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Ein Berechnungsverfahren zur Grenztragfihigkeits-Untersuchung
von Platten mittels der Methode der finiten Elemente

Un procédé d’analyse de la charge ultime des dalles moyennant la méthode
des éléments finis

A Procedure for the Evaluation of the Ultimate Load of Plates by the Finite
Element Method

F. FUJII
Wissenschaftlicher Mitarbeiter

T. KAJITA M. NARUOKA
Dozent, Dr.-Ing. Prof., Dr.-Ing.

Universitdt Nagoya, Nagoya, Japan

1. Einleitung

Fiir jedes gegebene Tragsystem gibt es verschiedene Bemessungsmaoglichkeiten.
Daraus ergibt sich die Aufgabe, die Bemessung mit dem minimalen Material-
volumen herauszufinden, die gleichzeitig die Tragsicherheit gewihrleistet.

Die Bemessung nach zuldssigen Spannungen fiihrt manchmal zu unnotig
grossem Materialaufwand, weil die Elastizitdtstheorie die Tragfdhigkeitsreserven des
Gesamtsystemes nicht beriicksichtigen kann. Die nach der Elastizitdatstheorie be-
rechnete Tragfahigkeit ist besonders bei statisch unbestimmten Tragsystemen von
der wirklichen Grenztragfahigkeit weit entfernt. Zur Beurteilung der Tragsicherheit
und Wirtschaftlichkeit ist die Elastizitdtstheorie nicht geeignet.

Aus diesen Griinden erscheint es zweckmaissiger, das Traglastverfahren zur Be-
messung heranzuziehen. Ausserdem ldsst sich damit die Sicherheit eines Tragwerkes
besser erfassen und der Baustoff kann wirtschaftlicher ausgenutzt werden.

Die Tatsache, dass in der Baupraxis mehr als die Hilfte aller Stahlbetonbauteile
in Form von Platten verwendet wird, richtet das Interesse der Ingenieure auf eine
einerseits wirtschaftliche aber andererseits sichere Bemessungsmethode.

Mit dem Auftreten der grossen Rechenanlagen und der Methode der finiten
Elemente ist die Untersuchung des nichtlinearen Tragverhaltens von Stahlbeton-
platten in den letzten Jahren zu einem bedeutenden Forschungsthema geworden.

Mit dem viereckigen Plattenelement mit 3 Freiheitsgraden pro Knotenpunkt
stellten sich J.C. JorrieT und G.M. McNEick [ 9] die Aufgabe, die Auswirkungen von
Betonrissen auf das Verformungsverhalten einer an vier Ecken punktgestiitzten
Quadratplatte unter einer Einzellast in Plattenmitte zu ermitteln.
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G. M. McNEIck [ 6] und [ 7] fithrte mit einem Rechteckelement mit 3 Freiheits-
graden pro Knoten Traglastberechnungen von Stahlbetonplatten mit Randtréagern
durch, indem er die «Diskontinuitit der Neigungswinkel» (Relativverdrehung)
zwischen den Nachbarelementen einfiihrte, um das Forméanderungsverhalten der
Platten im plastischen Zustand zu beschreiben. Unter Verwendung der linearisierten
maximalen-Hauptmomenten-Fliessbedingung zerlegte er diese Relativverdrehung in
zwei Komponenten, die bei weiterer Laststeigerung als neue Unbekannte im
Gleichungssystem angesetzt wurden.

Vorausgesetzt, dass sich die Fliessgelenklinien lings der Elementrinder er-
strecken, berechnete J. BAckLUND [ 8] erfolgreich die obere Grenzlast der Stahl-
betonplatten mit dem gemischten Modell von Herrmann. Im Gleichungssystem hielt
er die Biegemomente auf den Elementrindern fest, auf denen sich die Fliessgelenk-
linien gebildet hatten. Um bei Uberlagerung der gemischten Elementmatrizen die
Kontinuitdtsbedingungen der Neigungswinkel zwischen den Nachbarelementen zu
erfiillen, vernachléssigte er das Auftreten der Relativverdrehung nach der Quer-
schnittserschopfung.

2. Zielsetzung der Arbeit

Die oben erwahnten Fliessgelenklinien bilden den Grundbegriff der Fliessgelenk-
linientheorie, die das iibliche Berechnungsverfahren zur Ermittlung der Grenztrag-
fahigkeit von Stahlbetonplatten darstellt und bereits in einigen europidischen
Lindern Eingang in die Bemessungspraxis gefunden hat. Zwar liefert die Fliess-
gelenklinientheorie stets eine obere Eingrenzungslosung fiir die Grenztragfahigkeit,
aber sie fiihrt hdufig zur auf der sicheren Seite liegenden Bewehrung, weil die Stahl-
betonplatten grossere Tragfahigkeitsreserven (z.B. iiber Gewdlbewirkung) besitzen,
wie die bisher durchgefiihrten Versuche nachweisen. Studien zur Sicherheit und
Wirtschaftlichkeit der Fliessgelenklinientheorie finden sich in [ 2] und [ 3].

Das Ziel der vorliegenden Arbeit besteht darin, die Ideen von G.M. McNeice
und J. Béacklund zu erweitern und die Fliessgelenklinientheorie mittels der Methode
der finiten Elemente zu formulieren. Die Verfolgung der eclastoplastischen Ver-
formungen nach dem Gebrauchszustand bis zum Grenzzustand wird ermdglicht.
Der Forméanderungsmechanismus einer Platte wird, wie in der Fliessgelenklinien-
theorie, vom kinematischen Gesichtspunkt aus beschrieben. Zur Berechnung wird
ein einfaches hybrides Plattenelement ausgewihlt.

3. Voraussetzungen

Die Berechnung wird unter den folgenden Voraussetzungen durchgefiihrt:

Die Fliessgelenklinien erstrecken sich auf den Elementrdndern.

2. Alle Lasten nehmen proportional zueinander und einsinnig stetig bis zum Bruch-
versagen des Systems zu. Es muss also der Steigerungsfaktor AL, fiir den n-ten
Lastschritt gesucht werden.

3. Nachdem das unter Beriicksichtigung des Bewehrungsnetzes berechnete Grenz-

moment Mnpij auf Elementgrenze i-j (Abb. 3/1) erreicht ist, kann bei weiterer

Laststeigerung kein Zuwachs dMnij ertragen werden. Die Bildung der Fliess-

[y
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gelenklinien hidngt nur vom Biegemoment Mnij ab, und der Anteil des Biege-
moments Msij und des Drillmoments Mnsij ist vernachldssigbar klein. Das

giiltige Stoffgesetz auf der Seite i-j ist in Abb. 3/1 dargestellt.

(=>>)

Myp
Bewehrung
Mnij
4
Mnpij |------
se
—>Krimm,
Stoffgesetz auf i-j Abb. 3/1.  Seite i-j und Stoffgesetz.

4. Die Elementgrenze, auf der das Grenzmoment Mnp erreicht wurde, wird bei
weiterer Belastung durch eine Gelenklinie ersetzt, um die sich die Nachbar-
elemente untereinander relativ verdrehen konnen. Das Ersatzmodell verletzt die
Vertriglichkeitsbedingung fiir den Neigungswinkel W, n, aber nicht fiir die Durch-
biegung W. Diese Annahme stiitzt sich auf das pyramidenférmige Durchbiegungs-
geschwindigkeitsfeld aus ebenen Teilflichen einer Platte in der Fliessgelenklinien-
theorie.

5. Die Membranwirkung wird vernachlissigt, und die Durchbiegungen der Platten-
teile sind, verglichen mit den Plattenabmessungen, geniigend klein. Die Platte ist
«schwach» bewehrt und der Schubbruch wird ausgeschlossen. Die Drehfahigkeit
in den Fliessgelenklinien ist geniigend gross, so dass keine Ortlichen Risse
entstehen. ‘

4. Wahl des Plattenelements

Es stehen zahlreiche verschiedene Elementmodelle zur Auswahl. Am geeignet-
sten erweist sich hier das folgende dreieckige hybride Plattenelement:
y
A

e Durchbiegqung W
o Neigungswinkel W.n

Oy = (Mx , My ,Mxy)
On = (Mn],Mn2,Mn3)

Abb.4/1. Freiheitsgrade und
Spannungen des aus-
gewdhlten hybriden

> X Modells.
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Dreieckiges hybrides Gleichgewichtsmodell

Freiheitsgrade
dT =(W1, W2, W3, W, nl, W, n2, W, n3) (1)
Spannungsansatz innerhalb des Elements
Mx
oxy = { My } = konstant (2
Mxy
Verschiebungsansatz auf den Elementrdndern
Wauf 1-2
Wauf 2-3 } = linear verdnderlich auf jedem Elementrand (3)
Wauf 3-1
W, nauf1-2 = W, nl
W, nauf 2-3 = W, n2 } = konstant auf jedem Elementrand (4)
W, n auf 3-1 = W, n3

Beziehung zwischen den Spannungen im Elementinnern und den Knotenverschiebungen

oxy=Sxyd (5
Nach Spannungstransformation erhidlt man
on=_Snd (6)

5. Berechnungsverfahren

Die Last wird in Stufen aufgebracht.

Bei jeder Laststufe werden zwei neue, gegebenfalls ein neuer, Parameter in das
Gleichungssystem eingesetzt, um den Formdnderungsmechanismus einer Platte zu
beschreiben. Die Koeffizientenmatrix des zu Beginn des n-ten Lastschrittes aufzu-
l6senden Gleichungssystems hat im allgemeinen das Aussehen:

Ne Nz
- I S —_——
( W ., Wn ) (wn.Wn")
Ke Kz
Be Bz

ne:Anzahl der Gesamtparameter im
elastischen Zustand

Abb. 5/1. Koeffizientenmatrix des Gleichungssystems fiir n-ten Lastschritt.



EIN BERECHNUNGSVERFAHREN ZUR GRANZTRAGFAHIGKEITS-UNTERSUCHUNG 115
Die Elemente in den Untermatrizen Kz, Be und Bz lassen sich aus den einzelnen

Elementsteifigkeitsmatrizen bestimmen. Zum besseren Verstidndnis wird der Prozess
an einem konkreten Beispiel erldutert.

w6 Wn2Wn3 Wn5 Wn7Wn8 Wn5' Wn5”

P6 0 K35 Ks3
Mn2 0 KriS 0
Mn3 0 K65 0
Mn5 0 00 1 00 )
Mn7 0 0 Ksib
Mn8 0 0 Ks

Ms'| 0 K53  KS54Kr56 0 0 0 K55 0

Mns”| 0 Ks63 0 O O KB4KSSS || 0 KsBB

e Elementsteitigkeitsmatrix
3
&5 [Krij] fir R
!
g [ksii] for s
1]
4 (i,j=1~6)

4

7 Q
gelenkig gelagert

Abb. 5/2. Beispiel fiir den Fall, dass eine Fliessgelenklinie auf einer Innenseite definiert wird.

Abb. 5/2 zeigt ein Beispiel fiir den Fall, dass sich eine Fliessgelenklinie auf
der Innenseite 5 bildet.

Die Knotenverschiebungsvektoren der Elemente R und S lauten nun
df =(W1, W4, W6, W, n2, W, n5', W, n3) (7)
di =(W4, W9, W6, W, n1, W, n8, W, n5"). (8)

Um die Struktur der Gesamtsteifigkeitsmatrix Ke im elastischen Zustand nicht
zu zerstoren, wird der alte Parameter W, nS beibehalten, indem auf der Haupt-
diagonale eine 1 gesetzt wird und die restlichen Zeilen und Spalten mit Nullen auf-
gefiillt werden.

Kz ordnet die Einflusskoeffizienten von W, n5' und W, n5” zu, die den Element-
steifigkeitsmatrizen von R und S zu entnehmen sind. In Be und Bz werden die
Gleichgewichtsbedingungen ldngs der Seite beriicksichtigt:

dMn5 =0 und dMn5" = 0. (9)

Mit steigender Parameteranzahl wichst das Gleichungssystem an. Um bei der
Auflosung des immer grosser werdenden Gleichungssystems Rechenzeit und
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Speicherplatz zu sparen, konnen die alten Parameter auch eliminiert werden. Wird
z.B. der Parameter W, n5 vom Gleichungssystem eliminiert, so wiachst die Koeffi-
zientenmatrix nur um eine Zeile und eine Spalte.

Der Fall, wonach auf einer zu einem eingespannten Plattenrand gehorigen
Elementgrenze eine Fliessgelenklinie entsteht, ist vollig analog zu behandeln, indem
man nur einen neuen Parameter in die Koeffizientenmatrix einfiihrt, weil die Rand-
bedingung auf der Elementgrenze bereits in Ke beriicksichtigt worden ist.

Der Fliessgelenklinientheorie wird eine vereinfachte Fliessbedingung zugrunde-
gelegt, die durch

Mn = Mnp (10)
ausgedriickt wird, wobei

Mn  : Biegemoment entlang einer Fliessgelenklinie, das nach der Transforma-

tionsformel berechnet werden kann.

Mnp :Unter Beriicksichtigung des Bewehrungsnetzes berechnetes Grenz-

moment (s. z.B. S. 209-213 in [ 3]).

Es wird hier dieselbe einachsige Fliessbedingung als Bestimmungsgleichung fir den
Belastungsmultiplikator A" verwendet:

Mnn-1 + A"dMnn = Mnp (11)

mit Mnn-1: Spannungszustand am Ende des (n — 1)-ten Lastschrittes auf der be-
trachteten Elementgrenze, auf der noch keine Fliessgelenklinie definiert
worden ist.

dMnn : Spannungszuwachs auf der Elementgrenze, der mit der Koeffizienten-

matrix in Abb. 5/1, dem Einheitslastvektor und der Beziehung (6) zu
berechnen ist.

Es muss dann die Elementgrenze gesucht werden, die den Minimumwert A%;.
ergibt. Anschliessend wird jeder Zuwachs (Verschiebungs- und Spannungszuwachs)
mit dem Faktor AL;, verkleinert. Eine Fliessgelenklinie wird auf der Seite mit
Amin definiert. Die Berechnung wird fortgesetzt, bis das Gleichungssystem singuldr
wird oder bis der Losungsvektor gross von hoherer Ordnung wird. Der Grenzlast-
faktor wird dann durch Aufsummierung der Steigerungsfaktoren der einzelnen Last-
schritte ermittelt.

Fiir das beschriebene Verfahren wurde ein FORTRAN-Programm erstellt. Fiir
die elektronischen Berechnungen wurden die Einrichtungen des Rechenzentrums
der Universitidt Nagoya benutzt.

Um den Rechenaufwand gering zu halten, werden in der folgenden Diskussion
nur die isotropen und schichtweise isotropen Stahlbetonplatten betrachtet. Das
Grenzmoment wird mit Mp bezeichnet.

6. Numerische Beispiele
6-1. Allseitig frei drehbar gestiitzte Quadratplatte

Die Fliessgelenklinienfigur fiir eine allseitig frei drehbar gestiitzte Quadratplatte
unter Gleichlast oder Einzellast in Plattenmitte besteht aus Fliessgelenklinien in
den Diagonalen. Die Grenzlast betrdgt bzw.

g =24.00
P= 800
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Zu bemerken ist, dass die Grenzlastintensitit g =24.00 in diesem Fall eine ein-
deutige Losung im Traglastverfahren ist.

Elementunter-
teilung A1 A2 A3
Element-
anzahl
2 8 18
A4 A5 A6
32 50 72

Abb. 6/1. Verfeinerung der Elementunterteilung fiir die Konvergenzuntersuchung an einer allseitig frei
drehbar gestiitzten Quadratplatte.

Fiir die Konvergenzuntersuchung wird ein Achtel der Plattenfliche in 2, 8, 18,
32, 50 und 72 Elemente unterteilt (Abb. 6/1).

In Abb. 6/2 sind die gewonnenen Grenzlastintensitditen und die zugehorigen
Fliessgelenklinienfiguren bei jeder Elementunterteilung dargestellt, aus denen die
Konvergenz gegen g = 24.00 abgelesen werden kann. Fiir Einzellast in Plattenmitte
kann gute Ubereinstimmung mit der Fliessgelenklinienlésung P = 8.000 sogar bei
der grobsten Elementunterteilung Al erwartet werden, falls der Bruchmechanismus
im Elementraster dem in der Fliessgelenklinientheorie gleich ist (Abb. 6/3). In den
Fliessgelenklinienfiguren bezeichnen die dickeren Linien positive Fliessgelenklinien.

e a >

s

§=2133 A1l 2327 A2 2367 A3

2381 A4 2388 A5 23.92 A6

Abb. 6/2. Fliessgelenklinienfigur fiir eine allseitig frei drehbar gestiitzte Quadratplatte unter Gleichlast
Grenzlastintensitit: g = g a?/ Mp.
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P=8.000 A1l 8000 A2 8000 A3

Abb. 6/3.
Fliessgelenklinienfigur fiir
eine allseitig frei drehbar
gestiitzte  Quadratplatte
unter einer Einzellast in
Plattenmitte  Grenzlast:

8.000 A4 8.000 A5 8.000 A6 P =P/Mp.

Die Abweichung der berechneten Grenzlastintensitidten von der einzigen Losung
q =24.00 wird auf die Aufteilung der verteilten Belastung auf die kinematisch
dquivalenten Knotenkréfte zuriickgefiihrt. Zu ersehen ist, dass die Grenzlastinten-
sitdt von der unteren Seite her gegen g = 24.00 konvergiert.

Dieselbe Aufgabe wurde bereits von J. BACKLUND [8] mit dem gemischten
Modell von Herrmann untersucht. Sein Ergebnis wird in Abb. 6/4, verglichen mit
der Fliessgelenklinienfigur nach der vorliegenden Arbeit, dargestellt. Der Vergleich
der beiden Fliessgelenklinienfiguren in jedem Laststadium zeigt, abgesehen vom
Grenzzustand, keine Ubereinstimmung. Der Grund dafiir scheint in den ver-
wendeten Elementmodellen zu liegen. Zahlreiche Versuchsberichte [ 12] fiir Stahl-
betonplatten sagen aber aus, dass die Fliessgelenklinienfigur in der vorliegenden
Arbeit wirklichkeitsnaher die Rissverteilung in jedem Laststadium simuliert.

J.Backlund
(8)

nstep=2 4 8

Abb. 6/4. Vergleich mit
der Fliessgelenklinienfigur

q=2117 2218 23.81 in [8].
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Die Last-Mittendurchbiegungskurven sind in dimensionloser Form in Abb. 6/5
aufgetragen. :

P q
h A
8.4 24.- o, "
;m’, ’
d /
// "‘
16. - S
4 [
) //,,' o AG
8 ; ® AIO
2 ) /,’ o A2
. / _ B
0 i |
> W: WD
X 0.2 0.3 Mp aZ

Abb. 6/5. Last-Mittendurchbiegungskurven.

6-2. Pilzdecke mit im Quadratnetz angeordneten Sdulen unter
gleichformig verteilter Belastung

Als kinematisch zulédssige Fliessgelenklinienfigur untersuchte A. Sawczuk [ 3] die
in Abb. 6/6 a bis ¢ mit den zugehorigen Grenzlastintensititen dargestellten drei
verschiedenen Moglichkeiten. Die breiten gestrichelten Linien bezeichnen negative
Fliessgelenklinien.

e———-QqQ—

Q A St et TS |
AY / [} ! 1
T AN / [ ] I
a \|/ 1 ! 1
7| 1 1 1
Ve N\ 1 : :

/ N\ !
< x R bt ST B
N\ /7 N\ 1 | ]
N /7 I | |
\|/ / ! | 1
7N 7N\ ’ ] [ 1
7’ \\ // N ,[ \\ ,I \ ! ! |
e \ 7Y O~ - ~.\ ] | [}
v v v é ~¥-~ . Y SO SpUPO SN MY

a 24.00 b 3408 c 16.00

Abb. 6/6. Drei kinematisch zuldssige Fliessgelenklinienfiguren von A. Sawczuk [ 3].

Unter Beriicksichtigung der Randbedingungen wird die Berechnung bei der
Elementunterteilung AS durchgefiihrt. Die in Abb. 6/7 errechnete Bruchart ergibt
die gleiche Grenzlast g = 16.00 wie die von Sawczuk in Abb. 6/6 c. Es treten aber
ausserdem die Fliessgelenklinien wie in Abb. 6/6a und b auf.
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6-3. Vergleich mit dem Versuchsergebnis in [ 11]

Es wird in diesem Beispiel der Vergleich mit dem Versuchsergebnis in [11] vor-
genommen, um zu sehen, wie wirklichkeitsnahe das vorgeschlagene Verfahren ein
Rissbild beschreiben kann. Das Versuchsmodell ist eine an zwei gegeniiberliegenden
Seiten eingespannte, an den beiden anderen Seiten frei drehbar gestiitzte Rechteck-
platte unter gleichférmig verteilter Belastung.

gelenkig . gelagert

L.:‘: Plc;ttenseiten: a=7-0" b=5-0" o
6| Plattendicke : 3.25in. =
{| Plattensteifigkeit: 2.0+10% b in. »
%: Querdehnzahl des Betons : 0.15 5

i Mp=250Q Ibin./in. |-
b - ap_ q09 -

. “Mp i
| TN e N TN 7 A | N ap— -

Abb. 6/8. Plattenabmessungen, Stoffgesetz und Elementunterteilung.

Abb. 6/9. Gegeniiberstellung des experimentellen und des rechnerischen Bruchbildes.
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Die in [ 11] angegebenen Plattenabmessungen sind in Abb. 6/8 mit dem in der
vorliegenden Arbeit idealisierten Stoffgesetz wiedergegeben. Ein Viertel der Platten-
flache wird in 48 Elemente unterteilt.

Das Foto des Rissbildes im Versuch und das aus der Rechnung gewonnene
Bruchbild, aus dem die Grenzlastintensitat

g =48.90
folgt, sind in Abb. 6/9 gegeniibergestellt. Zu erkennen ist, dass das rechnerische

Bruchbild das wirkliche Rissbild recht gut simuliert. Die FliessgelenklinienlGsung
fiir diesen Fall ist

_ q=47.52,
mit der Fliessgelenklinienfigur nach Abb. 6/10.

y=o.7107-‘zl |

b5
y

|

Abb. 6/10. Fliessgelenklinienfigur fiir b/a = 0.7143 in der Fliessgelenklinientheorie.

7. Schluibemerkungen

Mit dem in der vorliegenden Arbeit vorgeschlagenen Berechnungsverfahren ldsst
sich der vollstindige Bruchmechanismus eines Gesamtsystems nach einem kiirzeren
Rechenprozess erreichen als bei bisherigen Untersuchungen, die das Tragverhalten
der Stahlbetonplatten im gerissenen Zustand, unter Beriicksichtigung der Einfliisse
der Rissbildung auf die Herabminderung der Plattensteifigkeit bis zum Bruch-
versagen verfolgen.

Obgleich es zur verschlechterten Approximation der Last-Verschiebungskurven
fiihrt, stimmen die errechneten Grenztragfahigkeiten recht gut mit den Fliessgelenk-
linienl6sungen iiberein.

Es miissen in der Fliessgelenklinientheorie verschiedene mogliche Fliess-
mechanismen untersucht werden, um eine moglichst niedrige Grenztraglast zu
finden. Das oben entwickelte Berechnungsverfahren enthebt uns der Miihe, kinema-
tisch zuldssige Bruchfiguren vorzugeben und sie durch einige Parameter zu defi-
nieren, weil ein Bruchmechanismus im Elementnetz automatisch hergestellt wird.
Fiir den Fall von Platten beliebiger Gestalt und mit beliebigen Auflagerbedin-
gungen wird dies besonders vorteilhaft, weil die Methode der finiten Elemente all-
gemeine Geometrie und Randbedingungen des Tragwerkes leicht erfassen kann.
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8. Bezeichnungen

A" Belastungsmultiplikator einer Seite fiir n-ten Lastschritt.
min Steigerungsfaktor des Gesamtsystems fiir n-ten Lastschritt.
Mp Grenzmoment einer isotrop und schichtweise isotrop bewehrten Platte.
Mnp Grenzmoment entlang den Fliessgelenklinien.
Mnpij Grenzmoment auf Seite i-j.
Mnij Biegemoment auf Seite i-j.
dMnij Spannungszuwachs auf Seite i-j.
Msij Biegemoment auf Seite i-j.
Mnsij Drillmoment auf Seite i-j.
d Knotenverschiebungsvektor des Plattenelements.
oxy Spannungen (M x, My, Mxy) innerhalb des Elements.
on Transformierte Spannungen (Mnl, Mn2, Mn3) innerhalb des Elements.
Sxy Verkniipfungsmatrix zwischen d und oxy.
Sn Verkniipfungsmatrix zwischen d und on.

10.

I1.

12.

13.
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Zusammenfassung

Die vorliegende Arbeit versucht, mit dem hybriden Gleichgewichtsmodell ein

Berechnungsverfahren zur Grenztraglastuntersuchung von querbelasteten Stahl-
betonplatten zu entwickeln. Unter der Voraussetzung, dass der riumliche Grenz-
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zustand einer Platte auf ein zweidimensionales Biegeproblem reduziert werden darf,
wird der Bruchmechanismus in einer relativ kurzer Rechenzeit erreicht. Im Gegen-
satz zur iiblichen Fliessgelenklinientheorie muss hier die Bruchfigur nicht vor-
gegeben werden, sondern sie wird automatisch hergestellt. Numerische Ergebnisse
werden mit den Fliessgelenklinienlésungen verglichen.

Summary

The present paper tries to determine by the finite element method the ultimate
load of transversally loaded reinforced concrete plates. The authors intend by aid
of the hybrid equilibrium model an analysis of the ultimate load, taking into account
the elastoplastic deformations of the plates up to the ultimate mechanism. The
numerical results are compared with the solutions obtained by the yield line method.

Résumé

L’article essaie de déterminer au moyen de la méthode des éléments finis
la charge ultime de dalles en béton armé chargées transversalement. A I'aide du
modéle hybride d’équilibre, les auteurs développent un procédé d’analyse de
la charge limite, en considérant les déformations élastoplastiques des dalles jusqu’au
mécanisme de rupture. Les résultats numériques sont comparés aux solutions
obtenues par la méthode des lignes de rupture.
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