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Strength of Axially Loaded Stiffened Panels
Résistance de panneaux raidis comprimés
Traglast lingsversteifter, zentrisch gedriickter Plattenfelder

M.R. HORNE R. NARAYANAN
MA ScD CEng FICE FIStructE. MSc DIC PhD CEng MICE MIStructE FIE.
University of Manchester

1. Strength of thin Plates in Compression

The theoretical elastic critical stress of an ideally flat rectangular plate, loaded
uniformly in one direction is given by [1]:

_ km?E  [1)?
% T 12(1—v?) \b

where

E = modulus of elasticity.

v = Poisson’s ratio.

t = thickness of plate.

k =a constant depending on the support conditions and on the aspect ratio

(a/b).

a = length of plate in the direction of applied stress.

b = width of plate.

Provided elastic behaviour persists, buckling at the critical load [2] is followed
by a redistribution of in-plane (membrane) stresses, this having a stabilising
effect [ 3]. As the lateral (buckling) deflections of the plate develop, the longitudinal
stress ceases to be uniformly distributed and membrane stress components parallel
to the dimension b also appear. The ultimate stress may, on account of the
redistribution of membrane stresses, rise considerably above the elastic critical stress.

Theoretical solutions taking account of membrane stress redistributions and based
on the large deflection theory for the post-buckling behaviour of plates have been
developed but generally overestimate the strength [4]. A theoretical method of
determining the “critical load” of a long orthotropic plate with longitudinal edges
simply supported against out-of-plane displacements but free to move in the plane
of the plate was put forward by Cuapman and FaLconer [5]. They obtained
expressions for the elastic buckling and post-buckling characteristics of an initially
deformed orthotropic plate (the initial deformations following the sine-wave form)
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using an energy method [1]. RasLaN [6] has given an alternative treatment of
the same problem. The treatment both of Chapman and Falconer and of Raslan
are approximate. To the extent that they are both energy methods and are based
on an assumed (sinusoidal) post-buckling mode they give upper bounds to the
longitudinal stiffness of the plate. In Raslan’s treatment, however, this is compensated
for by the neglect of membrane shear stresses on planes parallel to the edges of
the plate panel.

Both methods assume that the longitudinal edges can deflect in-plane. In plates
stiffened at regular intervals by longitudinal stiffeners (Fig. 3), the individual plate
panels buckle in a series of waves which have nodes at the lines of stiffeners. If the
bending interaction between the plate panels and the stiffeners is ignored, the plate
panels can then be regarded as simply supported against out-of-plane displacements
along their longitudinal edges but due to symmetry, they will be restrained along
these edges against in-plane displacement. This “restrained-in-plane” condition will
cause the induction of normal stresses acting in the direction of the dimension b,
and these stresses are found to increase the longitudinal stiffness of the plate panel
in the post-buckling range.

The following is a treatment of the case for longitudinal edges of a plate
restrained in-plane, following the same general approach as that of Raslan.

2. Assumptions

(i) The material of the plate is homogeneous, isotropic, elastic and perfectly plastic,
the effect of strain-hardening being neglected.

(ii) All edges of the plate are held straight, both in-plane and out-of-plane, but are
free from restraining or applied moments.

(iii) Membrane shear stresses on planes parallel to the edges of the plate panel are
assumed to be zero. Hence, by equilibrium the longitudinal membrane stress
is constant in the longitudinal direction, although it may vary in the transverse
direction. Similarly, any transverse membrane stress will be constant in the
transverse direction although it will vary in the longitudinal direction.

(iv) The number and length of half waves is the same in the post-buckling stage
as at incipient buckling.

(v) The buckling shape in the post-buckled stage is sinusoidal, being therefore
identical with the shape of the infinitely small buckles during incipient buckling.

3. Ideally flat Plate

The plate ABCD in Fig. 1 is initially flat, and the transverse edges AB and CD
in the coordinate direction Y, kept straight in-plane, are induced by the applied
load to approach by a uniform displacement e_.

The longitudinal edges BC and DA are also kept straight but are unloaded.
Before buckling takes place, the induced longitudinal stress o will be uniform, of

X

Ee . )
value , while the transverse stress o, will be zero. When o reaches the elastic
a
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critical stress o_, the plate buckles in a series of half-wavelengths s, the deflected
form being given by

X
w=Asin — sin - (1)
s b

where
w = lateral deflection,
A = amplitude of buckling.

Fig. 1. Axial Loading on a simply supported Plate.

After buckling has occurred, the longitudinal stress o will vary across the width

of the plate, the Poisson expansion in direction OY being uniform along OX and
b
\Y
of value B | o, dy. In addition to this uniform expansion, there will be a uniform

0
contraction e given by

Cb A’n? X
e, =_Y 4 sin? — 2
Y E 4b S (2)

where the second term on the r.h.s. is the flexural shortening due to the lateral
deflection w given by (1).
Since the longitudinal edges are unloaded,

N

(j)cdx=0 (3)

y

Integrating equation (2) from O to s and using (3)

A%n?

= T8
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Hence, from (2),

E A*n? 2nx
= cos (5)

Oy—g. 8b S

Considering a half-wavelength of plate subjected in the post-buckling stage to
stress o©,, which varies across the width b, the internal strain energy U, of the
plate is obtained from the summation of energy due to bending U, and the energy
due to strain in the mid-plane of the plate U, i.e.

Uim = Ub + Us

Due to symmetry in the assumed deflected form, the expression for bending
energy for a half-wavelength reduces to

D b s d2W d2W 2
Uy==0 [ (E2+2Y) dxa
b 2££<dx2+dy2) o
where D = Et*/12(1 — v?)

Assuming that the deflected form remains the same as in the incipient buckling
‘stage, the bending energy U, may be derived by equating it to the external work
done during elastic critical buckling, ignoring the effect of finite deformations.
Hence

Substituting for w from (1),

where

n2t b ny)
K=— in? (—~)d 6
4scc,(j)sm <b y (6)

The energy U, due to strain in the middle plane of the plate is given by

Hence
ts

2 ! 2 n* 2 A* 7
U _=AK+ — 4+ —FE*
ot 2E <£ % W g b3) )

Any change in the amplitude from a finite value 4 to (4 + 6A) caused by an

. . Ny : de .
applied additional mean longitudinal strain dg_ = — corresponds to a change in
a
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the applied stress from o to (o, + do,) and so, from (7) and substituting for K
from (6), the change in the internal strain energy dU,, is obtained as

AdArn?®t b Ty ts(? n*E? A3
au. . = in? —|dy+ — do dy + - —dA 8
int 25 Gcr o (Sln b) y E(j(; Gx O-x y 64 b3 ) ( )

Let o,, be the applied stress beyond the critical stress o, (ie. 6, =0, —G,).
The shortening of the plate after reaching the critical stress o, is the algebraic
sum of the shortening caused by the stresses o, and o, and also that caused by
the flexural strain due to the lateral deflection, w.

The flexural shortening u can be calculated by substituting w from (1) in

lj.‘<dw>2d
u=-{{—
21 \dx) @

v sin " (9)

Hence,

The longitudinal strain & , beyond the strain at the critical stress o, can be
obtained by considering the axial shortening over the length s, i.e.

2n2

O ' o . L, Ty
se, =522 v 2dx+ -sin? —=
=1 (J; E 4s
But | o,dx = 0, whence
0
o A*n? ¢
le = —%1-4‘ F sm2 —l':i (10)

Due to a change in buckling amplitude d4A and the accompanying changes
do, in the longitudinal stresses, (10) gives the value of the associated change in the
longitudinal strain as

_do,, AdA

ny
3 E + 252

n? sin? 5 (11)

de

Over the length s of the plate, the shortening is sde_,. Hence the applied loads do
work given by dT where,

b
dT =sde, | o -t-dy
0
Substituting for de_, from (11), we get

t’ AdAn?t [
des—_f o do,,dy + T | ox-sinzgdy (12)
E ) b

S
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This increment of external work may be equated to the change of internal strain
energy given by (8). After simplification and using

c,, =(o, — o), this leads to
b Ty - w2 [sA\?
(j) c,, -sin? ?-dy=3—2E<?> b (13)

Substituting for o, from (10) and integrating the various terms, it is found that

2 42
ntcA 4.*3x1

452 < S)4
b
Substituting into (10),

3+<v

(14)

For any longitudinal strain €., beyond the strain at the critical stress, (14)
gives the amplitude of the buckled form and (15) gives the distribution of the
longitudinal stress ¢,. These equations define the behaviour of an ideally straight
plate in the post-buckled elastic state. When the plate is subjected to increasing
loads, the distribution of stresses remains uniform until it reaches the critical stress
c,; any additional increase of loads results in a non-uniform distribution of stresses

given by (15). At the edges of the loaded sides, ie. at y=0 and y=0>b, the
longitudinal boundary stress o, is obtained as

c;e = Gcr + ngl

The increase of stress above the critical value is a minimum down the central
axis, i.e. along y = 2. The distribution of longitudinal stress is shown in Fig. 2.

TN

o (T 9 e IM [

TTTIT T ML

Oe = Ucr Ucr < U¢ = Uy;
EEe > Uys
(a) {b) {c)

Fig. 2. Stress Distribution on a straight compressed Plate.
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An infinitely long plate, or a plate of length nb (where n is an integer) will

have the least value of initial buckling stress and will have a buckling half-wave-
length of s = b. For such a plate,

n2E £\? 16
c,=——| -
cr 3 (1 _ V2) b ( )
and the post-buckling distribution of longitudinal stress becomes
T
0'x=c"+Esx1<1 — sin? -bX> (17)
The mean longitudinal stress o,, on such a plate is given by

1 b
Gm = cYcr + ‘j le dy
bO

Le.
6,=6,+05E¢, (18)

The transverse stress 6, may be evaluated from (5) giving

_E A%n? 21X

Sy=1% g5 %5
2.2
Substituting for T from (14), we obtain
E 2
c, €, COS - (19)

4.1 Simply supported Plates with initial Imperfections

A theoretical analysis based on an ideally perfect plate is valuable only for
determining the upper bound solutions. All plates, in fact, have some irregularity in
their surfaces. While these irregularities follow no general pattern, it is usual to
assume for the sake of simplicity that the initial imperfection of a plate is similar
in form to the buckled shape of the plate. Thus the initial surface of the plate
before any loads are applied can be expressed by an expression similar to (1), i.e.

Wwo = A, sin ’%sin 4 (20)

where

w, = initial deflection function,
o = amplitude of the initial wave,
s = half-wavelength of buckle.
The final buckled shape will be given by (1).
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The lateral contraction e, corresponding to a lateral compressive stress o, is
given by
ob A*2—A4,° X

— o . . Qi
ey—— %‘l‘ T 7'[2 Sln2 —S— (21)

Since there is no restraint at the edges,

f odx=0
0
A*— A2
— 2
Hence e, = (T) n (22)
By substitution in (21), we obtain
E[(A*—- A,? 21
c,= E(T> n? cos — (23)

The energy stored in a half-wavelength is
U,=(A—4,)*K (24)

where K is given by (6). The energy U, due to strain in the mid-plane of the
plate is obtained as for the initially flat plate o, from (23) replacing the expression
from (5), i.e. A% is replaced by (4% — 4,?).

Hence,

4 (AZ _ AOZ)Z] (25)

U = 24 E?-
s 2E|ij° er128 b’

The change in the total strain energy U, ,=(U, + U) due to a small increment
in the amplitude from A4 to (4 + dA) is obtained as

n* tsE

—A—A)dAK+2 jcdcdy+6 55

A(A*— AP dA  (26)

The longitudinal shortening due to an applied stress o, is obtained from

c. v .S A*— A2 , Ty
se.=s52— [ odx+—— "9 .pg2gin? =
* E E{, Y 4s b
Since | 6,dx =0,
0
o, A*—A}2 , Ty
8x=-E—+~—4—SZ— n? sin® " (27)
whence,
do, AdA ., Ty
d8x=?+ 5 -1 s1n2? (28)
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Over the length s of the plate, the shortening is s-de, and the work done by the
applied loads is

AdAn*t

t b
T="1| odo,-dy+ j o, sin? = dy (29)

Using dU, , = dT, (26) and (29) give, after simplification,

b _ LTy n2Es?
.(’; [A(Gx - 0-cr) + AOGcr:' sm2 E—dy = 32b3 (A3 - AAOZ)

) A
Putting m =
Ay

1 P ny n? A,%s?
e — + sin? — dy = —- -2 3 30
£ G ccr) Gcr] b y 32 b4. (m m) ( )
e . . . dA
Considering the effect of an increment in amplitude represented by dm = i
0
1° my n? A,2%s? dm ! Ty
— d in?2 —dy=— -2 3m* — 1) dm — — - in? —d 31
Ebomcxsm s V=313 (3m* — 1) dm Ebi(c c,,) sin e (31)
Using do, derived from (28), equation (31) becomes
de, b, my n2A,? P LT
m—b~£ sin? ?dy— 22b dej sin* 5 —dy
TC A dm ? ., Ty
=5 b4 (mz—l)dm—ﬁg(c -—c)sngdy (32)

The last integral can be eliminated between (30) and (32) and after performing
the integrations,

3 z Ay2s? o 1
de =d 2, © .9 2,70 —er,
€, m[(n g + 7 8-b4>m+ B mz]

e 2T A (3 Y ey ML % 33
T2 Ot/ oDt G (33)

Hence

where C, is a constant of integration.
Under zero load, m = 1 when g, = 0, whence C; can be evaluated and

n? A,> st m—1oc

=__.%0 (3 )+ er

8:)c 16 S2< +b4)(m ) E
2

, . m*A,’ c,,
Designating e by &, and -é— bye,.
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S4
€ =m_18 +80(3+b4>(m2—1)
* m 4
When s = b, the above equation becomes
8x=m;lacr+so(m2—1) (34)

The stress at any section corresponding to an applied strain can be found by
integrating (28), whence
c. A*n? Ty

g, = >+ -sin? —4 C
* E 45? b 2

Here C, is a constant of integration which can be evaluated by putting o, =0
whene =0and A =4,
Hence it is found that

c,=E |:ax —(m?* — 1) g, sin? 1%:] (35)
The mean stress then becomes
2-1
s =E [ax T 80] (36)
2
From (23), o can be expressed in terms of m and ¢, as
E 2

c,= E(m2 — 1) g, cos i (37)

s

4.2 The Effective width of Plate

The boundary stress o, is calculated directly from the longitudinal strain €,
from o,=E ¢, . If the plate were initially flat and no buckling occurred, the
longitudinal force at strain €, would be (E€_-b-t) = o, bt, but in a buckled plate
is given by 6,,-b-t = o,(K,, - b)-t where K, _ is the secant effective width factor.
Hence,

c,=K,0,=K, ‘Eg_ (a)

Considering a plate having a buckle length s=b, 6, is given by (16) and g,
is defined by

Eliminating b,
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Usingo_,=Ec¢

cr’

g, =4Ceg, (b)

_3(1—v2)422
€= 16 (t)

where

It is readily shown from (34), (36), (a) and (b) that

€ o m-—1
K Xt="=____(14+2mC(m+1
bs8 G m ( m (m ))

and
_1+2mC (1 +m)
B 1+ 4mC(1 + m)

(39)

This equation enables the effective width of a plate with initial imperfection A4,
(defined by C) and final deflection A (defined by 4 = mA,) to be obtained.

5. Strength of Stiffened Panels

The present work arises out of the Interim Design Rules [7] drafted by the
Merrison Box Girder Committee. The method is based on the effective width
concept; in drawing up these rules, account was taken of the results of theoretical
and experimental studies carried out by Moxuawm [8, 9] in which it was shown that
residual stresses caused by longitudinal edge welds in a plate panel reduced its
strength. These studies also showed that initial imperfections (spherical and
transverse cylindrical type), even if small, have a marked influence on the strength
of plates. (It should be noted that Moxham’s theoretical and experimental studies
were, however, confined to plates with longitudinal edges free in plane).

The criterion for the strength of a stiffened panel used in the Merrison Rules
is the attainment of a boundary stress in the plate panel at which yield will occur
(due to the combined membrane stresses and plate bending) anywhere in plate
panel.

A method of design, alternative to the Merrison procedure, has been proposed
as a result of studies conducted at Cambridge by several investigators during the
past few years [10, 11, 12]. The method consists of obtaining the basic plate
strength using Moxham’s method [8] and the basic outstand strength and then
treating the stiffened panel as a “wide column”. A Perry-Robertson type of formula
has been recommended for computing the panel strength. Charts applicable to
panels with three ranges of welding shrinkage forces have been proposed.

While both methods represent advances in the treatment of the subject, both are
somewhat conservative as shown by the experiments conducted at Manchester [13].
The Merrison approach, although based on actual plate/stiffener bending theory
and to this extent preferable to the recent Cambridge method, is conservative
because initial yielding in the extreme fibres of the plate is too limited in its
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effect on stiffeners to bring about collapse of the stiffened panel. An alternative
criterion for the limiting plate panel conditions can be argued as follows.

Compressive buckling of a plate results in the shedding of the load from the
centre of the plate towards the edges. With increasing plate deflections, the edges
carry increasingly higher proportion of the applied compression. When the applied
strain causes an edge stress (c,) equal to the yield point of the material (o),
no more increase of stress is possible at the edges. The total compressive force
at this stage (ignoring local “extreme fibre” yield in the plate) will be o, Ky bt.
Any further increase of strain will cause a reduction in the effective width consequent
on (1) the spread of plastic zones at the edges of the panel and (2) the increase in
deflection at the centre of plate.

Although the mean stress on the most highly stressed plate panel of a stiffened
panel may be capable of further increase beyond the compressive force o, K,,"bt,
it is arguable that the decreasing stiffness (effective width) of the plate panel which
sets in at this stage will rapidly cause the failure of the entire stiffened panel.
To allow approximately for this behaviour, it is therefore proposed to assume that,
after yield on the boundary, the stiffness of a plate panel disappears entirely, the
compressive force remaining constant at o,°K, -bt. This causes progressive
increases in the bending stresses in the stiffeners and a spread of plate panel failure
along the column until a maximum load is reached and failure occurs.

The application of this criterion is explored in the following theory.

6. Initial Assumptions in Developing the Theory

The complete strength analysis even for the simplest case of a single simply
supported plate taking full account of plasticity and large deflections (solved by
Moxnawm [ 8]) involves enormous computational effort. For purposes of analysing
the present problem, the following simplifiying assumptions are made so that the
effect of varying some of the parameters can be evaluated without extravagant
demands on computing facilities.

(i) All the earlier assumptions (used in analysing plates in compression) are also
applicable in the following analysis.

(i) The stiffened panel is assumed to be wide enough for it to be treated as a
pin-ended column. The orthotropic plate action of the stiffened panel is not
considered. The analysis is carried out on a single longitudinal stiffener and
its associated width of plating.

(1) The stiffener does not buckle locally. (This is not a reasonable assumption
for panels failing by “stiffener failure”.)

(iv) Plane sections of the stiffener remain plane and perpendicular to the neutral
axis.

(v) Residual shrinkage force is concentrated on a small area at the junction of
plate and stiffener. '

(vi) The panel can be treated as an assembly of small elements and the moment
and curvature are constant over the length of this element.

(vii) The slopes of the column everywhere are small.
(viij) Shear deformations are neglected.
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(ix) Stress-strain curve for steel is of the ideal elasto-plastic form and is the same
for both compression and tension. Strain hardening is neglected.

(x) No constraint has been given to the stiffened plate during welding, i.e. the
effect of clamping, etc., during welding is negligible.

7. The Proposed Theory for Stiffened Panels

A stiffened panel sketched in Fig. 3 and loaded axially will now be considered.
Referring to Fig. 4a, let 3, be the initial plate imperfection over a gauge length
of b before welding. Due to the application of heat during welding let this imperfec-
tion increase to 8, =md,. When the plate bends, the stiffener rotates such that it
continues to remain normal to the plate at the plate/stiffener junction.

Loading along the
centroidal axis
at the ends.

ISOMETRIC VIEW OF THE STIFFENED PANEL.

Analysis is carried out on a single stiffener
and its associated plating.

twek = P—b—+ . ;
T T

CROSS SECTION OF THE STIFFENED PANEL.

Fig. 3. Stiffened Panel.

As before, let the plate-deflection function be represented by
w=md, " sin %sin ™ (40)
s
where

w = the vertical deflection of the plate at a distance y.
x is the longitudinal coordinate.
s is the half-wavelength of buckle.
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Aty =0,
dw T . TX
—=md," —sin —
dy b S

Assuming that the stiffener does not bend,
m-d,m . X
v=z" -sin —
s

where v is the lateral displacement of the stiffener at a depth z.
The flexural shortening in the stiffener

1 5/ dv\? n* [m?5,2
= _ ) dx=—- 0 .,2
2£<dx) *=3 [bzsz Z]S

The unit flexural strain in the stiffener

n4<m2 602
~ e T e
Residual stress due to welding: Before welding, let the panel have.an overall
imperfection A, in the form of a circular arc. As a result of welding, let the overall
imperfection increase to A_over a gauge length (Fig. 4b).

i b b —i
—— T TS = y—
\ il ’W\ ;ﬁ’_—’ (\
- mdo

(a) DEFLECTED SHAPE OF PLATE AND STIFFENERS.

(b} OVERALL IMPERFECTION OF PANEL.

Fig. 4.

A stiffened panel, when welded together is subject to a residual shrinkage force
caused by an area A  under the tensile stress of o as sketched in Fig. 5a. To
simplify the analysis, this condition is studied by adopting an idealised model con-
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Heat atfected zone, area Ar
at a tensile stress of Oyg

. .

ol
y_4 1

PZ2 .2
-

:‘—{t'
1
d

A+

(a) ACTUAL SECTION OF THE PANEL.

A concentrated area Ap

e p' ———————’
¥ et lgl :.:—_—:_%::_‘._::

Ty 1!
o+
. u

- C
4
w
Flange b' x t¢ PLUS a concentrated Area Ar
Web d x tw

(b) IDEALISED SECTION.
Fig. 5.
sisting of a concentrated area of A, in tension plus a plate having a flange of

b’ x t'; and a web of d x t,, (see Fig. 5b). The flange of the substitute panel is so
chosen that

The total area of the actual panel and of the idealised model should be the same.

t
ie. <d — é) t,+ btf =dt, + b't'f + A, (42)
b t
Let —= L:p
b L

t
(d - é) t,+bt,=dt, +p’bt, + A4

Hence

o~

A+t L
r W2

p=[1— ———— — (43)
btf

Let the residual shrinkage force F, change the initial plate imperfection from
3, to m3,. Let the strain due to residual stress at the plate/stiffener junction
(point B in Fig. 5b) be ¢,. The consequent mean stress in the flange = K, Eeg,
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where K is the secant effective width factor when the “m” value for the plate is m,.
The values of m, and €, may be related by putting m =m, and &_=¢, in (38).
Referring to Fig. 6b, the longitudinal strain at the tip of the stiffener (point C)

8d
=g, — (A, —Ay) = At a distance z from the root of the stiffener,

8z

the longitudinal strain =g, — (A, — A) B (a)

This total longitudinal strain is composed of the flexural strain due to the
warping of the stiffener parallel to the plate panel plus the strain due to the
imposed residual stress.

The flexural strain in the stiffener is obtained from equation (41) where “m”
changes from 1 to m,
) . nt(m?-1)
1.e. Flexural strain = — —/————
4 b/2s2

Hence, the strain in the stiffener due to residual shrinkage is obtained by
subtracting (b) from (a), i.e.

: 802 22 (b)

8z nw* 5,222
8sr = gr - (Ar - AO) ?— _Z(mrz - 1) borzsz

(44)

It has been assumed that there is no constraint given to the stiffened panel; hence
the moment on the panel is zero.

d
ie.[ z-Ee, dz=0
0

From equation (44),

4 8 4 5. 272
j [s,—m,—Ao) —zz—n‘(m,z—l)-%iz—]zdz=0
0 ! b'"s

4
whence
8d3 > n* 8,2d*
( r O) 312 Sr 2 16(mr ) blzsz ( )
The longitudinal force in the stiffener is
d
S=E-t,| &g,dz (©)
0
The longitudinal force in the flange is
F=bt; K, E-g, (d)
The longitudinal force in the weld affected zone is
R= - Arcys (e)

Since the net force on the section is zero, we may write
S+F+R=0
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Substituting b’ = ub and t; = pi,
d
Et,, f g, dz + n?°K,- bt;-Ee, — A,0,,=0
0

from which, using (44) and (45),

bt 1 nt 5,2d> A o
2. JK +- e+ —(m?—1) 2——- L. B0 46
|:H dtw r 4:| 8r 96(mr ) bIZSZ twd E ( )

This equation together with (38) and (45) enables m_, €, and A, to be derived.
Hence the residual stress distribution in the panel after welding can be derived.

7.1 Load-deflection Relationship for the Panel

The panel subjected to an axial load will now be considered (see Fig. 4a).
At any stage in the loading cycle let the plate panel deflection be mé, and the
corresponding strain at plate/stiffener junction be &. Let an increase of strain at this
position = 8¢ correspond to an increase in plate deflection to (m + dm)d,. Let the
corresponding longitudinal plate stress at y (Fig. 6a) change from o to (o, + do,).
The change in the longitudinal force in the flange will then be

br

8F=1t, [ do.dy (47)
0

b
L

/778 — 1
[4 )
l 4
C U

EE ox
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Fig. 6.
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é
C

Distribution of Distribution ot
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Considering the stiffener (Fig. 6b), the total 'longitudinal strain at z is

8A
a—< - ?9>z where p denotes the total curvature of the stiffened panel in a
longitudinal plane.
. ot § 252
Flexural strain at z is z—(m2 —1) b(izsz'
The longitudinal stress in the stiffener is elastic; the stress in the stiffener is
therefore
8A n* 8,22°
cxs=Ess=E|:8—<p— ITO)Z— Z(mz— 1) bgzsz] (48)
whence
de (n*] 8,222
The change in longitudinal force in the stiffener is
8S =1, [do,dz (50)
The change of moment about 00 (Fig. 6b) is
M=t,[|zdo,.dz] (51)
ds ds
Let 88 = — &m + — 3p (52)
dm dp
dM aM
dm=—28m+ —2> &p (53)
dm dp
where
ds, de =t 80222)
—=Et ———m———)d 54
dm Wj(dm 2 ") (54)
ds
—2= —Et, [zdz (55)
dp
dM, de n* 80222>
=Et, || —— =m -5 )z 56
dm wj(dm 2 " gz ) (56)
dM,
= — Et,, (z%dz 5
= (57
Also, from equation (47), we have, for the flange,
dF ¥ do
—=r *d 58
dm 7 '5, am (58)

The change in the longitudinal force in the weld-affected zone is

de

(A,-E %) dm (59)
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Let us consider the condition of the panel at some intermediate stage in the
loading sequence. Let the axial force change from P to (P + 8P). Let the beam
column be divided into j elements and let us consider the nth element (Fig. 7).
Let the strain at the stiffener flange intersection change from ¢, to (g, + d¢,) and
the curvature of the element from p, to (p, + 8p,). At the commencement of loading,
all elements have the same curvature given by

S.A (60)

a—(n-l)-}— ——i‘%—-i
P cl » Yrt-n n p

nth '

elem

Total No. of elements= j {even)

Yn-1

curvature
Y

On.

ENLARGED VIEW _
OF nth ELEMENT. Fig. 7.

When there is an increment of load (from P to P + 0P) we may write using
(54), (55), (58) and (59)

dF  dS, de, ds, :
oP = AE —198 be) 61
(dm,,+dm,,+ ' dm,.> ™ e, 0P (61

where the subscript n refers to the quantities pertaining to the nth element.
The moment about the plate/stiffener intersection at the centre of the element

is given by
aM dM

I Pn lz)
P+8P)e—ypy1— =0, +—(-) |=M +—=—28m,+—"5p, 62
( )<e Ty 8(1) " m, T g, )

There are thus two equations connecting dm, and 8p, to other known quantities
in respect of each element, ie. there are 2j equations for 2j unknowns. These
can be solved to evaluate dm and &p in respect of each element. The slope of
each element is calculated by assuming that the curvature over the element is

uniform

. l
1e. 6 n= 9,,_1 — Pn <_) (63)
J
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! Pl N2
Yn=DYn1t i On1 =75 I (64)

The “crushing load” of the panel (i.e. the load corresponding to a very small
slenderness ratio), can be found by considering a short length of panel and applying
a uniform load at ends until failure. (This corresponds to a short specimen tested
in the “fixed-ended” condition.) In this case dp, = 0 always. To obtain the crushing
load of the panel, only equation (61) is used with 8p = 0. It is also unnecessary to
split the specimen into a number of strips along its length (i.e. j = 1).

dF dS de
P=( —+—24+A4-E—)5
(dm+ am dm> " (69)
dF dS, de

Care should be taken to see that while computing etc.,

dm’ dm’ dnm
|0x| * Kbscys and lcxsl :F GyS'

The procedure for computation is given in the Appendix.

8. Comparison with Test Results

The values of global average stress at failure observed in the laboratory on the
various test panels will now be compared with the corresponding values predicted
by using the theoretical treatment described in the foregoing pages; the important
dimensions and details of these panels have been set out in Table 1. The detailed
description of these tests will be found in two separate research reports [ 13, 16].
Observed test results on eight fixed-ended tests on short panels, and of ten pin-ended
tests on panels having I/r ~ 90 with the corresponding predicted values using (i)
the proposed effective width theory and (ii) the Merrison Rules, are given in Tables 2
and 3. In these Tables, Column 2 gives the load at failure expressed as a fraction of
the squash load. Column 3 gives the corresponding theoretical values, taking the
residual shrinkage force acting on the panel as that obtained from Merrison
Interim Design Rules. These are compared with the values obtained by taking
the residual shrinkage force to be zero in Column 4. It will be seen that in all the
cases, the theory predicts the strength of the panel to a reasonable degree of
accuracy. It will also be noticed that there is only a small difference between
the strengths predicted by allowing for residual shrinkage forces and those obtained
by assuming zero residual stresses. The experiments also show that the ultimate
strengths of these panels were influenced only marginally by the type of welding
(and therefore by the magnitude of shrinkage forces).

Columns 5 and 6 give the predicted values using Merrison Rules; the former
is obtained by introducing the residual shrinkage force as an additional imper-
fection, while the latter is obtained by using the shrinkage force as an additional
stress to be accounted for in the computation. Merrison Rules provide that the
more favourable of the two may be adopted; the corresponding values are shown
in italics.
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Table 1: Details of Panels Tested

145

. . Imperfections
. Plate tiffener .
Specimen thicl?ness Egg:;:gr > si;e Welding .
No. type in plate overall
mm mm mm
6, mm A, mm
Fixed-ended tests (all panels 915 mm long)
6 9.5 457 152 x 16 Continuous 0.8 ~0
1 9.5 457 152 x 16 Continuous 438 0
4 9.5 457 152x 16 Intermittent 1.3 0
2 9.5 457 152 x 16 Intermittent 5.5 0
B11 6.5 457 152 x9.5 Intermittent 5.9 0
B12 6.5 457 152x9.5 Intermittent 14 0
B21 6.5 457 152x9.5 Continuous 5.9 0
B22 6.5 457 152 x9.5 Continuous 1.0 0
Pin-ended tests (all panels 1830 mm long)
D11 10 457 80 x 12 Intermittent 5.4 14
D12 10 457 80 x 12 Intermittent 31 2.2
D21 10 457 80x 12 Continuous 5.7 1.4
D22 10 457 80 x 12 Continuous 1.2 1.6
D23 10 457 80 x 12 Continuous 14 14
(ecc. load
e=_8 mm)
Eill 6.5 457 76 x 12.5 Intermittent 6.3 1.6
E12 6.5 457 76 x 12.5 Intermittent 1.7 1.6
E21 6.5 457 76 x12.5 Continuous 5.6 1.9
E22 6.5 457 76 x 12.5 Continuous 13 2.7
(ecc. load
e=8 mm)
E23 6.5 457 76 x 12.5 Continuous 2.5 1.05
Table 2 : Comparison of test results with the theoretically predicted strengths
(Fixed-ended tests)
Observed Predicted values of stress at failure/yield strength using
Pﬁnel ultimate load Proposed effective width theory Merrison Rules
o.
squash load Res. stress acc. to -0 Using o as an  og introduced as
Merrison Rules Or= imperfection an addl. stress
6 0.92 0.82 0.95 0.58 0.55
1 0.87 0.77 0.82 0.61 0.44
4 0.90 0.92 0.92 0.57 0.60
2 0.83 0.80 0.80 0.60 0.55
B11 0.63 0.65 0.68 0.62 0.58
B12 0.65 0.69 0.72 0.60 0.49
B21 0.67 0.62 0.67 0.64 0.50
B22 0.62 0.63 0.72 0.61 0.38

Specimens 6, 1, 4 and 2 were made of 9.5 mm plates stiffened by 152.5 x 16 mm
stiffeners; the first two were continuously welded, and the others intermittently
welded. All the specimens were 915 mm long. Specimens 1 and 2 were “dished”
to impose additional plate imperfections equal to 2%, to 3 times the Merrison
tolerances. Specimens 6 and 4 were tested nominally straight.
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Specimens B11, B12, B21 and B22 were made of 6.5 mm plates stiffened by
152.5x 9.5 mm stiffeners; the first two were intermittently welded and the others
were continuously welded. Specimens B12 and B22 were tested in the nominally
straight condition while specimens B11 and B21 were tested after imposing additional
plate imperfections by dishing. All specimens were 915 mm long.

The first five tests (D series) in Table 3 were performed on nominal %" (10 mm)
plate panels stiffened by 3” x %2” (80 mm x 12 mm) flat stiffeners. The panels
were made of Structural Grade 43 Steel. Specimens D11 and D12 were fabricated
by employing intermittent welding (100 mm weld and 300 mm miss) to connect the
plate and the stiffeners. Specimens D21, D22 and D23 were continuously welded.
Specimens D12 and D22 were tested in the nominally straight state, while specimens
D11 and D21 were “dished” to induce imperfections in the plate of magnitude
equal to three times the Merrison tolerance. Specimen D23 was similar to D22, but
was tested with the load applied at an eccentricity of 8 mm from its centroidal
axis towards the plate. All the specimens were 72" (1830 mm) long and tested in
the pin-ended condition. The I/r for the specimens was 92.

Table 3 : Comparison of test results with theoretically predicted strengths
(Pin-ended tests)

Predicted values of global average stress at failure/yield strength using

Observed
Spec. ultimate load Proposed effective width theory Merrison Rules
No.
squash load Og acc. to 6o=0 oy introduced as o introduced as
Merrison Rules R imperfection an addl. stress

D11 0.63 0.57 0.58 053 0.48

D12 0.65 0.65 0.69 0.54 0.58

D21 0.57 0.57 0.61 0.54 0.40

D22 0.60 0.64 0.78 052 0.47

D23 0.43 0.43 0.45 042 0.37

Ell 0.47 0.39 0.41 049 0.46

E12 0.48 0.46 0.48 048 0.42

E21 0.44 0.37 0.41 049 0.41

E22 0.34 0.32 0.36 0.39 0.27

E23 0.45 0.46 0.47 0.50 0.37

Specimens of the E series were made using “Corten” plates and grade 50 steel
flats for stiffeners. The panels were made of nominal 4 (6.5 mm) thick plates and
four 3" x 72" (76 mm x 12 mm) flat stiffeners. All the specimens were 72" (180 mm)
long and tested in the pin-ended condition. The I/r for the specimens was 88.

Specimens E11 and E12 were intermittently welded as in the D series, and
E21, E22 and E23 were continuously welded. Specimens E12 and E23 were tested
in the nominally straight condition, while specimens E11 and E21 were tested after
dishing the plates to give imperfections of three times the Merrison tolerance.
Specimen E22 was also tested in the nominally straight state with the axial load acting
at an eccentricity of 8 mm towards the plate.

It will be seen from Tables 2 and 3 that the proposed theory predicts the
strength of the panels within a reasonable degree of accuracy, the only exception
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being D22, where the prediction was somewhat higher than the experimentally-
recorded value. This panel failed suddenly by overall buckling immediately after
the recorded maximum load, when an increment of axial strain was being applied
to the specimen. Thus there is uncertainty about the actual maximum load (which
was higher than the recorded value) as it could not be ascertained due to the
sudden failure of the panel.

In general, the values predicted by the above theory, ignoring residual shrinkage
forces, are not materially different from the values obtained by including their
influence (compare Columns 3 and 4). On the other hand, the Merrison Rules
predictions are generally very conservative except in the case of high b/t and
high I/r, where these predictions are slightly higher than the observed values.

9. Comparison with Tests conducted at Monash University

The new theory developed above has also been checked against the experimental
results obtained by Murray [14] at Monash University. Only tests on panels
having I/r ~ 60 have been chosen for comparison, as shorter panels tend to fail by
crushing; the Rigid Plastic Analysis developed by Murray is adequate for the
short panels.

The results obtained by him experimentally have been compared with the ultimate
strengths computed from the above theory in Table 4. In deriving the strengths, it has
been assumed that (a) the bulb flat stiffeners used by him may be substituted
by flat stiffeners having the same area and (b) the influence of residual stresses

Table 4: Monash University tests

Plate failure tests Stiffener failure tests
Panel H Panel U Panel J Panel T
bie. . . ..o 54 63 54 62
Stiffener spacing (mm) . . . 5334 609.6 5334 609.6
Plate thickness (mm) . . . . 9.86 9.66 9.96 9.8
Stiffenersused . . . . . . . 6" x7421b 4" x4.511b 6'x7421b 4"x4.511b
Equivalent stiffener thickness
(mm). . . .. ... .. 9.6 8.8 9.6 8.8
Length of panel (mm) . . . . 3450 1700 3450 1700
Eccentricity of loading (if any), 2,54 mm
mm . . . . . . . . .. — — towards the —
stiffener
Ur . . .. o oL 75.3 66.6 75.3 66.9
Global average stress at failure
N/mm?. . . . . . . .. 264.9 1733 234.1 169.4
Observed Utimate load 0.70 0.59 0.63 0.45

squash load

Theoretically computed value

ultimate load

Notes: 1. Panels H, U and J were nominally straight. Panel T had an induced overall imperfection
of 3.56 mm favouring “stiffener failure”.
2. Panel J was tested with load applied eccentrically with respect to centroidal axis (e = 2.54 mm).
All other panels were axially loaded.
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may be ignored. The values of plate imperfection and overall imperfection have not
been reported by Murray and these have been taken from a range of values
quoted by MacLeop [15]. It appears from the later’s thesis that the imperfections
have not been systematically measured, presumably because their work was directed
at the application of rigid plastic theory developed by Murray. In spite of this serious
limitation, it appears that the predicted values are reasonably close to the observed
values.

10. Theoretically Calculated Curves

Applying the above theory, the sensitivity of the global average stress at failure
of a short specimen (i.e. very low [/r) to the initial plate imperfections in the panel
has been studied for a b/t ratio of 48, using two panel sizes. It will be seen from
Fig. 8 that with the imperfections limited to the Merrison tolerance value, the
reduction in the strength of the panel is predicted to be 16%. This appears to be the
most important influence on the strength of the panel.

The sensitivity of global average stress at failure to the residual stress in the
panel was studied for b/t=48 (Fig. 9). This shows that for normal panels with a
moderate amount of welding, the above theory predicts that the residual stresses have
only a very small effect on the failure load. Even when a high degree of welding
is employed, it is perhaps sufficient to apply a reduction factor of 5% to 8% on the
calculated ultimate stress to allow for any adverse effect of welding.
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Fig. 10 is a study of b/t ratios on panel strengths which confirms what is already
well-known viz that at values of b/t higher than about 40 the fall-off of strength

is rapid.
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11. Safety and Economy

The economic design of stiffened panels is affected not only by numerous
design parameters (type of stiffener, section properties and spacing of stiffeners,
thickness of flange plate) but also by the influence of fabrication procedures on
residual stresses and imperfections, since these affect the strength and safety of the
panel. These parameters have been tested experimentally at the Simon Engineering
Laboratories of the University of Manchester, by carrying out load tests to collapse
on a large number of stiffened panels, including variations in the welded connections
between plate and stiffeners (thus affecting the residual stresses) and in initial
imperfections of various types. Results from these tests have been used to check the
validity of an analysis described in detail in the present paper.

Briefly stated, the analysis consists of determining at any mean longitudinal
stress, the effective width of a plate for any given initial imperfection and obtaining
the load-deflection path of a stiffened plate, using a step-by-step iteration process.
Due allowance has been made for the initial imperfections of the plate, overall
imperfections of the panel and residual shrinkage stresses due to welding.

The theory predicts and experiments confirm that

(i) the ultimate loads of these panels are affected only marginally by the type of

welding (and therefore by the magnitude of the shrinkage forces).

(i1) Imperfections in plates have a high influence on the ultimate loads.

(i11) The Merrison Interim Design Rules for box girders are shown to be somewhat
conservative for panels with low b/t and low I/r but may be unconservative
for panels with high b/t and high I/r.

(iv) the method can be used to predict strengths of panels and so the optimum
combination of plate thickness, stiffener size and spacing can be evaluated for
an economic design.

12. Conclusions

An approximate solution for the problem of simply supported rectangular plates
(restrained in-plane against in-plane displacement) under uniform compression in one
direction has been obtained. This analysis avoids any tedious calculations which
would become necessary when “large deflection theory” is used and can be easily
applied even without the use of computers. The effective width of such a plate in
compression has been derived.

Using the above concepts, a unified theory making allowance for initial im-
perfections and residual shrinkage force has been derived for stiffened panels under
axial compression. Satisfactory predictions of ultimate strengths of stiffened panels
have been obtained by using this theory (see Fig. 11).

The theory predicts and experiments confirm that residual shrinkage force due to
welding has only a marginal influence on the strength of stiffened panels. On the
other hand, an increase of plate imperfections results in a considerable reduction
in the panel strength.
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14. Appendix

Procedure for computation

A.1 Steps in computation of residual stresses

The residual shrinkage force at the plate/stiffener junction can be evaluated
by any of the methods available; in these investigations, the formulae recommended
by Merrison Interim Design Rules have been used. The point of application of
this force is unknown, but it is reasonable to assume that this force is applied at

B in Fig. 5b. The various steps involved in the computation are listed below:

(i) The residual shrinkage force (F,) is computed using Merrison Rules.
ii) p, b, and t; corresponding to the idealised section are evaluated.
S
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(iij) 8, is not yet known, but J, is obtained by direct measurement from the panel.
6x =m,- 8O

To begin with, it is assumed that m, = 1.
(iv) From the known values of m,, 8¢, €¢ and g, are computed:

60 = 8x/n'lr
7[2802
0= T

2.73 (8\? ,
= —| (taking v =0.3)
L
_1+2m,C(m, +1)
" 14 4m,C(m, + 1)

The above values are substituted in equation (46); the equation will be satisfied
if our initial choice of m, has been correct. (As it is, the initial guess for m, would
need improvement.) Let the error to be corrected (which is a function of m) be
f (m,). This function should be made to converge to zero, by choosing a better value
form,.

(v) As the next step, a small increment dm, (say 0.00001) is given to m, and the
steps in (iv) are repeated with the new value for m,. The difference between
the two error functions is accounted for by the increase in m,.

Let of = f(m, + dm,) — f (m,)
A better estimate for m, can be obtained from choosing its new value

f(m,)
(5f/3m,)

(vi) (A, — Ao) and hence Ay can now be computed from (45).

(vii) The stiffener is split into a large number of strips and ¢, is computed from (44).
The corresponding residual stresses o, and the residual forces in all these strips
are computed and added to obtain the residual force taken by the stiffener
(F)

(viij) The plate is also split into a number of strips and the residual stresses in
the plate corresponding to ¢, at B are then computed

asm, —

Cpr = E<er —(m,* — 1) gy sin? %)

The residual forces in all these strips are computed and summed up (F ).
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(ix) The total internal force is (F, + Fy) and would equal F,, if the earlier choice
of ¢, had been correct. If Fo=F, —(F,+ F), then ¢, is the correct value
when F, converges to zero.

(x) If Fy# 0, than an increment O, is given to €, and steps (iv) to (ix) are
repeated. Let the increase in F be 8F, The revised estimate for g, is

Fo
€ — 5F,
O¢,
The steps (iv) to (x) are now repeated to obtain the convergence of F, to zero.

(xi) The residual strains and stresses for this final value of €, are now stored in

the computer memory.

A.2 Computation of crushing load

To begin with, g, is known at B from the previous computation. g, is also
known all along the stiffener. The residual strains and stresses in the elements
of the plate and the stiffener have been stored in the computer memory. The value
of m, corresponding to g, is also known.

(i) A small longitudinal strain &g is uniformly applied across the whole section.
(if) The total strain at B (Fig. 6a) = ¢, + ep =¢.

) (5w

(This is a cubic equation and the solution is by trial and error.) The increment
om corresponding to the new value for € is obtained.
(i) A small increment Am (say 0.000001) is applied to m and the corresponding

de and i is calculated.
dm

(iv) The mean stress in the plate corresponding to the boundary strain € is calculated
from K,s-E-e. The maximum value of this stress is limited to Ko,
(i.e. the stress at the edge of the plate is limited to o).

d
(v) Corresponding to de from (iii), 8o, is calculated from (iv) and 0% s evaluated.

m
do,
vi -b’ is evaluated to give —
9 am s £ dm
(vil) The stresses in the stiffener are calculated from (48). The stress in the

stiffener 3 o,.

de  m*  §y% 22
(vii) E-t, <T — %— m: ZT)’ZZ) dz 1s evaluated for all the elements of the stiffener
m

das
and added to give ( d—l>

m
: de) . . . .
(ix) (A,-E- d—«) is computed with the condition that E-¢- 3% 20, in order to
m

avoid yield in compression in the heat-affected zone.
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The axial load (3 P) corresponding to €g is

6P-—<dF+dS1+A-E-d8>8
“\dm dam T dm) O

(xi) A further increment can now be given to g, and steps (ii) to (x) can be

repeated.

The total axial load = load already applied + SP.

The computation is continued until all the elements have yielded.
The maximum load obtained is the crushing load.

A.3 Computation procedure for pin-ended panels

()

(vi)

(vii)

The panel is divided into j elements along its length (Fig. 7). The values of
deflections and mean curvature are computed for each element and stored in
the computer.

The values of residual stresses across the section (previously computed) are
applicable to each of the j elements.

dF, dSl, dSZ, dSZ, dMl, M, and de are calculated for each of the elements;
dm dm dm dp dm dp dm

the restriction that the stress at any stiffener section should not exceed o
and at any plate section, K, - o, applies as before.

Equations (61) and (62) define 6m, and 8¢, for each of the j elements cor-
responding to an applied load and the consequent deflection. (To begin with,
the deflection at the centre is A, and hence curvature of all the elements
. 8A,

18 3 )

A small deflection 8A is applied at the centre of the span and the corresponding
load 8P applied at the centroidal axis at the ends is guessed.

With this load 3P, the moments in each of the j elements is evaluated from
the left hand side of equation (62). At an intermediate stage in loading, the
increase in moment 8M, due to an additional load 8P is evaluated from

M p p ! Pn (l/])z '
6 8 ‘ ! * 9”‘— I
" ( ) [e yn_l 2j ! 8

l m (1/7)?
—Plie—yn—l —2—]_9"_1+p (8/1) ]

where

Vo1, 0,1, p. refer to the values of deflection, slope and curvature after 6P has
been applied.

Vu_1> Ou—1, pn refer to the corresponding values when only the load P is acting
along the centroidal axis at the ends.

The computations are started from the centre, where the slope is zero. From

equations (61) and (62), dm, and 3p, are evaluated for each of the elements.

The deflected shape of the panel can be traced using (63) and (64). If y, at

the right end is zero, then the guess value for 8P (made in (v)) is correct.
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(viii) If the guess value for 8P is not correct, then steps (v) to (vii) are repeated
(using Newton-Raphson Method) with improved values of 3 P, such that the y,
misclose at the right support is zero.

(ix) A further deflection can now be applied and steps (v) to (v111) are repeated.
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Notation

length of the plate in the direction of applied stress.

amplitude of buckling wave.

initial imperfection in plate.

area of weld affected zone in tension.

width of plate.

width of plate panel in the idealised model.
3(1—v?) (A0>2

aconstant = ———| —| .

16 t

depth of stiffener.

Er?/12(1 — V3.

eccentricity of applied load.

modulus of elasticity of the material of plate and stiffener.

uniform axial displacement in the x direction.

contraction in the y direction due to applied stress o,.

longitudinal force in the flange.

residual shrinkage force.

second moment of area of the idealised model.

number of elements along the length of the panel.

a constant (in the expression for critical load of plates).

a constant (U,/A4?).

secant effective width due to residual shrinkage force.

secant effective width of plate.

length of panel.

magnification ratio 4/A,.

the value of ‘'m’ when plate deforms due to welding.

axial force in the panel.

radius of gyration of a stiffener and the associated width of plating about

the centroidal axis.

longitudinal force in the weld affected zone.

half wavelength of buckling.

longitudinal force in the stiffener.

thickness of flange in the stiffened panel.

thickness of flange in the idealised panel.

thickness of stiffener.

thickness of plate.

internal strain energy.

strain energy due to bending.

strain energy due to strain in mid-plane of plate.

displacements in x, y, z directions.
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n

width of plastic zone in plate.

distance of centroid of idealised model.

Poisson’s ratio.

strain due to residual stress.

strain at the junction of plate and stiffener.

longitudinal strain due to applied stress o,.

longitudinal strain beyond the strain at critical stress o,,.
6cr/ E.

strain at the junction of plate and stiffener in the nth element.
initial plate panel imperfection before welding.

increase of plate panel imperfection due to welding.
overall imperfection in the stiffened panel before welding.
overall imperfection in the stiffened panel after welding.
critical load of plate panel.

longitudinal stress at the boundary of the plate.

mean longitudinal stress in the plate.

longitudinal stress applied to the plate in the x direction.
(Ox — Ou)

stress in the stiffener.

transverse stress.

yield point of steel.

bt

b ¢

initial curvature due to A,.

curvature of element n.
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Summary

An approximate solution for the effective widths of simply supported rectangular
plates under uniform axial compression in one direction has been presented. Using
this concept, a unified theory making allowance for initial imperfections and
residual shrinkage force has been derived for stiffened panels under axial compression.
Test results of stiffened plates loaded axially show that the proposed theory
accurately predicts the collapse loads.

Résume

Les auteurs présentent une solution approximative pour déterminer la largeur
effective des plaques rectangulaires simplement appuyées, soumises a une compres-
sion uniforme dans une direction. Partant de cette base, on établit une théorie
générale, tenant compte des déflexions initiales et des contraintes résiduelles, pour
Iétude des panneaux raidis comprimés. Les résultats d’essais entrepris sur des
plaques de ce type montrent que la théorie proposée prédit exactement les charges
de ruine.

Zusammenfassung

Die Autoren entwickeln eine Néherungslosung fiir die Bestimmung der mit-
wirkenden Breite rechteckiger langsgedriickter Platten mit gelenkig gelagerten
Réindern. Diese Grundlage dient der Ableitung einer vereinheitlichten Theorie fiir
die Untersuchung langsversteifter, zentrisch gedriickter Plattenfelder; dabei wird der
Einfluss der anfanglichen Auslenkungen und der Schrumpfspannungen beriick-
sichtigt. Versuche an solchen Plattenfeldern zeigen, dass sich mit der vorgeschlage-
nen Theorie die Traglast genau voraussagen lasst.
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