Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 35 (1975)

Artikel: Tangent stiffness method for biaxial bending of reinforced concrete
columns

Autor: Chen, W.F. / Shoraka, M.T.

DOl: https://doi.org/10.5169/seals-26930

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-26930
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Tangent Stiffness Method for Biaxial Bending of Reinforced Concrete Columns

Méthode tangente de raidissement pour la flexion biaxiale de colonnes en
béton armé

Tangent Steifigkeitsmethode zur biaxialen Biegung von Stahlbetonstiitzen

W.F. CHEN M.T. SHORAKA
Assoc. Prof., Dept. of Civil Engrg., Lehigh Grad. Student, Dept. of Civil Engrg., Lehigh
University, Bethlehem, Pa. University, Bethlehem, Pa.; Formerly Engineer,

Nava Construction Co., Teheran, Iran

Introduction

Moment-curvature-thrust relationships are of prime importance in the analysis
of reinforced concrete columns. For a biaxially loaded columns, the appropriate
loadings are bending moments M, and M, and axial force P. The corresponding
deformations are bending curvatures ¢, and ¢, and axial strain g, at corner 0.
The positive directions of force and deformation vectors are shown in Fig. la.
For convenience in further discussion, the following vectors of force and deformation
are defined ;

M, Oy .
{Fl=1<M, {D} = cpy} (1)
P €, '

Herein a study is made of the relationship of the force vector {F} with the
deformation vector {D} for a reinforced concrete column segment in biaxial
bending.

The non-linear stress-strain relationship in compression as well as the low strength
in tension of concrete complicate the analysis of structures using such a material.
Hence it is useful to establish an analytical relationship of the force deformation
equation in terms of the infinitesimal changes {3F} and {8D}. This leads to an
assumed linear relationship between these vectors.

{8F} =[Q] {aD} @

The matrix [Q] is defined as the tangent stiffness matrix as it represents the
tangent of the force-deformation curve as well as the stiffness of the cross section.
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Fig. 1. Moment, Curvature and Strain in Cross Section and Partitioning of Cross Section.

Once this linear relationship is established, it is easy to answer the following
three questions:
1. For a given path of force {F}, the corresponding path of deformation {D} can
be obtained by step-by-step calculations using Eq. 2, in the form
{oD} =[0]" {6F} (3)

and by applying the tangent stiffness method developed in Ref. [1] (Fig. 1b) for
numerical solutions.

2. For a given path of deformation {D}, the corresponding path of force {F} can
be obtained by direct step-by-step application of this linear relation, Eq. 2
(Fig. 1c).

3. This incremental equation (Eq. 2) can also handle any mixed path of force and
deformation. For example, the column may be first loaded axially to some
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value; and then, holding the axial force P constant, the bending curvatures ¢,
and @, may be increased proportionally in magnitude from zero. The cor-
responding bending moments M,, M, and the axial strain ¢, can then be
obtained by simply subdividing the stiffness matrix [Q] into submatrices. Thus,

oM, ) Q11 Q12 Qi3||00s
M, = Q21 Qa2 Q23190 4)

6P Q31 Q32 Qaz](%%

Since {8P} =0, and 3¢, and 3¢, are known,
-1 dp

dg,= —1 ] * 5
o o 0l g

and OM 011 Qi Qus||0¢x
= op, (6)

8I\dy QZI Q22 Q23 680

A somewhat similar solution for this particular mixed path of force and deformations
has recently been reported by WarNER [2]. Based upon the equations formulated,
a computer program has been developed to provide various numerical results.
The elements of the tangent stiffness matrix were evaluated numerically by dividing
the concrete section into finite elements and by considering each steel bar as an
element (Fig. 1d).

Assumptions

The procedure is based on the following assumptions.
1. Concrete has no tensile strength, Fig. 2a, and in the usual notation

o f;: - &,
—J° _Owheng = <0
P when g, - (7)

2. The stress-strain relationship for concrete in compression is nonlinear and
is of the form as shown in Fig. 2a

o= B+ B -211) 82 +(r1 —2)&° when 0<% =<1 (8a)
_ 1—2g,+¢&°
=1— — %" whenl<Eg< 8b
fi=1- 0y s When 155 5, (8b)
f.=0 wheng, =7y, (8¢)
where _E, &, 8d)
Vl—klfc

and v, represents the point of intersection of the stress-strain curve with the strain
axis. '



26 W.F. CHEN - M.T. SHORAKA

3. The stress-strain relationship for steel is elastic perfectly plastic in both tension
and compression (Fig. 2b), and in the usual notation

fs=£=—1 when§S=§5<—1 (9a)
5 &

fo=7% when —1<%,<1 (9b)

f.=1 wheng, > 1 (9¢)

4. The effects of creep and shrinkage of the concrete are disregarded.
5. Plane sections remain plane before and after bending.

1.0

fc

_ fe
ky fe
Y

€c = €c/e; v2

{a)

€= ES/sy

-1.0
(b}

- Fig. 2. Stress-Strain Relations.

Formulation of the Basic Equation

Consider the partially yielded cross section shown in Fig. 1¢. Equilibrium is
satisfied when the internal forces equal the external forces. In x-y coordinate
system,

M,={cydA (10a)
M,={ocxdA (10b)
P=|cdA (10¢)
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in x'-y’ coordinate system,

M,=—[ocy dA (11a)
M, =—[ocx dA (11b)
=[ocdA (11¢)

In order to evaluate the internal actions, the concrete area is divided by
horizontal and vertical lines into a total of N, small rectangular elements, AA,
(Fig. 1d). The total steel area is assumed to be distributed in N, elements, all of
equal area AA,. The relation between AA, and A4, is

AA, =p' AA, (12)
N , N, A (13)
where P—Nspa p_ab

and Eq. 11 may be rewritten in the form (Fig. 1d)

M, = fzz z"y, A z i pz Vi (fol) A, (14)
M, = — z :z AN zxk £~ kz X ()} A4, (14b)
P=(X T(by+r T 3 (A4 (140)

where N, and N, are the numbers of rows and columns of elemental concrete areas
respectively, and N, is the number of bars.
The incremental forms of the equilibrium equations are

M= =[5 3 50+ 3 oAk Y () A (15a)
R IS AL T} (15b)
P<(3 ¥ Gl +p z AR WYY (150

The incremental changes of stress and strain in concrete are related by

of. =G, d¢, (16)

where G.=0,wheng, <0 (17a)
k. f/ k. f!

G ="ty Ml g e a3 ) (17b)

C (4 (4



28 W.F. CHEN - M.T. SHORAKA

when O0<eg <g,
kif ky f)
and G,=2 - 1Je =2 — 1. € (17¢)
€ (l=2y;+7,%)  e’(1=2y2+ 77
when g, <8 <€ 7,
and G.=0, wheng, > €. v, (17d)
The incremental changes in stress and strain of steel are related by
&f, = G, 3¢, (18)
where G, =0, when g, < —¢, (19a)
and G, = &= E,when —g,<g <g, (19b)
8)7
and G, =0, when g, > ¢, (19¢)

Substituting £, and 3f, from equations 16 and 18 into equation 15, we have,

Na Np Ns

!Z Z y] Ctj 68 L]+p Z yk (Sss)k_

i=1 j=

p Z Vi (Go (Be )i} AA, (20a)
Na No
M, =—{3 Zx(G i (e +p' Zxk )e (&) —
i=1 j=
P’ Z Xi (G (Be k) AA, (20b)
Ng Nb Ns Ns
8P = { (Gc)ij (Sgc)ij'l'p, Z (Gok (Beh — P’ Z (Geh (Ssc)k} AA, (20c¢)
i=1 j=1 k=1 k=1

The strain ¢ at any point in the cross section with respect to x'y’ coordinate
can be expressed in a linear form as

= _y’ (le——xl (Pyl+ao (21)
where g, is the strain at the corner 0 (Fig. 1). The incremental change of the strain is

de = — ) d9,, — x’ 8¢,, + dg, (22)

or (Fig. 1d)
(8e.);; = — ¥ 8¢,, — x; 3@, + O¢, (23a)
() = (8e.) = — Vi 3, — X B9, + Bg, (23b)
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where 8¢, is the strain increment at the corner 0 of the cross section. Combinations
of equations 20 and 23 gives a set of simultaneous linear equations which can be
written in the matrix form as

oM., Q11 Q12 Qi3] |00k
M, + = {021 Q22 Q23400 (24)
oP Q31 Qi 0az]|oe,
where Q;; is defined as
Ng Np Ns Ns
Qu={Y Y 0P G+p ¥ 0 (Gh—p" Y i) (G} A4, (252)
i=1j=1 k=1 k=1
Na Np Ns Ns
Qsa=1{> > (xi)? (G + P ¥ X (G —p" Y. (x1) (Go)} AA, (25b)
i=1j=1 k=1 k=1
Na Np Ns Ns
Q33 =1 (Goij+1" Y, (Gh—1" ). (G} AA, (25¢)
i=1 j=1 k=1 k=1
Na Ny Ng
Q= 21-—IZ Zx G+ Zxkyk(G = Zkak ey A4, (25d)
i=1j=
Ne Np Ns )
Qi3=0Q3=—{) Z Vi(Gi+ 1 Z Ve (G — 1’ Z Vi (Gh} AA, (25¢)
i=1 j= k=
Ng Np
‘Q23—Q32——IZ Z u"“P Zxk(G —p' Zxk(G }AA (25f)
i=1 j=

Equation 24 can be rewritten as
(5Fy=[0] (8D} (26)

The symmetric matrix [ Q], whose elements are given by Equation 25 is known
as the tangent stiffness matrix as it.-represents the tangent of the force-deformation
curve as well as the stiffness of the cross section.

Numerical Studies

Based upon the equations formulated, a computer program using the tangent
stiffness technique [1] was developed to provide numerical results. The numerical
work was performed on a high speed digital computer (CDC 6400). The specific
case of a square section with the following input values was treated as a standard
concrete column cross section:

a =241n,b=241n, N,=10,N, =10

N,=12,p= —00325kfc’ 4.2 ksi

k, =085 fs 600k51 g = 0.002

E, = 29,000,000 psi, E, = 57,600 \/ 1. (for normal weight concrete)

v, =4, vy, = computed from Eq. 8d.
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The elements of the tangent stiffness matrix of the cross section were evaluated
numerically by dividing the cross section into finite elements N, (Fig. 1d). The
value of N, was varied from 100 (10 x 10) to 400 (20 x 20) for the square section.
The increase in accuracy obtained by using the finer grids was only 0.1%. A par-
titioning of the concrete cross section into 100 elements and the steel areas into
12 elements distributed uniformly around the sides of the section are used herein.
A somewhat similar partitioning was also suggested in Ref. 2.

The strain and stress in each element were computed as the average value at its
centroid. All force and deformation vectors are nondimensionalized as,

Force vector -
P Mx My
flab flab* f'a*b

Py (py €o

EICE

The allowable error in P/f.'a b was 0.002.

The resultant moment on the section may be represented by the two components
M, and M, or by a vector M of magnitude ./M,* + M,* and inclined at the angle
¥ = tan™! (M,/M,) to the y axis (see Fig. 1b). The resultant curvature ¢ of magnitude
/ @<° + ¢, and inclined at the angle 6 =tan™ (o,/p,) to the y axis (Fig. 1c) is
nondimensionalized as ¢/(c./b).

Deformation vector

Example — Given Path of Loading

The moment-curvature curves plotted in Fig. 3, 4, 6, 7, and 8 are for M, vs. @,
for various values of M,. The column section is first loaded axially up to some
value and then bent by M, to some other value while keeping P constant and
finally bent by M, to failure while keeping P and M, constant. The curves
have been terminated when the strain ratio ¢,/¢, reaches the value 3.0. To indicate
the magnitude of the strains in the cross section, two other lines of constant
&,/6c = recommended by ACI [3] and 2.0 have been plotted across the main
curves (dotted lines in the figures).

It is of interest to note that the values of the maximum moment M, /f ab?
lie between the values of ¢,/g. = 2.0 to 3.0 and generally very close to the constant
line g,/e; =3.0. The maximum values of the moment are indicated by the small
circles in Figures 3 to 8. These moment curvature curves indicate that the maximum
strength of short columns in biaxial bending and compression are not unduly
sensitive to the variations in the assumed concrete ultimate strain which is often
chosen in the range between 0.003 and 0.004,

The moment curvature curves shown in Fig. 3 are considered to be the standard
cases. The important factors influencing the behavior of the curves are the magnitude
of compression force P, concrete quality k; £/, steel quality f,, and percentage of
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) P
- =05
Op—T+—= flab 0

y - lol o As 25
- 1S 3-0.03

To®y K fe = 4.2ksi

b f, = 60ksi
025
My
— =001 MAX
0.20 2 0% =
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Fig. 3. Moment-Curvature Relations: Standard Case.

reinforcement A /ab. The variations of these factors with respect to the standard
case are given in Figs. 4, 6, 7, and 8.

The influence of axial compression force on the moment curvature curves is
shown in Fig. 4. The unloading of the moment, M,, with respect to an increase
in curvature @, is not seen for the curves P = 0.1 f,a b within the range g,/e, = 3.0
but is rather rapid for the curves with P = 1.0 f/ab. It is also observed, that when
P=10 f/ab and the bending moment M, = 0.05 f.a>b, there is a very rapid un-
loading for both moment M, and curvature ¢,. The curvature @, or the resultant
curvature @ is, of course, not unloaded with respect to an decrease in moment M,,
as shown in Fig. 5.

The influence of concrete quality k, f."and steel quality f, on the moment
curvature curves is shown in Figs. 6 and 7. The results are calculated for concrete
with k; f=3.0 ksi and 5.0 ksi (Fig. 6) and for steel with f, =40 ksi and 80 ksi
(Fig. 7) respectively. As can be seen, an increase in material qualities significantly
. increases the stiffness and strength of a biaxially loaded cross section,

Figure 8 shows the influence of the percentage reinforcement A,/ab on the
moment curvature relationships. It is evident rom the figure that the percentage
steel reinforcement has an appreciable effect on the behavior of a biaxially loaded
cross section.

The maximum points of the moment curvature curves as shown by the small
circles in Figs. 3 to 8 represent the maximum strength of the biaxially loaded cross
section. The maximum loads obtained in this way for the standard cross section
(Fig. 3) with three values of strain ratio, g,/¢, = 1.5, 2.0 and 3.0 are represented by
the interaction curves in Figs. 9 to 13. The small circles in these figures indicate
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Fig. 4. Moment-Curvature Relations: Axial Compression Force Effect.

the regions where the maximum load is controlled either by the maximum concrete
strain or by the overall stress distribution of the cross section. The important
factors influencing the maximum carrying capacity of a biaxially loaded short
column are the axial compression force, P, the concrete quality, k; f., steel quality,
f,» and percentage of reinforcement A /ab, as shown in Figs. 9 to 13, respectively.
Since the interaction curves are nondimensionalized, they can be directly used in
analysis and design computations.

00 el @ &=00325
P My 006 ' °| @ o>
= IO, =0. | O 1 s
f(; ab f(': sz y S ' (o] klfc=4.2k5l
T 'I ' f,= 60 ksi
b
0.06}— :
MAX. MAX MAX
L (ML by
~ (My,P)
0.04—
My 4 RN
f":cubz i _—
v M
BBl (My, &)
i l 1 ] l '] l L l 1 l
0 0.4 08 i.2 1.6 2.0 2.4

by fel 1a or ¢>y/e(':/b or $/ec/b

Fig. 5. Moment-Curvature Relations: Complete Unloading.
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Example — Given Mixed Path of Loading and Deformation

The moment-curvature curves plotted in Fig. 14 are for e/b vs. ¢ for a given set of
values of 8 = tan™ (@,/¢,) = 15° and P/P,= 0.2, 0.4, 0.6 and 0.8. In the figure, the
column section is first loaded axially to some value; and then the axial force P
is held constant while the bending curvatures ¢, and ¢, (or ¢ =./¢,> + ¢,?) are
increased proportionally in magnitude from zero. The corresponding bending
moments M, and M, (or e = M/P = | /M2 + M ?/P) and axial strain g, at the cor-
ner 0 (Fig. 14) can be obtained by the Egs. 5 and 6 using the iterative procedure
reported in Ref. 2. These moment curvature curves were compared with those
obtained previously by Warner and an excellent agreement was found in all cases [2].

The maximum difference between the angles 6 and P, i.e. between the directions
of the resultant curvature ¢ and resultant moment vectors, o =¥ — 0, is also
shown in Fig. 14. It can be seen that the moment and curvature vectors nearly
coincide in direction throughout the entire range of loading. The maximum
difference between the two vectors is of the order of ten degrees.

It is also of interest to note that a similar conclusion is also true for the
case of other loading paths. For example, in Fig. 15, the section is first loaded
axially to some constant value and then the axial force P is held constant while
the bending moments M, and M, are increased proportionally in magniture;
ie. ¥ =tan™' (M,/M,). The corresponding bending curvatures ¢, and ¢, and axial
strain g, can be obtained by Eq. 3 using the iterative procedure reported in Ref. 1.
The maximum difference between the angles 6 and W is again only of the order
of ten degrees.

Simple Interaction Equations

The general form of the interaction curves shown in Figs. 9-13 may be
approximated by a non-dimensional interaction equation [4]:

M \o M, \a '
(Mxo) +(Myo) =1.0 (27)

where M,, and M,, represent the load carrying capacities of a particular column
under compression and uniaxial bending moment about x and y axes, respectively.
Thus, for a given compression P, M, and M, are the values given on the M, =0
and M, =0 axes shown in Figs. 9-13. The value o is the exponent depending on
column dimensions, amount and distribution of steel reinforcement, stress-strain
characteristics of steel and concrete, and magnitude of axial compression. For a
given compression and a given column characteristic, the value of « is a numerical
constant.

The interaction surface corresponding to the column section given in Figs. 9
and 10 is shown in Fig. 16a. The interaction curves given previously in Figs. 9 and
10 for the particular case of strain ratio ¢,/e,= 1.5 are now non-dimensionalized by the
values M, and M, and plotted in Fig. 16b. These curves corresponding to constant
values of P/f/ ab=0.1, 0.5 and 1.0 which may be thought of as “load contours”.
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(a}
Zs . 00325
ab
k fe = 4.2 ksi
fy = 60ksi
P
foab
My
Myo Exact

———Equ. (27

Fig. 16. Comparison of Interaction Curves. !

Using Eq. 27, values of o are calculated for this column. The calculated values
of o are found, varying from 1.3 to 1.4 for P/f/ab=0.1 and 0.5 but jumping
to 1.7 for P/f, ab = 1.0. The comparison between the actual curves computed directly
on the basis of stress-strain relations and the theoretical curves obtained from
Eq. 27 is also shown in Fig. 16b and good agreement is observed. The values
of o for columns with a wide range of variation in values of f/, f, and A/ab
are tabulated in Table 1 for the particular case of strain ratio ¢/, = 1.5 (recom-

Table 1. Computed Values of o in Eq. 27

P 2 A, . :
ki f, 1, — ‘ o Note

frab ' ’ ab

0.5 42 60 0.0325 1.3

0.1 42 60 0.0325 14

1.0 42 60 0.0325 1.7

0.5 3 60 0.0325 13 €0

0.5 5 60 0.0325 14 oo L5

0.5 4.2 40 0.0325 1.4 for all cases.

0.5 42 80 0.0325 12

0.5 42 60 0.0125 14

0.5 42 60 0.0833 1.1
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mended by ACI). In general, the values of o in the range 1.1 to 1.4 are seen
to give a good approximation for all the cases investigated in the low and moderate
axial compression range, but large variation in values of o is observed for columns
with high axial compression.
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Notations

depth of section.

width of section.

{9, 9, &,} = deformation vector.

modulus of elasticity of concrete.

modulus of elasticity of steel.

¥ = (Fig. 1b).

{M, M, P} =force vector.

concrete stress.

specified cylinder compression strength of concrete.

Jelfe-

steel stress.

Ity

specified yield strength of reinforcement.

5f.

e,

0 fs

e,

ratio of strength of concrete in member to specified cylinder compression

strength.

UM I

moment with respect to x and x’ axes respectively.

maximum moment capacity with respect to x and y axes respectively.
moment with respect to y and y" axes respectively.

number of rows of elemental concrete areas.

number of columns of elemental concrete areas.

N, N, = total number of elemental concrete areas.

number of reinforcement elemental areas.

compression force in section.

failure load of section for zero eccentricity.

Ajfab.

N,

N

defined in Eq. 27.

E; g

ky 1S

the point of intersection of the stress-strain curve with strain axis (Fig. 2a).
strain.

concrete strain.
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€ concrete strain when concrete stress is ky fo.
_ €
€ —

&
g, strain at corner O.
£ steel strain.
g, steel yield strain.
_ &
g ~

8.)’
0 inclination of the curvature vector to the y axis.
G stress.

2 2
¢ VO @y .
Oy Qs curvature with respect to x and x’ axes respectively.
Py Oy curvature with respect to y and )" axes respectively.
b4 inclination of moment vector to the y axis. And
® ¥ —0.
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Abstract

Analytical formulations and procedures are developed for computing moment-
thrust-curvature relations for reinforced concrete column sections in biaxial bending.
The cross section is partitioned by a rectangular grid into a large number of small
elemental areas of steel and concrete. The moment-thrust-curvature relations are
obtained by step-by-step application of the analytically developed linear force-
deformation equation using the tangent stiffness iterative procedure. The method
is found to be extremely powerful and efficient for computer solution.

Numerical results are obtained for two types of loading paths: (a) given path
of loading; and (b) given mixed path of loading and deformation. Results are
presented in the form of moment-curvature-thrust curves and interaction curves
relating axial compression and biaxial bending moments. The important factors
influencing the behavior of these curves are discussed such as strength of materials,
percentage of reinforcement and the magnitude of compression force. Simple
analytical expressions to approximate the interaction curves of square sections
are obtained.
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Objective consequénces with respect to the security and economy

The elastic-plastic behavior of an isolated, reinforced concrete column subjected
to an axial load, and two bending moments acting in two perpendicular directions,
is an important technical problem with frequent engineering applications. The
obvious example 1s a corner column in a space building frame. Because the
behavior of a space structure is characterized by the behavior of each of its
individual members, it is of fundamental importance in the analysis and design
of a three-dimensional space structure that we develop basic knowledge of the
response of each individual member to forces acting at its ends and/or to loads
acting on it. '

Solutions that describe the elastic-plastic in-plane (two-dimensional) behavior
of columns and beam-columns comprise the most highly developed aspect of column
research in recent years. Applications to practical analysis and design for building
frames are quite common, and the basic techniques are given in several texts and
codes.

Despite this progress in obtaining solutions for in-plane behavior of columns,
their extensions to three-dimensional space situations are just beginning, although
some solutions have been obtained. The mathematics of such columns is quite
involved, even for the special case of relatively short columns for which the effect of
lateral deflections on the magnitudes of bending moments is negligible. For the
most part, analysis and design of such columns have in the past been directed
toward the study of ultimate strength of reinforced concrete short columns, For the
case of long columns, the present design procedure of biaxially loaded columns
does not differ from uniaxially loaded columns. The 1971 ACI Building Code,
for example, recommends to calculate the moment magnifier separately and apply
to the moment about each axis independently. The long columns are then designed
according to the given axial compressive load and the magnified biaxial moments.

Although this procedure has been used extensively in design computations,
it does not give accurate indications of the true load carrying capacity of a
biaxially loaded column. To determine the ultimate strength of such a column,
it 1s necessary to perform an elastic plastic stability analysis that considers the
entire range of loading up to ultimate load. In order to perform such an analysis,
we must have the knowledge of elastic-plastic behavior of a section under com-
bined axial force, and biaxial bending moments. This is described in the present
paper. '

In this paper, an elastic-plastic analysis of a reinforced concrete segment under
combined axial force, and biaxial bending has been obtained. The segment can be
loaded with various combinations of loading path. For example, the section can be
loaded first under a constant axial load P, and bending moment M, and then P,
and M, held constant while the section is loaded to its fully plastic state by the
bending moment M,. Computer programs have been used to replace the tedious
calculations and series of plots which would have to be made to obtain the cor-
responding generalized strains of the segments at various stages of loading. With
the knowledge of this elastic-plastic behavior of a segment under combined axial
force, and biaxial bending, this fundamental result has been applied successfully
to obtain elastic-plastic long column solutions. Several design criteria for reinforced
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concrete columns subjected to compression combined with biaxial bending are
developed and reported elsewhere (IABSE Symposium on Design and Safety of
Reinforced Concrete Compression Members, Quebec, 1974).
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Summary

An analytical formulation of the force-deformation equations in terms of the
increments has been developed which enables one to obtain the complete moment
curvature relationships of a short reinforced concrete column, subjected to axial
load and biaxial bending moments, at all load levels. The method is found to be
extremely powerful and efficient for computer solution.

The computer program based on this formulation can be integrated into the
long column analysis or into overall structural analysis programs, and is probably
very useful and essential in such a study.

Résumeé

On développe une formulation analytique des équations force/déformation en
termes de I’accroissement permettant d’obtenir les relations complétes de moment/
courbure d’une courte colonne en béton armé soumise a une charge axiale et a
des moments de flexion biaxiaux pour tous les degrés de charges. La méthode
est extrémement efficace pour la solution par ordinateur. Le programme d’ordina-
teur basé sur cette formulation peut étre intégré dans 1’analyse de colonnes longues
ou dans tous les programmes d’analyse structurale et s’avérera probablement
trés utile.

Zusammenfassung

Es wird eine rechnerische Formulierung der Kraft/Deformations-Gleichungen
in Termen des Zuwachses entwickelt, die es gestattet, die vollstindige Moment/
Kriimmungsbeziehung einer kurzen Stahlbetonstiitze unter Einfluss axialer Belast-
ungsstufen zu erfassen. Die Methode erwies sich als dusserst wirksam und
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brauchbar fiir eine Losung mittels Computer. Das auf der Formulierung beruhende
Computerprogramm lisst sich entweder auf die Berechnung fiir lange Stiitzen
oder auf alle baulichen Rechenprogramme anwenden und erweist sich voraus-

sichtlich als ebenso niitzlich wie wesentlich.
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