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Analysis of Metal Plate-Stringer-Diaphragm Bridge Decks

Analyse de tabliers métalliques renforcés par entretoises longitudinales et
transversales

Berechnung von Briickenfahrbahnen aus Metallplatten mit Léings- und Quer-
verstrebungen

D.1. DEAN R.R. AVENT

Professor of Civil Engineering, North Carolina Assistant Professor, Civil Engineering, Georgia
State University, Raleigh, North Carolina U.S.A. Institute of Technology Atlanta, Georgia U.S.A.

Introduction

The object of this paper is the derivation of formulas for the analysis of deck
systems constructed of thin plates reinforced and composite with a set of equally
spaced longitudinal stringers which are braced by a set of equally spaced transverse
diaphragms (see Fig. 1). The formulas will be applicable for the design of cellular
decks-systems with both top and bottom plates — as well as orthotropic decks-
systems with a top plate only. Specifically, the formulas are for the exact
elastic analysis of those systems that 1) are proportioned and detailed so that all

Fig. 1, Thin Element Plate-Stringer-Diaphragm Deck.



46 D.L. DEAN - R.R. AVENT

components have negligible out-of-plane stiffness and 2) are simply supported at
the ends. Thus, the linear superposition of several solutions is required to analyze
decks that are continuous over intermediate supports.

The thin element plate-stringer-diaphragm deck in either cellular or orthotropic
form is one of the most efficient load carrying systems employed by designers
today and the literature includes many references to recommended methods of
analysis. However, none of the existing methods are rationally based even though
some are rather complex and require voluminous computations. The present methods
of analysis fall into three categories, 1) use of totally empirical design formulas
to compute an “effective flange width” and the distribution of loads between the
resulting “T” beam stringers (8); 2) use of a “smearing out” technique to replace
the mixed discrete-continuous system by an “equivalent” (usually orthotropic) con-
tinuum (5, 9) and 3) use of a discrete or latticed system to approximate the
real system through a finite difference or finite element approach (1, 7).

The “equivalent continuum” method is attractive in that a single continuum
solution can be used for preliminary design studies of a variety of discrete-con-
tinuous deck systems; however, the steps of selecting the substitute continuum
and interpreting the results for the real system lack rational bases and introduce
significant errors for coarse lattices and those closely stiffened decks with relatively
stiff ribs. Also, the solution for the approximate continuous model is often more
difficult and less elegant than the solution for the exact discrete-continuous model.

Of the various substitute lattice approaches the finite element method is currently
the most popular and canned programs are available for office use; however, their
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. Furthermore
the state of the art of error analysis for this method is not sufficiently well
developed to insure against errors which are orders of magnitude larger than pre-
dicted. One example of such a situation is the case of a deck with stiff ribs and
a flexible plate so that the higher harmonics contribute significantly to the
deflection field. In such a case it is extremely difficult to get a meaningful
stress analysis via a finite element approach.

The concept of deriving exact formulas for the elastic analysis of reinforced
bridge decks is not entirely new as both the micro discrete field approach (i.e.
use of difference equation models) (2) and the macro discrete field approach (i.c.
use of summation equation models) (3, 4) have been used for the rational analysis
of ribbed plates or decks composite with supporting stringers. This paper extends
the use of the macro approach to thin plates supported by both stringers and
diaphragms and thus covers the more general concept of an orthotropic deck.

It is proposed that the exact elastic analysis presented herein be used for final
design review. (While the formulas may be considered complex for manual com-
putations, they can be conveniently employed through the use of a small
computer or one of the several programmable electronic desk calculators that have
recently come on the market). A secondary goal is to make available a standard
analysis for use in studying existing and proposed approximate formulas in order
to establish range of applicability, magnitude of errors, etc. This should obviate
the unsatisfactory practice of making judgements based upon comparison of one
empirical method with another empirical method.
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The major results are numerically illustrated through use of the formulas for
the analysis of realistic structures. One bridge is also analyzed by a finite element
method for comparative purposes.

Mathematical Model

A macro discrete field approach (3) is used to find the in-plane interactive
forces, H(r, y), between the stringers and the plate and the out-of-plane interactive
forces, R{r, s), between the stringers and the diaphragms (see Fig. 1). The macro
approach is dictated by the fact that an analysis of the entire top plate is tractable
for a general loading due to the simple end support conditions at y=0 and 5.
A rational micro discrete field approach, on the other hand, is not possible as
it requires the general boundary solution for a typical rectangular plate element,
between two successive stringers and diaphragms, which is unavailable.

The solutions for continuous and discrete deflection or force fields are found
in terms of infinite and finite sinusoidal series, respectively. For example the
unknown horizontal interactive forces between the top of the stringers and the
plate is expressed as follows:

H(r Z & Sin A2 cos &y (1)

”MS

knr

Z H (v, y) sin 2% cos &,y dy (2)

r=1
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The continuous plate deflections can be found in terms of the unknown
stringer plate interactive forces as follows:

u(x,y) = i [ H{owm) K™ (x,y, 5 0,m)dn (3)

=1
-1

5

v(x,y)=1"(x,y) + H(em) K?(x, y, 5 o 1)dn) (4)

a=1

QL—-—?U_‘

in which K™ and K" are the kernel functions for u and v respectively due to a
unit inpulse load in the y direction on the plate with simple edge supports
(see Egs. A-2-5) and " and ¢" are the homogeneous solutions due to the side
boundary displacements v*(5, y) (see Eqs. A-8-13).

Substitution of Eqs. A-2, A-3, A-8, and A-9 and use of the relation given
in Eq. 2, gives the following series for the continuous plate displacements in terms
of the boundary displacement coefficients -17,.1. and the interactive force coefficients
H,;:

A R * o
ulx,y)= 3 Y G ¢ V;A4;+2H; A;;) cos ax sin &y ()
i=1i=0



48 D.L. DEAN - R.R. AVENT
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in which H;; is sine wise cxchc haying a pgrlod of 2m, with respect to the first
index and thc coefficients A;;, B;; A and B;; are given by Egs. A-4, A-5, A-12

ij ij
and A-7 respectively. The stringer hne dlsplacements v(r,y) can be expressed as a

mixed finite-infinite series thru use of Eq. A-17 with the following results:
v(r,y) = Z Z Vi B,q + Hy; B,;] sin kr cos &, Bl (7)

in which By, and Bj; are given by Eqs. A-23, and A-24 respectively.

The stringer and diaphragm deflections depend upon the out-of-plane plate
loads, N(r,y), which are applied along the stringer lines, and the out-of-plane
stringer-diaphragm interactive node forces, R(r,s), as well as the in-plane plate-
stringer interactive forces H(r,y). The series expression for these additional
quantities are:

w m-—1
N(ry)=3Y Y Ny sm"—”smay (8)
i=1 k=1
m~1 b
Ny=ws 3 | N(ry)sin ¥ sin a;y dy (9)
r=1o0
n—1m-1
R(rs)= % 3 Ry sin%rsin i (10)
I=1 k=1
n—1m-1
Ru=m Y Y R(rs)sin %= sin &= (11)
s=1 r=1

The series for the in-plane and out-of-plane displacements at the tops of the
interior stringers can now be written as follows:

: w m—1 %
v(ry)= > ¥ [51 N,;— B; Hy; "D ;i Ry;] sin 82 cos &y (12)
i=1 k=1
e * id n x 1o kur
w(rny)= 3 [A; Ny, —D; Hy; —3 A; Ry;] sin %2F sin &y (13)
j=1 k=1

in which r=1,(1), m—1,0<y<ph, ;ij, §j and Sj are given by Eq. A-27 and Ry;
is sinewise cyclic on j with a period of 2n ie. Ry =Ry 25p41= — Ry 25u—; for
integer values of J.

The double finite series for the out-of-plane stringer node deflections is found
by use of Eq. A-17 as follows:

n—1m—1
=Y Y [W—Wd — 4, Ry] sin 7 sin 22 (14)

i=1 k=1

in whichr=1,(1), m— 1,5 =0, (1), n, 4, is given by Eq. A-29
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J= =
+ o0
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J==-mw

The out-of-plane node deflections of the diaphragms depend upon the out-of-
plane side boundary deflections as well as the stringer-diaphragm interactive forces.

(W$ + W) sin &y (17)
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w(a,y) =
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w(r,s)= Y Z [C. Wil + Af Ry] sin ¥ sin i (18)

I1=1 k=1

in which r=1,(1), m—1, s=0, (1), n, A{ is the discrete kernel function coefficient
for a typical diaphragm, similar to Eq. A-29 for stringers, i.e.

. 1 o3 — G,
A= @ T

12B4™
and B? equals the flexural rigidity of the diaphragm.

oy =1~ cos*r (19a,b)

W;c,anH (20a)

J=—w

B w¥  for k odd
Wi = (20b)
W4 for k even

m—1" m—1
1= Y Gsin%;, 1-22= Y Cysinlw (21a,b)

k=1,3,.. k=24,..
C,=Zcotk ' (21¢)

The relations developed thus far are sufficient for the analysis of a deck k system
or orthotropic panel with known side boundary displacements, e.g. V,U ij =0;
however for the typical bridge deck one usually has to determine the side boundary
displacements so as to establish compatibility with the boundary stringers, which
have physical properties denoted by B, ¢’ and p® and may be loaded as follows:

N(my) =

J

18

(P% + P¥)sin &y (22)

1

1l

The compatibility of boundary stringer and deck boundary displacements can be
established by expressing the boundary stringer displacements in terms of their
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applied loads plus the loads transferred to them by deck action. For example,
consider the stringer at r =0

b

0(0,y) = | [P*(0,n) K;** (y,m) + T* (0,m) Kp¥ (y,n)]dn (23)
b
w(0,y)=[ [P*(0.n) K" (y,m) + T (O,m) K3 (y,m)]dn (24)
in which the coefficients of K}?, K}*, K%?, and K% are as given by Eq. A-27 except

that all the interior strmger descrlptors B, & and Jp» are replaced by boundary
stringer descriptors, B?, ¢’ and p® to get Ab B® and D%. The quantities P*(0, ) and
T' (0,m) represent total out-of-plane or transverse and in-plane or longitudinal load
components applied to the boundary stringer from all effects. That s,

POY)=NOY+ T T R@HI-H30—1H 2s)
T05) = (0)+ T T Hlewn) KDy fon)dn (26)

or carrying out the indicated operations

® m—1
PO, y)= > [(P>+P¥)+% > CeRy]sindy (27)
j=1 k=1
[) m—1
T (0,y)= 3 [(TS V5 + T VYF)+ Y By Hy]cosay (28)
Jj=1 k=1

in which T% and T% are given by Eq. A-15 and By; is given by Eq. A-24c.

All the necessary relations are now available to complete the mathematical
model needed to solve for Hy;, Ry, V3 (or V¥°) and W3 (or W%) as follows:
1) compatibility of in-plane stringer line displacements between the plate and the
stringer tops is obtained by equating Eqs. 7 and 12; 2) compatibility of out-of-plane
node displacements between the stringers and the diaphragms is obtained by
equating Egs. 14 and 18; 3) compatibility of in-plane boundary displacements is
obtained by substituting Eqs. 27 and 28 into Eq. 23; and 4) compatibility of out-
of-plane boundary displacements is obtained by substituting Eqs. 27 and 28 into
Eq. 24. The resulting model (shown for symmetric component of boundary dis-
placements) is:

*. n 2y 4 n $ =
* %
Y Dogpri Hy agner + (A + A)Ry + CY, Wiinsr= > Azguet Ny 2gnst (30)
7 7 7
% _ * * *
; [BI; By; ij+%?,Dl} C, Rkj]-|~[BI} T%— 1] V§-= —DI;- P§- (31)

* *
Y [D% By; Hy; +%gA Cy Ryl + D” TSV —ws=— A% P (32)
k
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in which J = — o0, (1), + oo with convergence about J =0 and k=1, (2), m— 1.
To solve for antisymmetric boundary displacements replace all $ quantities by the
analogous a/s quantities and use k =2, (2), m — 1. It is apparent that this model
cannot be dealt with as a set of algebraic equations due to inconformability —
ie. Eq. 29 is for kj indexed quantities, Eq. 30 is for kI indexed quantities and
Egs. 31 and 32 are for j indexed quantities — and the fact that some terms are
sums; however, as will be shown in subsequent sections, the simaltaneous equations
can be solved by successive elimination of unknowns.

Solution for Simple Side Supports

For the case of a panel or deck with known side boundary deflections, V¥
(and/or V%) and W* (and/or W%"), Eqs. 31 and 32 are not needed and one can
solve Eqgs. 29 and 30 for H,; and Ry, in terms of Ny, V% and W* by using Eq. 29
to eliminate H,; from Eq. 30 which is then solved for Ry For example, consider
the title case of simple side supports, i.e. V&= V% =WS$=W% =0, such as an
orthotropic or sandwich panel with relatively rigid supports along all four edges.
The exact solution is:

%
BN —E Ry
kj= ¥
By; + B;
Wi — A%
Rkl = d n 4R
Al + Ak - -EA kil

(33)

(34)

% %
in which B; and D; are given by Eq. A-27; 4, and Aj are given by Eqgs. A-29
and 20; B, is given by Eq. A-24; W¥' is given by Eq. 15; Ry; is sinewise cyclic
on j with a period of 2n; and the two special terms A%, and A%, are:

%k %
g (D21n+1)2 Nk, 2Jn+1 ~ (Dl)2 Nkl

Ail - Z * ~ ¥ (353.,]3)
J=—-o Bky21n+l+BZJn+l Bkl+Bl
+ o A 2 5 )2
— D D
Ail - Z ( 2Jn+l) ~ ( l) (363, b)

E >~ 2
J=-o By 21+ Bajmsy  Bu+ B

It should be noted that for the simply supported panel each “k” (first index)
load harmonic yields a single “k” solution harmonic but the effect of a j (second
index) loading harmonic is different due to action of the diaphragms; i.e. each “j”
loading harmonic yields 1) a single finite series “I” solution harmonic, whose relation
to “j” is through [=j—2Jn or 2Jn—j(l<n) and 2) an infinite set of “j” solution
harmonics related to j through j'=2Jn+j.

An accurate approximate solution for Hy; and Ry, which contains only algebraic
terms, can be written by consistently truncating all the transformation series after
the first term. (e.g. use J =0 only so that Egs. 35b and 36b are used instead of

35a and 26a). The accuracy of such a rational approximation increases as the
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numbers of stringers, m — 1, and diaphragms, n — 1, increases. The result of this
simplification of Egs. 33 and 34 is:

14
) (_—) (Ny—2Ry)

ij R ﬁzk] (37)
Rkl - _2 levzkl_l_ —2 (38)
L+ Y [ = J
il
2 ja\2
v BB () T )
bB
o ey (o)

These approximate formulas for Hy; and Ry can be evaluated manually in less
than 10 minutes.

Numerical Example 1

In order to illustrate the numerical use of the above solutions for a simply
supported thin element plate-stringer-diaphragm system, consider a panel (similar
to Fig. 1 except simply supported, on the sides as well as the ends) with physical
data as follows:

a=144 in.; b=72 in,m=12, n=4, t=.125, pn=.3, E=29,000 ksi, B=3 E kip/in.?,
e=20 in., p?=% in.2; and B*=%3 E kip. in.2. The out-of-plane stringer line load
is harmomc ie. N11 01 k1p/1n All other Ny; =0 or N{(r, y) (.01) sin & sin 3
Some of the intermediate results are: A1 = 5.7080 in.*/kip, 31 = 05796 in.?/kip,
D1 = 49812 in.2/kip (Eq. A-27); WY, =.05708 in. (Eq. 15a); A; =.3173 in./kip
(Eq. A-29) or A~ ~.3171 in./kip (Eq. A-28b); A$=.95134 in./kip (Eq. 19); K=3983.5
kip/in. (Eq. A-1); B; ; = .14466 in.? /kip (Eq. A-5); B ; = .012770 in.? /kip (Eq. A-23c)
or By s = 01205 in.*/kip (Eq. A-23b); A%, = 03508 in. (Eq. 35a): 4, = 35096
in.2/kip (Eq. 36a) or A%, ~3.5081 in.?/kip (Eq. 36b); R, =.0204897 kip. Other
Ry = 0(Eq.34)or R, ~ .0202kip (Eq. 38);and H,, = 062410 kip/in., H, , = 000851
Kip/in., H, o = — 000590 kip/in, Hy,s=.000268 kip/in. and H,,, = — 000219
kip/in. (Eq. 33) or H,,; ~.06316 kip/in. (Eq. 37). These intermediate results were
used in the deflection field equations with the following results (inch units): The
out-of-plane node deflections (Eq. 19 with W4, = 0) are

w(r,s) = (.019493) sin % sin %.
The out-of-plane stringer line deflections (Eq. 13) are

w(r,y)=(019495) sin % [sin £+.000075 sin 7 — .000030 sin 2£+.000004 sin 132
— 000003 sin 132 + ..
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The in-plane stringer line deflections (Eq. 12 or Eq. 7) with ¥, ;=0) are:

v(r,y) = (7.9695 x 10*) sin ¥ [cos B+ .00081 cos T2
—.00045 cos 22 +.00012 cos 152 — 00009 cos 152+ ...]

and the continuous in-plane plate deflections (Eq. 6 with ¥, ;= 0)are:

v(x,y) = (7.5238 x 107%) sin Z[cos ¥ + .00025 cos 7 + .00011 cos 22 + ...]
—(.1463 x 107%) sin 232 cos 2 4 (.12408 x 10™*) sin 23™ cos B + ...

Note that convergence is rapid even for this case of a relatively small number of
diaphragms, n = 4. '

Analysis of Cellular Decks

As mentioned in the introduction, formulas for the exact elastic analysis of an
orthotropic deck can also be wused for the analysis of cellular decks that are
symmetric about the middle plane, i.e. the top and bottom plates have equal
thicknesses. All that is required is to modify the input data for an orthotropic
deck so as to produce a condition of anti-symmetry with respect to the middle plane
as follows: 1) use only the antisymmetric component of the top and bottom
stringer line loads (the symmetric component only squeezes the stringers and can
be ignored); 2) use one half the actual flexural rigidity of the stringers B and B,
and diaphragms, B?; and 3) use radius of gyration, p and p® equal to zero (or if
stringer representation is flexural rigidity and cross sectional area use an area
approaching infinity).

Numerical Example 2

In order to briefly illustrate modification of data for the analysis of a cellular
planel, consider the investigation of a cellular design alternative to example 1 using
the same amount of material; i.e., same stringers and diaphragms but two 1/16 in.
plates instead of a single 1/8 in. plate. For this case, the input data are a = 144 in.,
b=72in, m=12, n=4, t=.0625 in. un=.3, E=29000 ksi, B=Z E kip/in.%
e=20in, p* =0, B*=2§ E kip/in.? and N,; =.005 kip/in. (other N;;=0). The
calculations are too similar to those for Example 1 to warrant showing detailed
results, but a design comparison can be made by showing the out-of-plane node
deflections as follows:

w(r,s) = (01205) sin % sin %=

That is, the cellular construction gives a 62% stiffer panel with the same amount of
material.
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Solution for Flexible Side Supports

The most general case considered in this paper is that of an orthotropic deck
with flexible side supports. The two identical boundary stringers are of an arbitrary
size and shape with arbitrary loads. The analysis allows for possibility that the
boundary stringers are also composite with the deck plate, but detailing for non-
composite action can be dealt with by setting the boundary stringer eccentricity,
e®, equal to zero. For this gencral case, one must solve Eqs. 29-32 for Hy;, Ry,
VS (or V9<)and W% (or W%") in terms of the load coefficients Ny; and P% (or P%*)
This exact elastic model can be formally reduced to a single equation with one
unknown by successive elimination as was done with the two equation model for
the simple side support case; however, the results for the four equation model are
unwieldy and many of the coefficients are sums of obscure physical significance.
(Even in the simpler case of simultaneous algebraic equations, it is seldom practical
to derive an explicit formula solution for a model with more than three equations).
For this model, convergence of the series summed on J is very rapid and indications
are that computers, or programmable calculators will normally be used to get
numerical results; thus, an alternate procedure is recommended as follows:

1. Truncate the series on Hy; and W in Eq. 30 after one term (i.e. use J =0 only)
and solve Egs. 29 and 30 simultaneously for Hy and Ry (I <n) in terms of
Ny, VS (or V%) and W3 (or W),

2. Substitute the results of step 1 into Eqs. 31 and 32 solve the resulting algebraic

equation for VS (or V%) and W3 (or W9). :

Substitute results of step 2 into the results of step 1 to find Hy, and Ry,.

4. Use the cyclic properties of R,; (e.g. Ry = Ry 2,11 =Ry 1_2,) to solve Egs. 29
and 31 for the higher harmonics of H,; and V% (j>n) and then substitute
into Eq. 32 to find the higher harmonics of W% (That is, first use Eq. 29 to
eliminate H,; from Eq. 31 and solve for V} (or V%*). Then find H;; from Eq. 29
and, in turn, W? from Eq. 32).

5. If unusual accuracy is required, retain additional terms in the summations of
H,; and W% in Eq. 30 (J = —2 to + 2 is sufficient), solve for improved results
for Ry; and repeat step 4. (In most cases, the results obtained in step 4 on the
initial cycle are sufficiently accurate so that step 5 can be omitted).

This completes the algorithm for the general case of flexible side supports.
Note that the effects of the side boundary deflections invalidate the one-to-one
relation between the “k” loading and solution harmonics that existed for the
case of simple side supports. For example, a single “k odd” loading harmonic
will normally cause a deflection field with series coefficients containing all possible
k odd harmonics. The relation between the “j” (second index) loading and solution
harmonics is as described in the section on simple side supports.

8

Numerical Example 3

In order to illustrate numerical use of the general bridge deck formulas under
loading conditions which place a severe test on the convergence of the solution
series, consider a bridge with the following physical parameters and loading:
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a=360 in, b=720 in.; m=12; n=4; t=.375 in.; p=.29; E=29000 ksi;
B=PB"=10.2681 x 10° kip in.2; e=¢€"=14.4286 in, p=p"=35807 in. and
B?=8.41 x 10° kip in.2. The loading consists of two symmetrically placed 20 kip
concentrated loads, ie. N(r,y)=2085+38]) 8(y—3%) or Ny=3% (-1) = =
(— 1)%=* cos kz(k and j odd only) and P?% = P%* = 0. The combination of a relatively
small number of stringers and dlaphragms and loads of -infinite intensity tend to
show a harmonic analysis in a poor light due to slow convergence; however, as
the results below indicate, even for this case the convergence is quite good,
yielding practical results after only a small numbers of terms.

Some of the intermediate results are:

K =11,873. kip/in. (Eq. A-1); Al = 268.68 in.%/kip, Bl = 1.2374 in.?/kip and
D1 = 16.915 in.?/kip (Eq A-27); By; = 0.07295 in.?/kip (Eq. A-23); WY, = 4.8088 in.
(Eq. 15); A, = 1.494 in./kip., (Eq. A-29) .44 = .6834 in./kip. (Eq. 19); B,, = 2.2456
(Eq. A-24); and T§ = —26.179 ksi (Eq. A-15). V§= 01530 in, W?$= 2818 in.
(step 2 of algorithm p. 52); H,; = .1705 kip/in., R;; = .7203 kip (step 3 of algorithm
p. 52); V3= —1123x 10 in, H,;= —.02362 kip/in, W% = —5213 x 10°° i
(step 4 of algorithm p. 52); R,; =.7195 kip (step 5 of algorithm p. 52 which
confirms that recycling is unnecessary).

The deflection fields are as follows:

v(r,y)=[23.97 cos ¥ — 1.318 cos 3 + 2976 cos > +..]107° sin & 4 [5.774 cos B +
7076 cos 3 — 1253 cos 22 + .. ]1073 si 3"’ + [3.261 cos 3 + .01996 cos 3 —
00567 cos 25 S”y + ..]1073 sin 3 5’" F

w(r,y)=[848.0 sin 3 — 14.20 sin 3 + 1.876 sin 2Z +..]10% sin & + [92.89 sin & +
7.133 sin 3 — 8491 sin oy, ]103 i 3’"4—[6207 sin 7;2— 1742 sin 3@ 4+
01886 sin 2 +..]107 sin 32 + ..

The membrane stress resultant field, n,, (from Eq. A-1) is

ny(x,y)= — K{[.0944 sin % —.01433 sin 3+ .005499 sin 3% +..]10" sin =+
[02460 sin 1,1—!* 003893 sin 3 — 002209 sin 32+ . ]10 3 sin 3”—!—[01533
sin B + .00067 sin 2 — 000239 sin 32 + ..]10" sin 32 4

The membrane stress resultant, n,, at the center of the deck (x =%, y=24) is
n, = 1.293 kips/in. The finite element analysis described in the next section yields
a stress n, = 1.179, 1.192 or 1.419 kips/in. depending upon type of element utilized.

Comparison with Alternative Approaches

For comparative purposes the bridge system analyzed for Example 3 was also
analyzed by use of a more comprehensive theoretical model and by use of
discretized or finite element model. ,

The more comprehensive theoretical model was one which included the out-
of-plane stiffness or flexural actions of the deck plate as well as its inplane stiffness.
The composite membrane-flexural model treated N(r,y) as an unknown out-of-
plane interactive force between the stringers and the plate and rationally accounted
for the effects of deck loads applied between stringers. The computations were
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thus complicated considerably but gave essentially the same deflection field, for
example the maximum difference for w(r, y) was 2.3% which confirmed the authors’
hypothesis that the composite membrane model (Eqs. 29-32) is sufficiently sophis-
ticated to analyze metal deck bridges of orthotropic design.

There was also some question as to the need for a rational theoretical analysis
in view of the availability of various open form finite element programs which
can be modified to approximately model such decks. A space frame program
(for the stringers, diaphragms and pseado stud members of length e to model
composite action) was combined with a finite element plane stress program
(using elements whose width equaled the stringer spacing and length equaled %
the diaphragm spacing) to analyze the deck as an “equivalent” framework. Even
though double symmetry was utilized, this relatively coarse network required
two orders of magnitude more computing time than did the formula approach
(which incidently was written to give research accuracy rather than computational
efficiency) and, of more significance, required nearly three orders of magnitude more
input information (only one card is needed to read in data for the theoretical
approach). The finite element results were in error by up to 10% for deflections
and the plate stress distributions bore little resemblance to the exact results. The
need for rationally based formulas appeared to be confirmed.

Conclusions

Formulas were introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consisting of a set of evenly spaced stringers
that are composite with a rectangular plate and are braced by a set of evenly spaced
diaphragms. The system is simply supported at the ends with simple or flexible
side supports. The loading consists of an arbitrary distribution of stringer line loads.
The solution is readily modified to analyze cellular decks or, through superposition,
decks with intermediate supports.

The formulas are simple enough for manual use if the loading can be adequately
represented by one or two sinusoidal harmonics but in most cases the designer
will probably prefer to use a small programmable calculator or a computer.
Additional work using these exact formulas seems indicated to modify and determine
applicable range for the various empirical formulas presently in use and possibly to
point the way toward a more accurate finite element analysis.
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Reference Formules

Membrane Analysis. — Certain formulas from the classical plane stress elasticity
solution for a rectangular plate subjected to in-plane loads and boundary dis-
placements (see Fig. A-1) are needed to account for composite action between the
plate and stringers.

The membrane stress resultants in terms of in-plane displacements, are:

n.(x, y) D, “D, u(x, )
nxy(x’y) =K I_E_E Dy 1_2__EDx (A'l)
ny(x, ) Dy D, v(x,y)

in which D denotes differentiation with respect to the indicated variable, p equals
poissons ratio and K = Et/(1 — p?).

The kernel function solutlons for the v and v displacements due to a unit
concentrated load in y direction are:

* . —_— * —
A;; sin o€ cos o;m cos o,x Sin &,y (A-2)

8
-MS

K?(x,y.6.n) =%

~
1l

fun
-
Il

bt

*
¢ ;; 8in ouE cos oM sin a,x cos &y (A-3)

”M8
”M8

K (x,y.6n) =2

.

inwhichai=%,&j:1i,’—‘,$j=1——1/26(}.
0 — N[ +p) oy,
A= i % A-4) -
()t A
5 1207+ (1- 37
TR (-0 + 57T

.(A-5)

It should be noted that the displacement kernel functions K* and K* are for a
plate that is simply supported along all four edges ie. u(x,3)=n,(x,3)=0 and

v(ey)=n:(Gy)=0.
The in-plane membrane shear, n,,, due to the above impulse loading is:

o] [*e] *
KPx,pem)=5% > 3 431 ;j Sin o€ cos oM cos oyx cos Ay (A-6)
j=0 i=1
£ oyloy® —pa?)
B,=_ 2t =5/ _
N TS (A-7)

The homogeneous membrane solutions due to known boundary displacements
are:

= Y (V%+ V¥)cos a;y (A-8)

i=1
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P, V,B sinoxcos Ay 0<x<a (A-9)

"MS
IIM8

V=

y
V$ for i odd
Vs for i even

(a} Element {b) Surface

Fig. A-1. Membrane deck action.

=Y Y 17, 7 COS 0,;X sin &,y (A-11)
j=11i=0
3 Es - pay’)
M . o W o X A-12
I (o a7 A1)

Many applications require use of the following more rapidly converging mixed
formulas for v"

Ms

ro_ % 1
xy)= Y [VE+ V¥ (1—23)+4 z Vi ( ) sin o;x ] cos &y
: a

1 i

J

0= x

IA

. (A-13)

The boundary membrane shears due to known boundary displacements are:

nh (Gy)= Y [V3 TS+ Ve T%] cosay (A-14)
: &

Tﬁ- K - | sinh a; + ao;

T |= 5 (L= 0 | — A-15
[T‘}/J 2( 2 l:cosh ad; + 1 ] ( )

Series Transformation. — For a macro discrete field analysis, one typically needs
to express a discrete function as a finite sinusoidal series when the function is
given as a infinite sinusoidal series evaluated at evenly spaced intervals of the
independent variable. Thus it is required to transform a special infinite series
into a finite series; ie.
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o) m—1
f)| =Y Asin®=Y A, sinkz (A-16a,b)
r k=1

X=wm i=1

The forrriula for the finite series coefficients, 4,, in terms of the infinite series
coefficients A; (see Ref. 3) is:

+ co

*
A= Z Az pm+x (A‘17)

I

These transformation series are often available in closed form; for example
see Ref. (6).

Another typical problem is that of expressing a discrete load function, for
example a set of evenly spaced concentrated loads, as a continuous function in the
form of an infinite sinusoidal series. Consider the following functional form

P(x)= Y P(a)5 (x—20) (A-18)

in which the discrete load function, P, is available as a finite series, i.c.

m—1
P(@)= > P,sin%e (A-19)
k=1

m—1
Py=2 > P(a)sink® (A-20)
x=1

Substituting the infinite series for the Dirac delta function in Eq. A-18 and making
use of Eq. A-20 gives the following infinite series for the set of concentrated loads.

% Pi Sin ;X (A—21)

[ 8

Iﬂ;(x):

i

Il
-

in which P; is sine wise cyclic with a period of 2m for values of the index outside
the normal finite series range of O thru m; i.e.,

P.=Pypix=—Portm-1=Pr—21m (A-22a,b,c)

for all integer values of I.

Stringer Line Quantities. — In order to satisfy displacement compatability
between a membrane and a set of composite stringers it is necessary to transform
certain of the double infinite series in the continuous membrane analysis to mixed
finite-infinite series for quantities evaluated only along stringer lines. Some of the
required transformations are as follows:

a 1 3—nw ., - 14ypu - .
Bkj:(IZ p- kj[ ——-sinh A; + B {1 — cosh kjcos%)] (A-23a,b,c)
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+w

. x L
Bkj=71_z_: Bomik j > a Byj
g, —Snml, (L+phsinhd, (A-24a,b,c)
kj 45]”. —"kj , 0,
in which A,= %@, D,; = cosh X; — cos & A-25a,b)
J ] J

Stringer Analysis. — For the analysis of a deck in which the top surface is
composite with the stringers, a set of beam kernel functions (often termed a
Green’s tensor) is required to give the longitudinal and transverse displacement
fields at the top of the stringer due to independent unit impulse longitudinal
and transverse loads, that is, for N(y)= &(y-n) the w and v displacements are
K*? and K" respectively while for F(y)= 6(y-n) the w and v displacements are
K"’ and K" respectively (see Fig. A-2). The required kernel functions are

*

[sz(y 1) K (y,n) i l:A sin &M sin oy D oS ;1 sin o;y (A-26)
K(y,n) K”(y,m) ;=1 LD, sin &;n cos &y B COS &;1 cos Iy

in which

=1

* 1 = * 2 2
Aj B—'4 2 D j Ei_?:’ Bf 2 t?.e
o B

(A-27a,b,c)

Bequals the flexural rigidity of the stringer, e equals the eccentricity of the longitudinal
loads with respect to the stringer centroid and p equals the radius of gyration
with respect to the cross sectional axis parallel to the deck surface. (Note that the

term with By, is omitted due to the fact that F (y) will be self equilibrating).

Fig. A-2. Stringer forces
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In order to evaluate stringer node deflections due to a discrete loading
(c.g. at the stringer-diaphragm intersections) one requires the coefficients of a
discrete kernel function series 4; as follows:

to 4 g
A=3 Z Aggn1 =3 4, (A-28a,b)
J=—ow
1 (B\3 3~ o = in
A= & ——5 c;=1-—cos 3 (A-29a,b)
(o)
Notation

The following symbols are used in this paper:

So% T
N
i S =
Ox
-,

o

.
~
e

= R N s X
o~

!

o W
R
T w

=z

o]
=
&
~

by

e
H(r,y), ij
LJ

K

K* K% KTv
k, 1

m, n

N(r,y) Ny;
]¥x= nya Ny
P(x), P(a)
Pﬁ-, Pj-’s
R(r,s_), Rkl
T3, TYs

t

u,v

Vi, Ve 7,
w(r,y)
X,y

oy O

éjoa 5()( - n)

i

coefficients of infinite and finite series.
coefficients of stringer kernel functions.

coefficients of infinite kernel function series.

plate dimensions.

flexural rigidity of stringer.

coefficients of discrete kernel function series.
differential operators.

series parameter (Eq. A-25).

Youngs modulus.

eccentricity of membrane forces.

membrane — stringer interactive force and series coefficients.

indices for infinite series.

membrane plate stiffness.

membrane kernel functions.

indices for finite series.

limits of finite series indices.

applied stringer load and series coefficients.
membrane stress resultants.

continuous and discrete load functions.
coefficients of boundary stringer load series.
stringer-diaphragm interactive forces and series coefficients.
coefficients of boundary shear.

plate thickness.

membrane displacements.

coefficients of boundary displacements.
out-of-plane stringer displacements.
continuous coordinates.

ix I respectively.

Kronecker and Dirac delta functions.

series parameter (Eq. A-25).
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u Poisson’s ratio.

& n - impulse load coordinates.

R radius of gyration of stringer.
d; weighting function.

Practical implications

The thin element or metal plate-stringer-diaphragm bridge deck in either
cellular or orthotropic form is one of the most efficient load carrying systems
employed by designers today and the literature includes many references to re-
commended methods of analysis. However, none of the existing methods are
rationally based even though some are rather complex and require voluminous
computations.

- New formulas are presented herein for the exact elastic analysis of plate-
stringer-diaphragm bridge deck systems that 1) are proportioned and detailed so
that all components have negligible out-of-plane stiffness and 2) are simply
supported at the ends. The formulas are unrestricted as to range of parameters
in the structural class; that is, they apply equally well to decks with small edge
beams with diaphragms serving as transverse load distributers and to decks with
primary support by the edge girders with diaphragms serving as floor beams.
Minor modification of the formulas permits their use for symmetrical sandwich
decks and for decks continuous over intermediate supports.

It is proposed that these exact formulas be used for final design review. They
are in the form of double sinusoidal series and can be programmed for use of desk
top or miniature computers or simplified for manual calculations through truncation
of the series. The formulas can also serve as a standard analysis for use in studying
existing and proposed approximate formulas in order to establish range of
applicability, magnitude of errors, etc. This should obviate the unsatisfactory
practice of making judgements based upon comparison of one empirical method
with another empirical method.

Existing alternatives to the proposed method are: 1) use of code sanctioned
empirical formulas to compute an “effective flange width” for the stringers and to
compute distribution of loads between the resulting “T” beams; 2) use of a
“smearing out” technique to replace the mixed discrete-continuous system by an
“equivalent” (usually orthotropic) continuum and 3) use of a discrete or latticed
system to approximate the real system through a finite difference or finite element
approach. The “equivalent continuum”™ method lacks rational bases for selecting
the substitute continuum and for applying the results to the real system. The
errors introduced are significant for coarse lattices and for decks with stiff ribs.
The finite element version of the substitute lattice approach is superior to the
substitute continuum approach but lacks well-developed error analyses. Also, its
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. For example,
the relatively coarse finite element network used to check one of the numerical
examples required two orders of magnitude more computing time than did the
formula approach and nearly three orders of magnitude more input information.
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It is hoped that this introduction of a rational analysis for orthotropic bridge
decks will encourage expanded use by designers of this attractive system, especially
in those countries where they are not presently in popular use.
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Summary

Formulas are introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consisting of a set of evenly spaced stringers
that are composite with a rectangular plate and are braced by a set of evenly
spaced diaphragms, The system is simply supported at the ends with simple or
flexible side supports. The loading consists of an arbitrary distribution of stringer
line loads. The solution is readily modified to analyze cellular decks or, through
superposition, decks with intermediate supports.

Résume

On introduit des formules fournissant au projeteur une analyse élastique exacte
d’éléments minces de tabliers composés d’un groupe de poutres longitudinales
réparties a distances égales et jointes avec une plaque rectangulaire et renforcées
par des diaphragmes répartis a distances égales. Le systéme est simplement sup-
porté aux extrémités par des supports latéraux simples ou flexibles. La charge agit
par une distribution arbitraire de charges linéaires. La solution est légérement
modifiée pour analyse des tabliers cellulaires ou, par superposition de tabliers avec
supports intermédiaires.
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Zusammenfassung

Es werden Formeln eingefiihrt, die dem Projektbearbeiter eine genaue elastische
Analyse diinner Fahrbahnelemente liefern, welche aus einem Satz in gleichem
Abstand verteilter Lingstrager bestehen, die mit einer Rechteckplatte verbunden
und durch eine Anzahl in gleichem Abstand verteilter Diaphragmen versteift sind.
Das System wird an den Enden durch einfache oder flexible seitliche Auflager
gestiitzt. Die Belastung besteht aus einer beliebig verteilten Lingstrager-Linienlast.
Die Losung lasst sich leicht modifizieren, je nachdem es sich um zellenformige
Fahrbahnen oder, durch Ubereinanderlagern, um Fahrbahnen mit zwischenliegenden
Auflagern handelt.
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