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Analysis of Metal Plate-Stringer-Diaphragm Bridge Decks

Analyse de tabliers metalliques renforces par entretoises longitudinales et
transversales

Berechnung von Brückenfahrbahnen aus Metallplatten mit Längs- und Quer¬
verstrebungen

D L. DEAN R R AVENT
Professor of Civil Engineering, North Carolina Assistant Professor, Civil Engineering, Georgia
State University, Raleigh, North Carolina U.S.A. Institute of Technology Atlanta, Georgia U S.A.

Introduction

The object of this paper is the derivation of formulas for the analysis of deck

Systems constructed of thin plates reinforced and composite with a set of equally
spaced longitudinal stringers which are braced by a set of equally spaced transverse
diaphragms (see Fig. 1). The formulas will be applicable for the design of cellular
decks-systems with both top and bottom plates — as well as orthotropic decks-

systems with a top plate only. Specifically, the formulas are for the exact
elastic analysis of those Systems that 1) are proportioned and detailed so that all
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Fig. 1. Thin Element Plate-Strmger-Diaphragm Deck.
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components have negligible out-of-plane stiffness and 2) are simply supported at
the ends. Thus, the linear superposition of several Solutions is required to analyze
decks that are continuous over intermediate supports.

The thin element plate-stringer-diaphragm deck in either cellular or orthotropic
form is one of the most efficient load carrying Systems employed by designers
today and the literature includes many references to recommended methods of
analysis. However, none of the existing methods are rationally based even though
some are rather complex and require voluminous computations. The present methods
of analysis fall into three categories, 1) use of totally empirical design formulas
to compute an "effective flange width" and the distribution of loads between the
resulting "T" beam stringers (8); 2) use of a "smearing out" technique to replace
the mixed discrete-continuous System by an "equivalent" (usually orthotropic) con-
tinuum (5, 9) and 3) use of a discrete or latticed System to approximate the
real System through a finite difference or finite element approach (1,7).

The "equivalent continuum" method is attractive in that a Single continuum
Solution can be used for preliminary design studies of a variety of discrete-continuous

deck Systems; however, the Steps of selecting the Substitute continuum
and interpreting the results for the real System lack rational bases and introduce
significant errors for coarse lattices and those closely stiffened decks with relatively
stiff ribs. Also, the Solution for the approximate continuous model is often more
difficult and less elegant than the Solution for the exact discrete-continuous model.

Of the various Substitute lattice approaches the finite element method is currently
the most populär and canned programs are available for office use; however, their
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. Furthermore
the State of the art of error analysis for this method is not sufficiently well
developed to insure against errors which are Orders of magnitude larger than
predicted. One example of such a Situation is the case of a deck with stiff ribs and
a flexible plate so that the higher harmonics contribute significantly to the
deflection field. In such a case it is extremely difficult to get a meaningful
stress analysis via a finite element approach.

The concept of deriving exact formulas for the elastic analysis of reinforced
bridge decks is not entirely new as both the micro discrete field approach (i.e.

use of difference equation modeis) (2) and the macro discrete field approach (i.e.

use of summation equation modeis) (3, 4) have been used for the rational analysis
of ribbed plates or decks composite with supporting stringers. This paper extends
the use of the macro approach to thin plates supported by both stringers and
diaphragms and thus Covers the more general concept of an orthotropic deck.

It is proposed that the exact elastic analysis presented herein be used for final
design review. (While the formulas may be considered complex for manual
computations, they can be conveniently employed through the use of a small
Computer or one of the several programmable electronic desk calculators that have

recently come on the market). A secondary goal is to make available a Standard
analysis for use in studying existing and proposed approximate formulas in order
to establish ränge of applicability, magnitude of errors, etc. This should obviate
the unsatisfactory practice of making judgements based upon comparison of one
empirical method with another empirical method.



ANALYSIS OF METAL PLATE-STRINGER-DIAPHRAGM BRIDGE DECKS 47

The major results are numerically illustrated through use of the formulas for
the analysis of reahstic structures One bndge is also analyzed by a finite element
method for comparative purposes

Mathematical Model

A macro discrete field approach (3) is used to find the in-plane Interactive
forces, H(r, y), between the stringers and the plate and the out-of-plane Interactive
forces, R(r s), between the stringers and the diaphragms (see Fig 1) The macro
approach is dictated by the fact that an analysis of the entire top plate is tractable
for a general loading due to the simple end support conditions at y 0 and b

A rational micro discrete field approach, on the other hand, is not possible as

it requires the general boundary Solution for a typical rectangular plate element,
between two successive stringers and diaphragms, which is unavailable

The Solutions for continuous and discrete deflection or force fields are found
in terms of infinite and finite sinusoidal senes, respectively For example the
unknown horizontal mteractive forces between the top of the stringers and the
plate is expressed as follows

oo m— 1

H(r,y)= X £ H^sin^cosöy, (1)
J=l k=l
m-l b

Hkj m X j H(r y) sm^ cos ä}ydy (2)
r=l o

in which äj f and r 1, (1), m — 1

The continuous plate deflections can be found m terms of the unknown
stringer plate mteractive forces as follows

u(x,y) uk(x,y)+ £ j" H{a,r\) K**(x,y, £a,i\)dr\ (3)
C(— 1 o

m-l b

v(x,y) vh(x,y) + £ j H{a,T])K'»>(x,y,§ia,T))d7) (4)

in which Kuy and Kvy are the kernel functions for u and v respectively due to a
unit mpulse load in the y direction on the plate with simple edge supports
(see Eqs A-2-5) and uh and vh are the homogeneous Solutions due to the side
boundary displacements vh{l,y) (see Eqs A-8-13)

Substitution of Eqs A-2, A-3, A-8, and A-9 and use of the relation given
in Eq 2, gives the following senes for the continuous plate displacements in terms
of the boundary displacement coefficients Vl} and the mteractive force coefficients

CO co 4
14-

*
u(x,y)= £ £ (£ <p, Vl}Al} + £Hl} Al}) cos a,x sin oy (5)

J=l i 0
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CO CO *. *
v(x,y)= £ X Gf Fu Bu + 5 #u ß,j)sin a,* cos oy (6)

j=i 1=1

in which f/y is sine wise cyclic, having a pgriod of 2m, with respect to the first
index and the coefficients Aip BtJ, Al} and BtJ are given by Eqs. A-4, A-5, A-12
and A-7 respectively. The stringer line displacements v(r,y) can be expressed as a
mixed finite-infinite series thru use of Eq. A-17 with the following results:

co m— 1

v(r,y) =H[i %\ + Hkj Bk]] sin £ cos ä}y (7)
j=i ä=i

in which ßfcj, and Bk} are given by Eqs. A-23, and A-24 respectively.
The stringer and diaphragm deflections depend upon the out-of-plane plate

loads, N(r,y), which are applied along the stringer lines, and the out-of-plane
stringer-diaphragm mteractive node forces, R(r,s), as well as the in-plane plate-
stringer interactive forces H(r,y). The series expression for these additional
quantities are:

co m— 1

N(r,y)= £ £ A^sin^sinö^ (8)
j=i k=X

m-l b

knr
iv \t, y) om —

Y—\0

n— 1 m—1
knr „:„ Ins

Nk3=4B EI N(r, y) sin % sin ä,y dy (9)

R(r,s) £ Z R«sin^sin^ (10)
1 1 (C=l

n— 1m—1
ZrtsRki=4~nY E Ä(r,s) sin ^ sin l-f (11)

s=l r=l

The series for the in-plane and out-of-plane displacements at the tops of the
mterior stringers can now be written as follows:

co m-l % % *
v(r,y) =1 Z [ß, ^ - B, Hft, -| DJ Rkj] sin £ cos ä}y (12)

j i fc=i
co m-l $ $ **M ZZ [^ !** - Dj H*j "T ^ RJ sin ^ sin ^y (13)

j=l k=l

in which r 1, (1), m — 1, 0 < y < b, Ay B} and D} are given by Eq. A-27 and Rkj
is sinewise cyclic on j with a period of 2« i.e. i?w Rk,un+i= —Rk,2jn-i f°r
integer values of J.

The double finite series for the out-of-plane stringer node deflections is found
by use of Eq. A-17 as follows:

n—1m—1

wM= Z I [W#-Wtf-4ÄH]sm£sin£ (14)
1 /c=l

in which r 1, (1), m - 1, s 0, (1), w, 4, is given by Eq. A-29
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Wu Z A2Jn+l Nki2Jn+l ~ Ax Ntkl
J — co

Wkt Z I>2jn + iHk,2jn + i-P>iHh

49

(15a, b)

(16a, b)

The out-of-plane node deflections of the diaphragms depend upon the out-of-
plane side boundary deflections as well as the stringer-diaphragm interactive forces.

<,y)= Z {W^±Wf)smäjy
j i
n—1 m-l

w(r,s) Z Z [C* ^*{ + ^ Rh] sin £ sin £
1=1 k=l

TIS

(17)

(18)

in which r 1, (1), m — 1, s 0, (1), n, 4j[ is the discrete kernel function coefficient
for a typical diaphragm, similar to Eq. A-29 for stringers, i.e.

Ai-
12Bj(s) ~r~^-; 0^ 1-cos k%

(°kf '

and Bd equals the flexural rigidity of the diaphragm.

(19a, b)

w#=Z wK2Jn+l
J — 00

~W) for fc odd"

%
Wf for/ceven

m—1 m~1
1= Z Qsin^; l-2£= Z c^in

ft=l,3,... Ä=2,4,...

knr

(20 a)

(20 b)

(21a,b)

Gk~ m c°t 2m (21c)

The relations developed thus far are sufficient for the analysis of a deck system
or orthotropic panel with known side boundary displacements, e.g. Vkj Wkj 0;
however for the typical bridge deck one usually has to determine the side boundary
displacements so as to establish compatibility with the boundary stringers, which
have physical properties denoted by Bb, eb and pb and may be loaded as follows:

N(m,y)= £ (P$j± Pf) sin äjy
j i

(22)

The compatibility of boundary stringer and deck boundary displacements can be
established by expressing the boundary stringer displacements in terms of their
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applied loads plus the loads transferred to them by deck action. For example,
consider the stringer at r 0

b

v(0,y) $ lPt(0,x\)Kb'"{y,r\)+r{0,T])Kr{y,n)]dT\ (23)
O

w(0,y) $ [P!(0,rj)Kr(y,Tl)+r(0,T1)K7(j;,r1)]dri (24)
O

in which the coefficients of K\z, Kvby, Kwbz, and Kwby are as given by Eq. A-27 except
that all the interior stringer descnptors, B, e, and o, are replaced by boundary
stringer descnptors, Bb, eb and pb to get A), Bb and D). The quantities P'(0,r\) and

V (0, r\) represent total out-of-plane or transverse and in-plane or longitudinal load

components applied to the boundary stringer from all effects. That is,

m—1n—1

P'(Q,y) N(0,y)+ £ £ *M)(1-£) 5 (j-|ß) (25)
«=i ß=i
m-l b

r(0,y) nxy(0,y)+ £ j H(a,n) KT>(0,y,^a,i])di\ (26)
¦=!•

or carrying out the indicated Operations

co m— 1

n0,y) £ [(P] + Pf) + ^ £ Ck Rkj-] sin äjV (27)
.7=1 fc=l

oo m— 1

T'(0,y) £ [(T* V] + Tf Vf) + £ Bkj Hkj-] cos äjy (28)
7=1 *=1

in which T* and T°/s are given by Eq. A-15 and Bkj is given by Eq. A-24c.
All the necessary relations are now available to complete the mathematical

model needed to solve for Hkj, Rkl, V] (or Vf) and W) (or Wf) as follows:
1) compatibility of in-plane stringer line displacements between the plate and the

stringer tops is obtained by equating Eqs. 7 and 12; 2) compatibility of out-of-plane
node displacements between the stringers and the diaphragms is obtained by
equating Eqs. 14 and 18; 3) compatibility of in-plane boundary displacements is

obtained by substituting Eqs. 27 and 28 into Eq. 23; and 4) compatibility of out-
of-plane boundary displacements is obtained by substituting Eqs. 27 and 28 into
Eq. 24. The resulting model (shown for Symmetrie component of boundary
displacements) is:

(Bkj + B}) Hkj + iDj Rkj + i- Bkj V) DJ Nkj (29)

£ D2Jn+l HK2Jn+l + (Af + Al)Rkl + Ck£ W$2Jn+l £ A2Jn+l NK2Jn+l (30)

j j j
£ {B) Bkj Hkj + ZD)Ck Rkj-\ + [B5 T* - 1] V\ - D) P) (31)
k

£ {D) Bkj Hkj + <%A"JCk RfcJ] + D) T] V) -W*=- A) P] (32)
k
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in which J — oo, (1), +00 with convergence about J 0 and k 1, (2), m — 1.

To solve for antisymmetric boundary displacements replace all $ quantities by the
analogous a/s quantities and use k 2, (2), m— \. It is apparent that this model
cannot be dealt with as a set of algebraic equations due to inconformability —

i.e. Eq. 29 is for kj indexed quantities, Eq. 30 is for kl indexed quantities and
Eqs. 31 and 32 are for j indexed quantities — and the fact that some terms are

sums; however, as will be shown in subsequent sections, the simaltaneous equations
can be solved by successive elimination of unknowns.

Solution for Simple Side Supports

For the case of a panel or deck with known side boundary deflections, V]
(and/or Vf) and W* (and/or Wf), Eqs. 31 and 32 are not needed and one can
solve Eqs. 29 and 30 for HkJ and jRw in terms of Nkj, V) and W* by using Eq. 29

to eliminate Hkj from Eq. 30 which is then solved for Rkl. For example, consider
the title case of simple side supports, i.e. V* Vf W$j Wf 0, such as an
orthotropic or sandwich panel with relatively rigid supports along all four edges.
The exact Solution is:

H JjNj^Rkj)
Bkj + Bj

WNkl -ANkl
Rkl -* -TT 34

A,+Ai-iARu
K '

* *
in which Bj and Dj are given by Eq. A-27; At and Ak are given by Eqs. A-29
and 20; BkJ is given by Eq. A-24; WNkl is given by Eq. 15; Rkj is sinewise cyclic
on j with a period of 2«; and the two special terms ANkl and A\x are:

AN V? (^2Jn + l) Nk 2Jn + 1 (D,) Nkt
Au= £ * s- (35a, b)

J= _co Bk, 2Jn + l + B2Jn + i Bkl + Bx

Ä%= £ {&2Jn+ll -c-^ (36a,b)
J--°° Bk 2Jn + l + B2Jn+i Bkl + Bf

It should be noted that for the simply supported panel each "k" (first index)
load harmonic yields a single "k" Solution harmonic but the effect of a 7 (second
index) loading harmonic is different due to action of the diaphragms; i.e. each "j"
loading harmonic yields 1) a single finite series "/" Solution harmonic, whose relation
to "j" is through l=j — 2Jn or 2Jn-j(l<n) and 2) an infinite set of "j" Solution
harmonics related to j through ;' 23n±j.

An accurate approximate Solution for Hkj and Rkl, which contains only algebraic
terms, can be written by consistently truncating all the transformation series after
the first term. (e.g. use J 0 only so that Eqs. 35 b and 36 b are used instead of
35 a and 26 a). The accuracy of such a rational approximation increases as the
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numbers of stringers, m — 1, and diaphragms, n — 1, increases. The result of this
simplification of Eqs. 33 and 34 is:

")(Nkj-iRkj)
Hkj^Ki/2 _2 (37)

e2 + P2kj

R
$Nu

kl

1+^kl
2 i 7^2 "

klez + p

pli

(38)

% + (%)2

[l+(f)2]2
P2kj P2 + (^)(§)2r;t;::2\2 (39)

These approximate formulas for HkJ and Rkl can be evaluated manually in less

than 10 minutes.

Numerical Example 1

In order to illustrate the numerical use of the above Solutions for a simply
supported thin element plate-stringer-diaphragm System, consider a panel (similar
to Fig. 1 except simply supported, on the sides as well as the ends) with physical
data as follows:

a= 144 in.; b 72 in, m= 12, rc=4, r=.125, u=.3, £ 29,000 ksi, ß=f E kip/in.2,
e 2.0 in., p2=^ in.2; and Bd=^ E kip. in.2. The out-of-plane stringer line load
is harmonic; i.e. NX1 .01 kip/in. All other NkJ 0 or N(r,y) (.01) sin £ sin f^.

Some of the intermediate results are: Ax — 5.7080 in.2/kip, B1 .05796 in.2/kip,

Dt .49812 in.2/kip (Eq. A-27); W^ .05708 in. (Eq. 15a); Ax .3173 in./kip
(Eq. A-29) or A^.3171 in./kip (Eq. A-28b); ^=.95134 in./kip (Eq. 19); K=3983.5
kip/in. (Eq. A-l); B1 t .14466 in.3/kip (Eq. A-5); ßM .012770 in.2/kip_(Eq. A-23c)
or ßt -.01205 in'.2/kip (Eq. A-23b); A^ .03508 in. (Eq. 35a); A^= 3.5096

in.2/kip (Eq. 36a) or A\ 1 ~ 3.5081 in.2/kip (Eq. 36b); Rtl .0204897 kip. Other
Rkl 0(Eq.34)ori?11 ~ .0202 kip (Eq. 38); and Hu .062410 kip/in., HU7 .000851

kip/in, HU9= -.000590 kip/in., tf1>15 .000268 kip/in. and Jfljl7= -.000219
kip/in. (Eq. 33) or ffu ~ .06316 kip/in. (Eq. 37). These intermediate results were
used in the deflection field equations with the following results (inch units): The
out-of-plane node deflections (Eq. 19 with Wfkl 0) are

w(r,s) (.019493) sin f sin f.
The out-of-plane stringer line deflections (Eq. 13) are

w(r,y) (.019495) sin £ [sin f+ .000075 sin ^? - .000030 sin ^+.000004 sin ±£*

- .000003 sin ^ + ...]
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The in-plane stringer line deflections (Eq. 12 or Eq. 7) with 1^ 0) are:

v(r,y) (7.9695 x 10"4) sin £ [Cos f + .00081 cos ^
- .00045 cos ^ + .00012 cos i£* - .00009 cos ±£* +...]

and the continuous in-plane plate deflections (Eq. 6 with Vti 0) are:

v(x,y) (7.5238 x 10"4) sin ^[cos f + .00025 cos ^ + .00011 cos ^ + ...]

- (.1463 x 10"4) sin =|== cos f + (.12408 x 10"4) sin =^= cos f +

Note that convergence is rapid even for this case of a relatively small number of
diaphragms, n 4.

Analysis of Cellular Decks

As mentioned in the introduction, formulas for the exact elastic analysis of an
orthotropic deck can also be used for the analysis of cellular decks that are
Symmetrie about the middle plane, i.e. the top and bottom plates have equal
thicknesses. All that is required is to modify the input data for an orthotropic
deck so as to produce a condition of anti-symmetry with respect to the middle plane
as follows: 1) use only the antisymmetric component of the top and bottom
stringer line loads (the Symmetrie component only squeezes the stringers and can
be ignored); 2) use one half the actual flexural rigidity of the stringers ß and Bb,

and diaphragms, Bd; and 3) use radius of gyration, p and pb equal to zero (or if
stringer representatiori is flexural rigidity and cross sectional area use an area
approaching infinity).

Numerical Example 2

In order to briefly illustrate modification of data for the analysis of a cellular
planel, consider the investigation of a cellular design alternative to example 1 using
the same amount of material; i.e., same stringers and diaphragms but two 1/16 in.
plates instead of a single 1/8 in. plate. For this case, the input data are a 144 in,
b 72 in, m 12, n 4, t .0625 in. u .3, E 29000 ksi, B | E kip/in.2,
e 2.0 in, p2 0, ßrf ^ £ kip/in.2 and JVn .005 kip/in. (other NkJ 0). The
calculations are too similar to those for Example 1 to Warrant showing detailed
results, but a design comparison can be made by showing the out-of-plane node
deflections as follows:

w(r,s) (.01205) sin £ sin f
That is, the cellular construetion gives a 62% stiffer panel with the same amount of
material.
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Solution for Flexible Side Supports

The most general case considered in this paper is that of an orthotropic deck
with flexible side supports. The two identical boundary stringers are of an arbitrary
size and shape with arbitrary loads. The analysis allows for possibility that the

boundary stringers are also composite with the deck plate, but detailing for non-
composite action can be dealt with by setting the boundary stringer eccentricity,
eb, equal to zero. For this general case, one must solve Eqs. 29-32 for Hkj, Rkl,
t/s. (or vf) and W) (or Wf) in terms of the load coefficients Nkj and P) (or Pf)
This exact elastic model can be formally reduced to a single equation with one
unknown by successive elimination as was done with the two equation model for
the simple side support case; however, the results for the four equation model are
unwieldy and many of the coefficients are sums of obscure physical significance.
(Even in the simpler case of simultaneous algebraic equations, it is seldom practical
to derive an explicit formula Solution for a model with more than three equations).
For this model, convergence of the series summed on J is very rapid and indications
are that Computers, or programmable calculators will normally be used to get
numerical results; thus, an alternate procedure is recommended as follows:
1. Truncate the series on Hkj and W) in Eq. 30 after one term (i.e. use J 0 only)

and solve Eqs. 29 and 30 simultaneously for Hkl and Rk, (l < n) in terms of
Nki, V\ (or Vf) and W\ (or Wf).

2. Substitute the results of step 1 into Eqs. 31 and 32 solve the resulting algebraic
equation for V\ (or Vf) and W\ (or Wf).

3. Substitute results of step 2 into the results of step 1 to find Hkl and Rkl.
4. Use the cyclic properties of Rkj (e.g. Rkl Rki2n+l Rk,i-2n) to solve Eqs. 29

and 31 for the higher harmonics of Hkj and V) (j>n) and then Substitute
into Eq. 32 to find the higher harmonics of W*. (That is, first use Eq. 29 to
eliminate HkJ from Eq. 31 and solve for V) (or Vf). Then find Hkj from Eq. 29

and, in turn, W) from Eq. 32).
5. If unusual accuracy is required, retain additional terms in the summations of

Hkj and W) in Eq. 30 (J - 2 to + 2 is sufficient), solve for improved results
for Rkl and repeat step 4. (In most cases, the results obtained in step 4 on the
initial cycle are sufficiently accurate so that step 5 can be omitted).
This completes the algorithm for the general case of flexible side supports.

Note that the effects of the side boundary deflections invalidate the one-to-one
relation between the "k" loading and Solution harmonics that existed for the
case of simple side supports. For example, a single "k odd" loading harmonic
will normally cause a deflection field with series coefficients containing all possible
k odd harmonics. The relation between the "j" (second index) loading and Solution
harmonics is as described in the section on simple side supports.

Numerical Example 3

In order to illustrate numerical use of the general bridge deck formulas under
loading conditions which place a severe test on the convergence of the Solution
series, consider a bridge with the following physical parameters and loading:
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a 360 in, 0 720 in.; m 12; n 4; t .375 in.; p .29; £ 29000 ksi;
B Bb 10.2681 x 106 kip in.2; e eb 14.4286 in, p pb 5.807 in. and
Bd 8.41 x 106 kip in.2. The loading consists of two symmetrically placed 20 kip
concentrated loads, i.e. N(r,y) 20(85r + 57r) 5(y-|) or NkJ-=^ (-l)^1
(— 1)^tt cos ^(k and; odd only) and P) Pf 0. The combination of a relatively
small number of stringers and diaphragms and loads of-infinite intensity tend to
show a harmonic analysis in a poor light due to slow convergence; however, as
the results below indicate, even for this case the convergence is quite good,
yielding practical results after only a small numbers of terms.

Some of the intermediate results are:
K 11,873. kip/in. (Eq. A-l); Ax 268.68 in.2/kip, ß\ 1.2374 in.2/kip and

Di 16.915 in.2/kip (Eq. A-27); ßu 0.07295 in.2/kip (Eq. A-23); WN^ 4.8088 in.
(Eq. 15); A, 1.494 in./kip, (Eq. A-29) „4 .6834 in./kip. (Eq. 19); ßn =2.2456
(Eq. A-24); and T? =- 26.179 ksi (Eq. A-15). Ff .01530 in, W{ .2818 in.
(step 2 of algorithm p. 52); H11 .1705 kip/in, Ku .7203 kip (step 3 of algorithm
p. 52); 74= - 1.123 x 10"5 in, H17 - .02362 kip/in, W*-,= - 5:213 x 10"5 in,
(step 4 of algorithm p. 52); Rn =.7195 kip (step 5 of algorithm p. 52 which
confirms that recycling is unnecessary).

The deflection fields are as follows:

v(r,y) [23.97 cos f - 1.318 cos ^ + .2976 cos ^ + ...] 10"3 sin £ + [5.774 cos f +
.7076 cos ^F - .1253 cos ^ + ...] 10"3 sin %f + [3.261 cos f + .01996 cos ^ -
.00567 cos -^P + ...] 10"3 sin ^ +

w(r,y) [848.0 sin %¦ - 14.20 sin -£* + 1.876 sin 3? + ...] 10"3 sin £ + [92.89 sin f +
7.133 sin ^-.8491 sin ^ + ...]10-3 sin ^ + [62.07 sin f-.1742 sin ^+
.01886 sin ^ + ...] 10"3 sin ^ +
The membrane stress resultant field, ny, (from Eq. A-l) is

ny(x,y)= -jK{[.0944 sin ^-.01433 sin ^ + .005499 sin -^ + ...]10"3 sin ^ +
[.02460 sin f-t-.003893 sin ^-.002209 sin ^ + ..]10-3 sm ^ + [.01533
sin f + .00067 sin ^ - .000239 sin ^ + •••] 10"3 sin ^ +

The membrane stress resultant, ny, at the center of the deck (x f, y |) is

ny= 1.293 kips/in. The finite element analysis described in the next section yields
a stress ny 1.179, 1.192 or 1.419 kips/in. depending upon type of element utilized.

Comparison with Alternative Approaches

For comparative purposes the bridge System analyzed for Example 3 was also
analyzed by use of a more comprehensive theoretical model and by use of
discretized or finite element model.

The more comprehensive theoretical model was one which included the out-
of-plane stiffness or flexural actions of the deck plate as well as its inplane stiffness.
The composite membrane-flexural model treated N(r,y) as an unknown out-of-
plane interactive force between the stringers and the plate and rationally accounted
for the effects of deck loads applied between stringers. The computations were
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thus complicated considerably but gave essentially the same deflection field, for
example the maximum difference for w(r,y) was 2.3% which confirmed the authors'
hypothesis that the composite membrane model (Eqs. 29-32) is sufficiently sophis-
ticated to analyze metal deck bridges of orthotropic design.

There was also some question as to the need for a rational theoretical analysis
in view of the availability of various open form finite element programs which
can be modified to approximately model such decks. A space frame program
(for the stringers, diaphragms and pseado stud members of length e to model
composite action) was combined with a finite element plane stress program
(using elements whose width equaled the stringer spacing and length equaled V3

the diaphragm spacing) to analyze the deck as an "equivalent" framework. Even
though double symmetry was utilized, this relatively coarse network required
two Orders of magnitude more Computing time than did the formula approach
(which incidently was written to give research accuracy rather than computational
efficiency) and, of more significance, required nearly three Orders of magnitude more
input Information (only one card is needed to read in data for the theoretical
approach). The finite element results were in error by up to 10%> for deflections
and the plate stress distributions bore little resemblance to the exact results. The
need for rationally based formulas appeared to be confirmed.

Conclusions

Formulas were introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consisting of a set of evenly spaced stringers
that are composite with a rectangular plate and are braced by a set of evenly spaced
diaphragms. The System is simply supported at the ends with simple or flexible
side supports. The loading consists of an arbitrary distribution of stringer line loads.
The Solution is readily modified to analyze cellular decks or, through superposition,
decks with intermediate supports.

The formulas are simple enough for manual use if the loading can be adequately
represented by one or two sinusoidal harmonics but in most cases the designer
will probably prefer to use a small programmable calculator or a Computer.
Additional work using these exact formulas seems indicated to modify and determine
applicable ränge for the various empirical formulas presently in use and possibly to
point the way toward a more accurate finite element analysis.
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Reference Fonnules

Membrane Analysis. — Certain formulas from the classical plane stress elasticity
Solution for a rectangular plate subjected to in-plane loads and boundary
displacements (see Fig. A-l) are needed to account for composite action between the
plate and stringers.

The membrane stress resultants, in terms of in-plane displacements, are:

nx{x,y)
nxy(x,y)
ny(x,y)

¦ K
Dr »Dv

i^ Dy i^Dx
u(x,y)

v{x,y)
(A-l)

in which D denotes differentiation with respect to the indicated variable, ji equals
poissons ratio and K £t/(l — u2).

The kernel function Solutions for the u and v displacements due to a unit
concentrated load in y direction are:

K"y(x,y,^,r\) ä £ £ Aj sin a£ cos 0,11 cos a,x sin oy;
7 1 1=1

00 °° * *
Kvy(x,y,^,r\) ^ £ £ §} Bl} sin a,£, cos a,r| sin a,x cos a}y

7 0 !=1

in which a, f, ä, £, $, 1 - y2 5°.

*
A,= l\ (1 + u) oc, a.

K/a-uMo^+ä/)2
* 1 2ai2 + (l-u)ä/ö„ —11 K(l-p)(oc,2+ä/)2

(A-2)

(A-3)

(A-4)

(A-5)

It should be noted that the displacement kernel functions Kuy and Kvy are for a
plate that is simply supported along all four edges i.e. u(x,%) — ny(x,°) 0 and
v(°a,y) nx(ly) 0.

The in-plane membrane shear, nxy, due to the above impulse loading is:

# *.
KTy(x,y,l>,v[) i% £ £ d)j B(J sin a,£, cos a,r| cos oc,x cos a}y

7 0 1 1

| _a,(a,2-Hä/)
'J /.. 2 ,-tt 2\2

(A-6)

(A-7)
(a,2 + a7

The homogeneous membrane Solutions due to known boundary displacements
are:

,y)= I(7'7±75")cosä7j;
7=1

(A-8)
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vh(x,y) % £ £ VtJ ßy sin atx cos a3y §<x<a
7=1 1 1

V\ for i odd

Vf for i even

(A-9)

(a) Element

1

7 ==^nxy

(b) Surface

/
SSS/SSSSS/S/SS/SSSSSSSS/SSS*SSS/fSSSS/SA£J!///*4//JM.//////

_£ L_^ *

a- -i

Fig A-l. Membrane deck action

uh(x,y) % £ £ <h, Vl} Al} cos oc,x sin a,y
7 1 1 0

| _ö,(ä2-uV)
U (o,2+V>

(A-ll)

(A-12)

Many applications require use of the following more rapidly converging mixed
formulas for vh

CO CO jj. 1

vh(x,y) £ [V] + Vf (1 - 2|) + f- £ K, (By - -) sin oyc] cos äj3;
7 1 1 «,

0<x<a (A-13)

The boundary membrane shears due to known boundary displacements are:

(A-14)

(A-15)

< (l,y) £ [V] T* + Ff Tf] cos äjy
7=1

- 7
-y(i-i-i2K

sinh aa, + aoe,

cosh aä, + 1

Series Transformation. — For a macro discrete field analysis, one typically needs

to express a discrete function as a finite sinusoidal series when the function is

given as a infinite sinusoidal series evaluated at evenly spaced intervals of the
independent variable. Thus it is required to transform a special infinite series
into a finite series; i.e.
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f(x
m-l

a X X sin £ Z A sin ^ (A-16a,b)
X mr i l fc=l

The formula for the finite series coefficients, Ak, in terms of the infinite series

coefficients Av (see Ref. 3) is:
+ CO

.j.

A= Z A2im+k (A-17)
7= -oo

These transformation series are often available in closed form; for example
see Ref. (6).

Another typical problem is that of expressing a discrete load function, for
example a set of evenly spaced concentrated loads, as a continuous function in the
form of an infinite sinusoidal series. Consider the following functional form

# m-l
P(x)= Z P(a)5(x-!<x) (A-18)

a=l

in which the discrete load function, P, is available as a finite series, i.e.

m-l
P(«)= Z Pk*n¥ (A-19)

k l
m-l

Pk l Z PMsin^ (A-20)
a=l

Substituting the infinite series for the Dirac delta function in Eq. A-18 and making
use of Eq. A-20 gives the following infinite series for the set of concentrated loads.

* °°

p(x)= £3fP,sinoyc (A-21)
1=1

in which P, is sine wise cyclic with a period of 2m for values of the index outside
the normal finite series ränge of 0 thru m; i.e.,

Pk — P2Im + k ~ P2Im-k ¦• k-2/m (A-22a,b,CJ

for all integer values of £

Stringer Line Quantities. — In order to satisfy displacement compatability
between a membrane and a set of composite stringers it is necessary to transform
certain of the double infinite series in the continuous membrane analysis to mixed
finite-infinite series for quantities evaluated only along stringer lines. Some of the
required transformations are as follows:

D m Vr ^ m RDk]— ~ä 2-, D2Im+k,j—~äDkj

iV
kj~ \Kj4m(l-\i)DK

3 — u - 1 + M-, —

--=— sinh Xj + -=— (1 — cosh A,j cos ^)
^7 Dkj

(A-23a,b,c)
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r m V^R ^. ™ RDkj — a Zj D2Im+k,j ~ a Dkj

- sin

Bk^M
kn

kj

(1 + p) Xj sinh Xj

D,kj
(A-24a,b,c)

(A-25a,b)in which Xs= £a.j, DkJ cosh Xj — cos ~

Stringer Analysis. — For the analysis of a deck in which the top surface is

composite with the stringers, a set of beam kernel functions (often termed a
Green's tensor) is required to give the longitudinal and transverse displacement
fields at the top of the stringer due to independent unit impulse longitudinal
and transverse loads, that is, for N(y) 8(y-r\) the w and v displacements are
Kwz and Kvz respectively while for F(y) 8(y-r|) the w and v displacements are
Kwy and Kvy respectively (see Fig. A-2). The required kernel functions are

K""(y,ri) KT{y,r\)
K»z(y,v\) K»y(y,T\) J :!Z

7=1 L^7

-* _ _ * _ _Aj sin a/n sin oy; Dj cos <Xjr\ sin a.-y

Dj sin a,r) cos vi-y Bj cos ö^r) cos ä^y_
(A-26)

in which

* p2 + e2

i R~4'ö7 RT73' BJ Drr:ßä ßä3 ßä2
(A-27a,b,c)

ß equals the flexural rigidity of the stringer, e equals the eccentricity of the longitudinal
loads with respect to the stringer centroid and p equals the radius of gyration
with respect to the cross sectional axis parallel to the deck surface. (Note that the

term with ß0 is omitted due to the fact that F (y) will be seif equilibrating).

j^>
N(y)

J^
F(v) V^ s^

J^

as

Fig. A-2. Stringer forces
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In order to evaluate stringer node deflections due to a discrete loading
(e.g. at the stringer-diaphragm intersections) one requires the coefficients of a
discrete kernel function series At as follows:

+ c0 * *
A, i Z A2Jn+l^iAt (A-28a,b)

J ~ co

Ai T2T7 (I)3 ^J; ä, 1 - cos lf (A-29 a, b)
(oc,)2

Notation

The following Symbols are used in this paper:
Ah Ak coefficients of infinite and finite series.

Aj, B^, Dj coefficients of stringer kernel functions.

±y' i'J coefficients of infinite kernel function series.
A-ij, Bij
a, b plate dimensions.
ß

_
flexural rigidity of stringer.

Bkj, Bkj coefficients of discrete kernel function series.

Dx, Dy differential Operators.
DkJ series parameter (Eq. A-25).
£ Youngs modulus.
e eccentricity of membrane forces.
H(r,y), Hkj membrane — stringer interactive force and series coefficients.
i, j indices for infinite series.

K membrane plate stiffness.
Kuy, Kvy, KTy membrane kernel functions.
k, l indices for finite series.

m, n limits of finite series indices.
N(r,y) Nkj applied stringer load and series coefficients.
Nx, Nxy, Ny membrane stress resultants.
P(x), P(a) continuous and discrete load functions.
P$j, Pf coefficients of boundary stringer load series.
R(r,s), Rkl stringer-diaphragm interactive forces and series coefficients.
T$j, Tf coefficients of boundary shear.
t plate thickness.
u, v _ membrane displacements.
Vf, Vf, Vtj coefficients of boundary displacements.
w (r,y) out-of-plane stringer displacements.
x,j; continuous coordinates.
ab <*j '-§, f respectively.

5/, 5(x — r\) Kronecker and Dirac delta functions.
Xj series parameter (Eq. A-25).
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u Poisson's ratio.
£, r) impulse load coordinates.

p radius of gyration of stringer.
(j>7- weighting function.

Practical implications

The thin element or metal plate-stringer-diaphragm bridge deck in either
cellular or orthotropic form is one of the most efficient load carrying Systems
employed by designers today and the literature includes many references to re-
commended methods of analysis. However, none of the existing methods are
rationally based even though some are rather complex and require voluminous
computations.

New formulas are presented herein for the exact elastic analysis of plate-
stringer-diaphragm bridge deck Systems that 1) are proportioned and detailed so
that all components have negligible out-of-plane stiffness and 2) are simply
supported at the ends. The formulas are unrestricted as to ränge of parameters
in the structural class; that is, they apply equally well to decks with small edge
beams with diaphragms serving as transverse load distributers and to decks with
primary support by the edge girders with diaphragms serving as floor beams.

Minor modification of the formulas permits their use for symmetrical sandwich
decks and for decks continuous over intermediate supports.

It is proposed that these exact formulas be used for final design review. They
are in the form of double sinusoidal series and can be programmed for use of desk

top or miniature Computers or simplified for manual calculations through truncation
of the series. The formulas can also serve as a Standard analysis for use in studying
existing and proposed approximate formulas in order to establish ränge of
applicability, magnitude of errors, etc. This should obviate the unsatisfactory
practice of making judgements based upon comparison of one empirical method
with another empirical method.

Existing alternatives to the proposed method are: 1) use of code sanctioned
empirical formulas to compute an "effective flange width" for the stringers and to
compute distribution of loads between the resulting "T" beams; 2) use of a

"smearing out" technique to replace the mixed discrete-continuous system by an
"equivalent" (usually orthotropic) continuum and 3) use of a discrete or latticed
system to approximate the real system through a finite difference or finite element
approach. The "equivalent continuum" method lacks rational bases for selecting
the Substitute continuum and for applying the results to the real system. The
errors introduced are significant for coarse lattices and for decks with stiff ribs.
The finite element version of the Substitute lattice approach is superior to the
Substitute continuum approach but lacks well-developed error analyses. Also, its
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. For example,
the relatively coarse finite element network used to check one of the numerical
examples required two Orders of magnitude more Computing time than did the
formula approach and nearly three Orders of magnitude more input Information.
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It is hoped that this introduction of a rational analysis for orthotropic bridge
decks will encourage expanded use by designers of this attractive system, especially
in those countries where they are not presently in populär use.
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Summary

Formulas are introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consistmg of a set of evenly spaced stringers
that are composite with a reetangular plate and are braced by a set of evenly
spaced diaphragms. The system is simply supported at the ends with simple or
flexible side supports. The loading consists of an arbitrary distribution of stringer
line loads. The Solution is readily modified to analyze cellular decks or, through
superposition, decks with intermediate supports.

Resume

On introduit des formules fournissant au projeteur une analyse elastique exaete
d'elements minces de tabliers composes d'un groupe de poutres longitudinales
reparties ä distances egales et jointes avec une plaque reetangulaire et renforeees

par des diaphragmes repartis ä distances egales. Le Systeme est simplement
Supporte aux extremites par des supports lateraux simples ou flexibles. La charge agit
par une distribution arbitraire de charges lineaires. La Solution est legerement
modifiee pour Fanalyse des tabliers cellulaires ou, par superposition de tabliers avec

supports intermediaires.
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Zusammenfassung

Es werden Formeln eingeführt, die dem Projektbearbeiter eine genaue elastische

Analyse dünner Fahrbahnelemente liefern, welche aus einem Satz in gleichem
Abstand verteilter Längsträger bestehen, die mit einer Rechteckplatte verbunden
und durch eine Anzahl in gleichem Abstand verteilter Diaphragmen versteift sind.
Das System wird an den Enden durch einfache oder flexible seitliche Auflager
gestützt. Die Belastung besteht aus einer beliebig verteilten Längsträger-Linienlast.
Die Lösung lässt sich leicht modifizieren, je nachdem es sich um zellenförmige
Fahrbahnen oder, durch Übereinanderlagern, um Fahrbahnen mit zwischenliegenden
Auflagern handelt.
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