conditions d'equivalence statique. Pour les efforts internes
aux extremites d'un element, on obtient par exemple les formules suivantes:

{Mi} - [0i]S! - [Tx] [0!]sA, (22a)

{MM} [Om]sm [TM] [Om>b, (22b)

oü les matrices [0i] et [0m] peuvent etre calculees en appliquant la relation (17a).

3. Analyses numeriques et applications

1. Etude de la convergence

Pour examiner l'efficacite des deux familles d'elements proposees, nous avons
etudie la poutre helicoidale representee ä la figure 9. Les calculs ont ete tout
d'abord effectues avec des elements de la premiere famille (elements de section
rectangulaire). Les memes calculs ont ete repetes avec des elements de la deuxieme
famille (relations (10)), comme s'il s'agissait d'une barre de section quelconque.
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Les differences entre les deux Solutions etant rarement apparues avant le cinquieme
chiffre des resultats, nous presenterons uniquement l'analyse basee sur la premiere
famille d'elements.

L'etude de la convergence a ete effectuee par comparaison des resultats obtenus
au moyen d'elements quadratiques (M 3), cubiques (M 4), quartiques (M 5)
et quintiques (M 6) et pour un nombre N d'elements variant entre 2 et 32. Le

Tableau 1. Etude de la convergence. Poutre helicoidale (fig. 9).
Effet du poids propre y 2,5 t/m3.

Variables \ N
2 4 8 12 16 32 Unites

(3 120°)

3

4

5

6

-0,0548

-0,2861

-0,3615

-0,3665

-0,2328

-0,3644

-0,3507 -0,3634 -0,3658 -0,3669

mm

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

-0,3670

N
max

(3 240°)

3

4

5

6

2,060

2,138

2,169

2,160

2,158

2,152

2,147

2,157

2,152

2,157

2,153

2,157

2,156

t2,158

2,158

2,158

2,158

2,158

2,158 2,158

0 *zmax
(3 0°)

3

4

5

6

1,688

1,625

1,599

1,610

1,627

1,616

1,611

1,628

1,613

1,621 1,617 1,613

t1,612

1,612

1,612

1,612

1,612

1,612

1,6121,612

T
max

(3 240°)

3

4.

5

6

0,103

0,249

0,249

0,251

0,172

0,270

0,251

0,257

0,256

0,256

0,256 0,255

0,255

tm

0,255

0,2550,255

0,255

0,255

0,255

0,255

y max
(3 120°)

3

4

5

6

0,514

0,763

0,813

0,633

0,814

0,798 0,813 0,815 0,816

0,816

tm

0,816

0,816

0,816

0,816

0,816

0,816

0,8160,816

0,8160,816

y mm
(3 0°)

3

4

5

6

-1,515

-1,815

-2,027

-1,704

-2,048

-2,025

-2,059

-2,054 -2,058 -2,060

-2,060

tm

-2,060

-2,060

-2,061

-2,060-2,060

-2,060

-2,060

-2,060-2,060

Tableau 2. Comparaison de l'element courbe (quintique) avec element droit.
Poutre helicoidale (fig. 9); effet du poids propre y 2,5 t/m2.

Variables

Element droit Element courbe

UnitesN=4 8 16 32 N=2 4

w (3=120°) -0,282 -0,341 -0,360 -0,365 -0,367 -0,367 nrm

N (3=240°)
max

2,17 2,18 2,17 2,17 2,16 2,16 t
Q * (3= 0 °)z*max M 1,50 1,57 1,69 1,60 1,61 1,61 t
T (3=240°) -0,26 -0,07 0,08 0,16 0,25 0,25 tm

Vmax (3=12°0) 0,58 0,75 0,80 0,81 0,82 0,82 tm

Vmin <*- ° °] -2,13 -2,18 -2,15 -2,11 -2,06 -2,06 J tm
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tableau 1 montre quelques resultats caracteristiques de cette etude. II en ressort
clairement que des elements quartiques et quintiques conduisent ä des resultats
pratiquement exacts meme avec un nombre tres restreint d'elements. Par contre,
il faut un nombre beaucoup plus grand d'elements quadratiques ou cubiques

pour obtenir des resultats de la meme qualite. L'experience montre que les elements

quadratiques et cubiques sont aussi notablement moins economiques sur le plan de
la preparation des donnees et du temps de calcul.

40cm

10 t
10t

E =2,1-10 kg/cm2
y » 0,15

iZ
tfi/ I

/X

2OO0T (cm)

vtf 40

120 /
\w

< 150CITUJ* 150cm ^

Fig. 9. Poutre helicoidale. Exemple considere dans l'etude de la convergence.

En complement, le tableau 2 donne encore la comparaison entre la Solution
basee sur l'element quintique et les resultats obtenus en remplagant la poutre
helicoidale par une succession de segments rectilignes. II apparait clairement que
meme avec 32 elements rectilignes, on n'atteint pas la qualite des resultats obtenus
avec deux elements courbes seulement.

Notons que des resultats en tout point semblables ä ceux des tableaux 1 et 2

(poids propre) ont egalement ete obtenus pour une force isolee (fig. 9).

2. Applications pratiques

Calcul d'une coupole spherique constituee de barres

La coupole representee sur la figure 10, qui rappeile par sa conception la halle
de la Foire d'echantillons de Hanovre, est constituee par des tubes d'acier
(E 2,1.106 kg/cm2, v 0,3) de section circulaire (F 2Fy* 2FZ* 46 cm2,
J 2Iy* 2IZ* 5020 cm4) lies rigidement entre eux ä leurs intersections. Projetes
verticalement, les axes des barres apparaissent comme des paraboles quadratiques
regulierement espacees sur le plan xy de l'ouvrage. Les figures 11 ä 13 montrent
quelques resultats obtenus pour une charge isolee P 10 t au sommet de la coupole.
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Fig. 10. Coupole spherique
constituee par un grillage de

barres courbes de l'espace.

Wem V(cm

Fig. 11. Deplacements globaux v (selon y) et w (selon z) engendres
par une force verticale P 10 t, appliquee au sommet de la coupole

spherique de la figure 10.

N(t)

-0.92

Q„*(t)

-o.st

Q2*(t)

Fig. 12. Effort normal et efforts tranchants engendres dans les barres de la coupole spherique de la
figure 10 par une force isolee P 10 t, appliquee au sommet. L'axe principal y* des sections est hori¬

zontal ((p 0).

T(tm) M„*(tm) Mz*(tm)

Fig. 13. Moment de torsion et moments flechissants engendres dans les barres de la coupole spherique
de la figure 10 par une force isolee P 10 t, appliquee au sommet. L'axe principal y* des sections est

horizontal (q> 0).
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Calcul d'un pont courbe ä trois travees continues

Le pont courbe represente sur la figure 14 est un ouvrage en acier
(E 2,1.106 kg/cm2, v 0,3) constitue par 5 poutres maitresses (F 660 cm2,
Fy* 250 cm2, Fz* 300 cm2, J 996923 cm4, Iy* 1512720 cm4, Iz* 414236 cm4)
et 13 entretoises (F 300 cm2, Fy* 133,3 cm2, Fz* 116,7 cm2, J 174222 cm4,
Iy* 253336 cm4, Iz* 77385 cm4). Les figures 15 et 16 montrent les diagrammes
des moments flechissants My* et des moments de torsion T engendres dans le
pont par la force P 11 appliquee au milieu de la premiere poutre maitresse.

2120 25m

0(5)

r 60

<*425

b)

I7m

Fig 14 Pont courbe a trois travees continues a) Axonometrie du pont, b) Schema de la mobilite
directionnelle des appareils d'appuis

M„.(tm]

©
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©
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Fig 15 Diagrammes des moments flechissants Fig 16 Diagrammes des moments de torsion
dans les poutres maitresses du pont courbe de la dans les poutres maitresses du pont courbe de

figure 14 la figure 14

Calcul d'une rampe helicoidale en beton arme

La figure 18 montre quelques resultats interessants d'une etude de l'effet de
l'excentncite des poutres aux intersections. La structure de la figure 17
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(E 210000 kg/cm2, v 0,15) a ete calculee en supposant ä tour de röle que les

entretoises sont soit surelevees soit surbaissees de 20 cm par rapport ä Taxe
de la poutre helicoidale, ou encore qu'elles coupent Faxe de cette derniere. On
remarquera que Fexcentricite affecte ici essentiellement l'effort normal.

r= 900 cm
b= 500 cm
c= 350 cm
cj>=6*/.

|o
7^

120 cm

60cm

|80cm
40 cm

Fig. 17. Rampe helicoidale. La numerotation des nceuds correspond ä la subdivision de la structure
en elements finis.

4. Aspects economiques des nouveaux elements et leur importance pour la securite
des structures

La comparaison donnee dans le tableau 2 montre clairement la superiorite des

nouveaux elements sur le calcul coutumier consistant ä remplacer une barre courbe
par une succession de segments droits. Le fait que l'assemblage de 32 elements
droits, conduisant ä un systeme de 198 equations, ne suffit encore pas pour obtenir
la meme precision qu'avec 2 elements «quintique» seulement (18 equations) est

eloquent. Meme si l'on admet que le temps de calcul ne croit qu'avec le carre du
nombre d'equations, Feconomie de temps de calcul et par consequent egalement du
coüt de calcul est extraordinaire. Par ailleurs, la preparation des donnees pour un
nombre tres reduit d'elements est beaucoup plus aisee et le risque d'erreurs
diminue.

Dans certains cas, il pourrait devenir pratiquement impossible de subdiviser
la barre courbe en un nombre süffisant de segments droits, ä cause des limitations
imposees par la memoire centrale de Fordinateur. (On remarquera par exemple que
la succession de 32 segments droits remplagant une structure aussi simple que
celle etudiee dans le tableau 2 donne encore une erreur de 36% sur le moment de

torsion.) L'utilisateur oblige de se contenter d'un nombre d'elements insuffisant
peut se trouver devant un dilemme: ou bien il accepte les resultats obtenus et ne

pourra garantir une securite elevee de l'ouvrage, ou bien il sera oblige de
dimensionner plus largement sa construction, de maniere peu economique, pour tenir
compte de Fimprecision des resultats.

Remarquons encore que dans le calcul des coques nervurees, les elements proposes
sont les seuls capables de satisfaire aux conditions de compatibilite avec les
elements superparametriques de coque.
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0,62

?0,22

0,22££5b16

N(t)021

0.26

?0.48¦5 13

0.19

0,19

0,18

-0.16

Qz*(t)
0j01

-0.15

0.34

• 0.28

0.37 .032 5 13

?O.W

-0.19

r<tW2
?0.05^

0.07

0.01

0.01

0.01

T(tm0,03

0j04

QOOQ30
006

0.19

-0.25
0,31

0.14
0,16 *Q03

0.02ope

ope -004

0,01

0,01

-0.0

M/(tm)0.48

0,04

0,82

0,29

0.32

0.61
>|

- 0.

* Jl3
»0,36

0,44

0,09

002

o,oa

0,00

Fig. 18. Efforts internes engendres dans la rampe helicoidale de la figure 17 par une force P 1 t
appliquee au nceud 6.

— entretoises surelevees de 20 cm par rapport ä l'axe de la poutre helicoidale.

- axes des entretoises coupant l'axe de la poutre helicoidale.
- entretoises surbaissees de 20 cm par rapport ä l'axe de la poutre helicoidale.



ELEMENTS SPATIAUX DE BARRES COURBES 85

Appendice

Calcul des vecteurs {BL}

On commence par calculer, pour tous les L de l'element (L 1,2 M), les

vecteurs-tangents

_> ftxLl M M fxKl
t Kl =kI Nk(^ UrK KlNk(^=y yK (23)

Les coordonnees orthogonales des vecteurs {BL} seront alors obtenues par Fapplica-
tion des relations suivantes:

a) zv - zL \ bL sin q>L, (24)

-b±x/b2-4ac r—
L/-yL= ^r avec ±7 ]b) yv - Yl ^- avec ± J pour tx ^ 0, (25)

za

et oü a t2L + t2L, b tyL • tzLbL sin (pL, c k^l (t2L sin 2
(pL - t2L cos 2 (pL). (25a)

(On remarquera que dans (25) la racine carree est nulle si tx 0.)

c) xL, - xL - ^(yL, - yL) - ^(zL, - zL), (26a)

ou encore, si tx 0,

xL' - xL ± V^ 2 - (YL' - Yl)2 - (zL' - zL)2 avec ± J~~ pour ty ^ 0. (26b)

La formule (25) n'est pas applicable si txL tyL 0, d'oü la restriction suivante:
en aucun des points nodaux L, l'axe de l'element ne doit etre parallele ä l'axe global z.

Remarquons egalement qu'en donnant le «devers» cpL, on ne peut pas depasser
le complement ä 5 de Fangle de la tangente par rapport au plan xy (il est facile de
s'en convaincre par une simple analyse geometrique). L'angle (pL doit alors satisfaire
ä la condition suivante:

l^l^arctg-J=r- (27)
VlxL "+¦ LyL

Notons encore que la relation (24) decoule directement de la figure 2. Par
ailleurs, les relations (25) ä (26) s'obtiennent par la resolution du Systeme de
deux equations vectorielles:

UrL'-rL) 0 et frv - rL| =^bL,

dont la premiere exprime le fait que le nceud auxiliaire L' se trouve dans un plan
normal ä l'axe de l'element et la seconde definit la longueur du vecteur LL'.
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Calcul des vecteurs {CL}

Les coordonnees du vecteur {CL} s'obtiennent au moyen du produit vectoriel

*lx 5l> te vecteur ainsi defini etant ramene ä la longueur ^hL. On trouve ainsi:

DxL

cL} DyL2DL DzL

D tyL ßzL ~ tzL ByLxL
B.t -t et D

D xL

avec {DyLJ KLBxL-txLBzLl et Dl VD2L + D2L + D2L. (28a)
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Resume

L'etude analyse deux familles d'elements spatiaux de barres courbes: Fune formee
d'elements superparametriques de section rectangulaire variable, et Fautre d'elements
de section quelconque dont le centre de torsion se confond (au moins approxima-
tivement) avec le centre de gravite.

Les exemples pratiques se referent principalement au calcul des ponts courbes
et des coupoles constituees par des grillages de barres.
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Zusammenfassung

Die vorliegende Studie legt zwei Familien gekrümmter räumlicher Balkenelemente

vor. Bei der ersten handelt es sich um eine Familie supraparametrischer
Elemente mit veränderlichem Rechteckquerschnitt. Die zweite umfasst Elemente
beliebigen Querschnitts, deren Schubmittelpunkt (zumindest annähernd) mit dem
Querschnittsschwerpunkt identisch ist.

Die Resultate dieser Arbeit finden insbesondere Anwendung bei der statischen
Berechnung gekrümmter Brücken und räumlich gewölbter Trägerroste.

Summary

The study presents two families of space-curved rod elements: the first one is
that of superparametric elements with variable rectangular cross section, the second
one concerns the elements of arbitrary cross section provided that its shear centre
identifies (at least approximately) with the centre of gravity.

The study is of special interest for the analysis of curved bridges and curvilinear
grid system domes.
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