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Lateral Buckling Strength of Plate Girders

Tension de flambage lateral de poutres ä äme pleine

Kippwiderstand von Vollwandträgern

H. YOSHIDA
Associate Professor of Civil Engineering
Kanazawa University, Kanazawa, Japan

Introduction

The lateral buckling strength of beams in the elastic and the inelastic ränge is

governed by the flexural rigidity about the weak axis, St. Venant torsional rigidity
and the warping rigidity of the cross section. The contributions of these rigidity of
the elastic buckling strength are quite different for the compact section with large

span length and for the thin-walled section with short span [1]. In the inelastic

ränge, the problem is more complicate because the amount of yielding, and therefore
the rigidities of the beam for the buckling, is dependent upon the applied critical
moment. Even for I-shaped cross section usually used in structures, the direct
relationship between the geometrical dimensions of the cross sections and the
lateral buckling strength has not yet been established generally in the inelastic
ränge.

First attempt to consider the effects ofresidual stresses was made by Galambos [4]
and he suggested an approximate method applicable to the lateral buckling of beams
with general wide-flange cross sections under uniform moment. Nethercot also

proposed an approximate design formula [11] in the inelastic ränge who investigated
the various factors affecting the inelastic lateral buckling of beams. These formulae
were inductively introduced from several typical cross sectional dimensions and
thus the factors of the cross sectional dimensions affecting the lateral buckling of
beams are not clear.

In this paper, the lateral buckling strength on the elastic and the inelastic ranges
will be discussed for the I-shaped plate girders of which dimensions are with the thin
web comparing with the flange thickness. For the plate girders with such dimensions,

it will be shown that the lateral buckling strength can be expressed by
only the ratio of the depth of the cross section to the web height with respect
to the cross sectional geometry in both the elastic and the inelastic ranges and also
the influence of such factors as cross sectional geometry, loading conditions, yield
stress levels and residual stress distributions will be discussed in a general form.
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Futhermore, the effect of the variations of cross sections with tapering flange
widths or web depths on the elastic and the inelastic lateral buckling will be

investigated.

Assumptions

The assumptions associated with the analysis are as follows:
1. The cross section of the plate girders is I-shaped doubly Symmetrie and the

geometrie center is horizontal and straight.
2. The effects of the web to the lateral flexural rigidity and the warping rigidity

may be neglected and even to the St. Venant torsional rigidity may be neglected
since dww3/2bt3 is less than 6% for the I-shaped plate girders usually used, in which
dw the web height; w the web thickness; b the flange width and t the flange
thickness (see Fig. la). Furthermore, since after yielding of both flanges of I-shaped
plate girders, the carrying capacity can not be expected, this assumption may
be allowable.

3. The plate girders are perfectly straight before the buckling occurs and the
cross section does not distort before and after the buckling.

4. The vertical displacement is small.
5. The stress-strain relation is for the elastic-perfectly-plastic.
6. The residual stress in the cross section distributes in the flanges only. The

distribution of the residual stress is Symmetrie about axes of symmetry of the cross
section. The residual stress in a cross section is in self-equilibrium and are ideally
assumed as Figs. lb and c for as-rolled and as-welded shapes, respectively.

7. The stiffnesses of lateral bending and warping in the inelastic ränge are
calculated by the tangent modulus theory. The stiffness of the St. Venant torsion
is by the incremental theory which predicts the same St. Venant torsional stiffness
for the yielded portion as that of the elastic portion.

8. The Variation of a cross section is not so steep that the assumptions associated
with the so-called beam theory can not be available.
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Fig. 1. Simplified cross section and idealized residual stresses.
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As shown in Fig. 2, the x and y coordinates of the centroid of a small rectangular
element in a flange divided by the horizontal and the vertical lines may be expressed
by Zf> and v\d of which origin locates at the center of the cross section, in which
d the depth of the cross section. The strain, 8, at the centroid of the element is
the combination of the strain, e^, due to the bending which is proportional to
the distance from the center of the cross section, the strain, s0, which yields uniformly
on the whole cross section and the strain, er, due to the residual stress.

<t>

s £,,, + s0 + sr 2£j,(-j-)ri + e0 + £r (1)

£b
AA

Vd

Vod

Fig. 2. Subdivided cross section.

in which ey the strain corresponding to the yield stress; 4> the curvature and
4>y the curvature corresponding to the yield in flexure.

Thus, the stress, er, at the centroid of a small rectangular element becomes

a £e

a oysgn(e) lel >sv (2)

in which E Young's modulus of elasticity; ex,, the yield stress; sgn(s) 1.0 when
e is positive and sgn(e)=-1.0 when s is negative. From the equilibrium of
longitudinal direction, \AadA 0,

+5s§n 0 (3)

must be satisfied in which ^ means the sum for the elastic elements only and 2 means
the sum for the yielded elements.

By the trial and error procedure, the strain, e0, in Eq. 1 which is satisfied by Eq. 3

can be obtained for a given curvature, 4>/<by. Then, the strain and the stress at the
centroid of the small rectangular element can be known.
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The bending moment corresponding to the curvature, <$>/<\>y, is

M 3 ^£h+^£n} <4>
My mn(l + ß+ß2)1

in which m and n — the subdivided numbers of the flange thickness and the flange
width with equal intervals, respectively; Mj, the yield moment without residual
stress and ß dw/d, the ratio of the web height, dw, to the depth of the cross
section, d.

The moment of inertia about the weak axis, Iy, and the warping moment of
inertia, Iw, for the elastic core of the cross section corresponding to M/My are given by

Iy \x.iyK.iyb3d (5a)

Iw piwK.iwb3d3
_ (5b)

The equivalent St. Venant torsional stiffness, GKT, defined by the combination
of the St. Venant torsional stiffness, GKT, and the contribution to the torque caused
by the normal stress, jAaa2dA, and the section modulus about the strong axis, S, are
given by _GKT GKT + \Aaa2dA p.ktKktbd3 (6a)

S psbd2 (6b)
in which a the distance between the point on a flange and the shear center, u's
in Eqs. 5 and 6 are functions with respect to only ß defined by

fc, Ä(l-ß) (7a)

!W T!2(l-ß)(l + ß)3 (7b)

fe=Ä(l-ß)2 (7c)

Lis=i(l-ß3) (7d)

and k's are the reduction factors for the coefficients in the inelastic ränge given by

¦ny mnE

WW\W^ w*

K»='-0 - mH.Vt^)i-i-)'^ih - "-'2 <8b>

+ *>tf±y +?Sgn(|)«] LO- p^-vMY, + «JYJ (80

In Eqs. 8, S indicates the sum of the elastic small rectangular elements of the

upper flange"and g indicates for the lower flanges, v=£/G, the ratio of the Young's
modulus to the shear modulus of elasticity; and <x=b/d, the ratio of the flange width
to the depth of a cross section. Furthermore, r\0d is the coordinate of the shear
center of the elastic core on the y axis given by

t\e= S£2 W
E^>

From Eq. 4 and Eqs. 8 and 9, the relationships between Kiy, Kiw, kt and r\„ in the
inelastic ränge and M/My can be obtained under given residual stress level and
pattern.
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It can be observed from numerical calculations that these values are almost
independent on ß.

Analytical Method

The transfer matrix method in Ref. 15 may be applied in the analysis. Using
the state vector given in Appendix, the 8 x 8 field transfer matrix can be formulated
by the nondimensionalized forms which are independent on a.

For the calculation of the tapered beams, the point transfer matrix can be

available at the nodal point and two parameters kb and kd are introduced which
indicate the ratios of the flange width and the depth of a cross section at an arbitrary
location to those at the reference point on a beam. The State vectors of both sides at
nodal point i can be related by the point matrix given in Appendix which is

independent on oc and ß.

The beam is divided by finite elements and it is assumed that the bending moment
at the midpoint of an element is uniformly distributed in the element. Furthermore,
for the tapered beams, it is assumed that the cross section is constant in an element
and its dimension is represented by that at the midpoint of the element. Using the
reduction factors and the sectional constants corresponding to the nondimensionalized

bending moment by My and premultiplying the field transfer matrix of each
element from left end to right, the state vectors at left and right ends can be related
with each other. The buckling conditions in this case can be given by

|R'F„P„_1F„_1P„_2-P2F2P1F1R| 0 (10)

in which Fi, F2, — F„ the field transfer matrices of elements 1, 2, ¦¦¦n; Pl5

P2, — P„_! the point transfer matrices at nodes 1, 2, ••• n—1 and R, R' the
boundary matrices at left and right ends. The critical moment may be determined
as the smallest root of this determinantal equation.

Based upon this formulated equation, a Computer program was developed to
provide numerical results by trial and error procedure. First, the bending moment
at the midpoint of each element is calculated for an arbitrary critical load factor
then the reduction factors corresponding to the bending moment are numerically
evaluated for each element. Second, the determinant of Eq. 10 is calculated. The
calculation of these steps must be repeated using a new value of the critical load
factor until a sufficient aecuraey is obtained.

Buckling Strength under Pure Bending

Effects of Geometrical Shapes and Residual Stresses

As the factors to affect the lateral buckling strength of plate girders under pure
bending, the ratio of the web height to the depth of a cross section, ß djd, the
magnitudes of a residual stress and the yield strain may be considerable from above
discussion.

The nondimensionalized field transfer matrix discussed above is only a function of
ß as far as the dimensions of ä cross sectional geometry are concerned and oc is only
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included in the coefficient of the equivalent St. Venant torsional rigidity given in
Eq. 8c. But because y2 in Eq. 8c is considerably less than yls the effect of oc to the
coefficient Kft, is sufficiently small for usually used plate girders. For instance, the
buckling strengths of oc=0.1 and 0.5 were compared for rjre=0.3rj,, and e,,=0.0012.
From the numerical results, the difference between two cases is less than 1%
in the elastic ränge and decreases further in the inelastic ränge. Thus, oc 0.3 may
be used in the following numerical calculations.

Fig. 3 shows the effects of three magnitudes of the residual stress, orc 0.1<3y,

0.3cjy and 0.5a,,, to the lateral buckling strength for three values of l/ß 1.03, 1.05
and 1.07. The vertical line indicates M/My and the horizontal line indicates L/b.
The boundary conditions are simply supported for the lateral displacement and the
rotation at both ends and ey 0.0012 is used. From the figure, the buckling strength
is greately affected by the parameter ß in the elastic ränge but that effect decreases
in the inelastic ränge with the reduction of L/b.

The elastic buckling moment of a doubly Symmetrie I-shaped beam without
residual stress under pure bending can be expressed by [3],

(Mx=y«,GMi+igg) (ii)

Substituting Eqs. 5, 6 and using Eqs. 7 and unity for Kiy, Kiw, K.kt, the
nondimensionalized critical moment by the yield moment, (m0)% can be obtained by

(m0)ecr =;
(1-ß)2 (b

2^2(1 + v)8,(l-ß3
in which v Poisson's ratio.

'l+i(l + v)7r
:(l + ß)Y&

(i-ßrv* (12)

1.2
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Fig. 3. Effect of residual stress levels and distributions. b
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Taking the vertical line the quotient of the nondimensionalized critical moment,
MJMy, divided by (m0)e„ and the horizontal line the reciprocal of the square root of
(™X>

*=l/VK)Jr (13)

the buckling curves in the elastic ränge are horizontaly straight and these values
are slightly less than unity because the residual stress reduces the elastic buckling
strength.

The curves are independent on the geometrical shapes of the cross section but
slightly depend on the residual stress levels and distributions. Thus, in this
representation, the starting point of an inelastic buckling curve is independent on the
geometrical shapes of the cross section. Fig. 4 shows the same buckling curves as
Fig. 3 represented by such manner for the residual stress patterns (A) and (B),
respectively. Fig. 5 shows the difference between both the residual stress patterns
(A) and (B) for arc=0.3ar

In these figures, the solid curves and the dotted curves indicate for 1/ß 1.03
and 1.07, respectively. It can be observed that the curves are also independent on the
geometrie dimensions and only depend on the residual stress levels and distributions
in the inelastic ränge.
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X

Fig. 4. A possible representation of buckling curves
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Fig. 5. Comparison between residual stress patterns.

Effect ofthe St. Venant Torsional Stiffness

It has been proposed that the lateral buckling strength calculated by neglecting
the St. Venant torsional stiffness may be used for the plate girders with the relative
short buckling length braced by cross beams or lateral bracings [1]. From this view
point, both buckling curves for a uniform bending considering and neglecting the
St. Venant torsional stiffness are compared in Fig. 6 by thick curves and thin
curves, respectively.

The vertical line indicates the nondimensionalized critical bending moment,
MJMy, and the horizontal line indicates the span length divided by the flange
width, L/b.

The solid curves are for the residual stress pattern (A) and the dotted curves for
the pattern (B) and 0-« 0.3er,,, £,, 0.0012 are used. The values neglecting the
St. Venant torsional stiffness are independent on the values of ß in a long span
length but slightly depend upon ß in a relatively short span length.

The difference between the values considered and neglected the St. Venant
torsional stiffness is small for 1/ß 1.03 but the strength calculated by neglecting
the St. Venant torsional stiffness is on the safe side for 1/ß 1.07.

Effect ofthe Yield Stress Levels

The buckling curves in Fig. 3 are for the yield strain ey 0.0012. However, in
the nondimensionalized representation of the buckling curves as Figs. 4 and 5,

the effect of the yield strain will disappear because the yield strain only affects

Kkt and the influence on it is negligible.
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Fig. 6. Effect of St. Venant torsional stiffness.

Comparison with Test Results

In Ref. 2, Fukumoto et al. have carried out the tests of the plate girders. The
experiments under the pure bending consisted of thirty-seven welded built-up beams
and girders made from SM50 (4441) or HT80 (4514) steel. Some of them are
annealed. The boundary conditions are fixed for the lateral displacements and
the rotations at both ends.

The experimental values are plotted in Fig. 7. The vertical line indicates the
nondimensionalized bending moment, Mcr/(M%)ecr and the horizontal line indicates
XF l/y/(M^)e„/My l/y/(m*)ecr in which (Ml)ecr the elastic critical bending moment
of the plate girder without the residual stress under the pure bending of which
boundary conditions are fixed for the lateral displacements and the rotations at
both ends. In the figure, the theoretical values are also shown by solid curve,
dotted curve and one-dotted curve for plate girders without residual stress, with
residual stress patterns (A) and (B) for fjrc=0.3 ay, respectively. In the representation,
the effect of the geometrical shapes and the yield stress levels may not be included
and only the effect of the residual stress levels and distributions is included.

The experimental results scatter in a relative small ränge and the theoretical
curves for the residual stress pattern (B) with arc=0.3ay may give the lower bound.
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Bückling Strength under Various Loading Conditions

173

Fig. 8 shows the lateral buckling curves under three loading cases for arc 0.3ay.
A uniform bending moment, a concentrated load applied at the midspan and a

uniformly distributed load are considered. The uniform moment may be the most
severe loading condition for the lateral buckling, the concentrated load at the

midspan may be the most lenient condition and the uniformly distributed load lies

midway.

Mcr

(MoL

'/j8=l.03
.5

Vß * 1.07 <A)

Oro*030y
(B)

1^ dV IC)

PATTERHMJW
1.50.5 (A)

(B>

(C)

(A) £ &

0.5 0.5

rAn
PATTERNB

Q1DM

2.0 2.50.5

Fig. 8. Buckling curves for various loading conditions.

The horizontal line indicates X given by Eq. 13 and the vertical line indicates the

quotient of the nondimensionalized bending moment at the midspan corresponding
to the buckling load, M„/My, divided by the elastic critical moment given by Eq. 12.

The effect of ß to the buckling curves can be observed little in the elastic and

the inelastic ranges for both the residual stress patterns.
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Bückling Strength of Tapered Plate Girders

Effect of Variations of Cross Section and Loading Conditions

Three types ofthe Variation of cross sections along the span length are considered.
1. The flange widths or depths of the cross section decrease linearly from the

midspan (Type A); 2. remain a constant at a central one-third of the span length
and decrease linearly at both outside one-thirds (Type B), and 3. decrease

parabolically from the midspan (Type C).
For each type of the Variation, the buckling strength under three loading cases

of a uniform moment, a concentrated load at the midspan and a uniformly
distributed load is calculated. The boundary conditions are simply supported for
the lateral displacements and the rotations at both ends.

A few numerical examples are shown in Figs. 9 and 10. Fig. 9 shows the

buckling curves for a concentrated loading case under a constant depth of the cross
section, kd 1.0 and /ß 1.05. Only the flange widths vary such that the ratios of
the flange width at the ends of the plate girder to that at the reference point of the

midspan, kbo, decrease from 1.0 to 0.2 with 0.2 pitch. The vertical line indicates the

ratio of the nondimensionalized critical moment at the midspan, Mcr/(My)0, for the

varying cross section to the elastic critical moment, (m0)ecro, in which (My)0 and
(m0)ecro are the yield moment and the elastic critical moment given in Eq. 12 for
the uniform cross section of which dimensions are at the midspan of the varying
cross section. The horizontal line indicates X0 — l/-s/(m0)ecro and the solid, dotted and
one-dotted curves show for the types A, B and C, respectively.

.2

a.
Kb.

ISIcr

08
Oßkovl.00.8 0.4•ru.Msl Vß=\.05 0.6
02(Mo)'
0.4

Q2

TypeA Nr/1

0.2 Type B

Type C [/%

1.50.5 .0 2.0 2.5

Fig. 9. Buckling curves of plate girders with tapering flange widths.
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Fig. 10 shows the buckling curves under the same conditions except the depth
of the cross section varies and the flange widths and 1/ß remain constants. When
the depths of the cross section and 1/ß remain constants, the curves in the elastic
ränge in Fig. 9 are almost straight and keep constants except for small values of kb0

of Type A but in the inelastic ränge, the curves decrease parabolically with the
reduction of X0. When the widths of the flange and 1/ß remain constants, the curves
in the elastic ränge in Fig. 10 are ascending with the reduction of X0 and this
tendency becomes remarkable with the degree of taper. In the inelastic ränge,
the curves decrease parabolically with the reduction of X0. From the numerical
calculations, the buckling curves in Figs. 9 and 10 are independent on the values
of ß in both the elastic and the inelastic ranges when the value of ß keeps a constant
along the whole length of the plate girders. For other cases of the loading, the
same tendency can be observed in the elastic and the inelastic ranges.

(MoÄ-o

.2

JE
Kdo

Mcr
1.0 .0

}0.8
kb.0.8

05 0.6V

0.6 0.4

02
02
0.4

0.4
0.2

Type

0.2 Type

TypeC

0.5 1.5 2.0 2.5

Fig. 10. Buckling curves of plate girders with tapering web depths.

Design Approximationsfor Plate Girders with Tapering Flange Widths or Web Depths

It is assumed that the flange widths or the web depths are linearly tapered
between the restricted points of a plate girder by cross beams or lateral bracings
and at these points the plate girder is simply supported for the lateral displacements
and the rotations. The cross sectional dimensions of the plate girders are usually
designed such that the stresses go near the margine under a applying bending
moment. Thus, the bending moments at the restricted points in the plate girder
may be proportional to the yield moments or the füll plastic moments of the cross
sections.
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In the numerical calculations, it is assumed in addition to above assumptions
that the bending moments at the restricted points are proportional to the yield
moments ofthe cross sections and the bending moment distribution is linear between
these points.

.2
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RESIDUAL STRESS
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'0 0.5 1.0 1.5 2.0 2.5

Fig. 11. Buckling curves of plate girders with linearly tapered flange widths.
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Fig. 12. Buckling curves of plate girders with linearly tapered web depths.
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Fig. 11 shows the buckling curves of the plate girders with linearly tapering
flange widths. The horizontal line indicates X0 and the vertical line indicates the
critical moment at the midspan nondimensionalized by the same manner as Figs. 9

and 10.

The degrees of the taper of the flange widths, kbo, are the ratios of the smaller
flange width at the supports to the flange width at the midspan. In the numerical
calculations, 1/ß 1.05 is used and the buckling curves in the figures are shown
by solid curves for the residual stress pattern (A) and by dotted curves for the

pattern (B). The same illustration for the plate girders with linearly tapering web

depth is given in Fig. 12. It should be noted that the yield moment of the cross
section is not vary linearly along a span in this case.

The curves in the elastic ranges in Figs. 11 and 12 are almost straight and
keep constants under a gentle taper of cross sections. However, when the degrees
of taper become steep, the curves are descending with the reduction of X0. In the
inelastic ränge, the curves decrease parabolically with the reduction of X0.

The discrepancy between the buckling curves in Fig. 11 or 12 for 1/ß =1.05
and for the values of 1/ß 1.03 or 1.07 cannot be recognized.

In the figures, the thin lines show the approximate design formulae proposed
herein by

Cy + (l.0-Cy)(2.0-k)k (14)

in the elastic ränge and

(M0

(MX„
-C2%° (15)

in the inelastic ränge in which Cy 0.15a<, + 0.3 and C2=0.7 for the tapering
flange widths and Cy=0.3Xo, C2 0.7 — 0.5 x (1.0 — kdo)2 for tapering web depths,
respectively and k is the degree of the taper of flange width or web depth.

Remarks on Practical Application

In this paper, the effects to the rigidities of the web of plate girders were
neglected in the analysis. It is well known that the model neglected the effects of web
gives a good approximation to the lateral flexural and the warping rigidities.
However, the error accompanied by the calculation of the axial forces of the flanges
may no#t be small. A few actual plate girders were examined considering and neglacting
the web effects in this view point. As the result, it is found that the representation
of the buckling curves as shown in Fig. 4 gave a satisfactory agreement for both
cases.

The buckling strength of the plate girders with tapering flange wides or web
depths decreases comparing the strength of those with a uniform cross section
for all loading conditions of a uniform bending moment, a concentrated load and
a uniformly distributed load. The economy of the flange or the web weight of
the plate girders with tapering constant kb0 or kd0 can be given by (1 — k)/2 and
(1 — k)/3 for the Type A and Type B, C, respectively, in which k a tapering
constant kbo or kdo.
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The reduction of the buckling strength of plate girders with a tapering cross
section exceeds the decrease of the flange or the web weight in the elastic ränge.
This tendency is most remarkable under a loading case of a uniform bending moment
and least under a concentrated loading case. However, in the inelastic ränge, the
reduction of the strength can not be almost recognized under both the cases of a
concentrated load and a uniformly distributed load.

The results shown in Figs. 11 and 12 may contribute to the rational design of
plate girders.

Conclusions

The elastic and the inelastic lateral buckling strength of I-shaped plate girders
were studied theoretically and a general method of analysis was developed by the
transfer matrix method in the nondimensional form. First, it was shown that the
sectional properties in the inelastic ränge could be calculated numerically by
only ß as a parameter ofcross sectional dimensions. Secondly, the field transfer matrix
was derived in the nondimensional form and the point transfer matrix which took
the Variation of the cross section into account was expressed.

A new representation of the buckling curves which was independent on the
cross sectional geometry of plate girders and only depend on the residual stress levels
and distributions. Using this representation, the numerical examples were presented
for the simply supported plate girders with uniform and tapered cross sections
under various loading conditions. It was also shown that the experimental results
could be adjusted by this method.

The method should find a particular application in the design of plate girders.

Appendix - Transfer Matrices

State Vector

Using the same notations as in Ref. 15, the following nondimensionalized
state vector may be used.

u 6 pb S M„ Mz Mw
b a a aa,,a a <syd acyr a ayd*

in which u and 0 the lateral displacement and its slope at shear center;
cj) the angle of twist; p the angle of twist per unit length; S the lateral
shear force; Mn the bending moment about weak axis; Mz the torsional moment
and Mw the bimoment produced by warping.

Point Transfer Matrix

The compatibility and the equilibrium conditions at the nodal point i where
the cross section is discontinuous are obtained as follows [14] considering the
movement of the locations of shear center:
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uf=uf- Ascbf

ef= e?-Asp?

pf=p? m,sf=sf (17)

MLt MRi
Ml Ml - As^Mfißf - S?)

M$t= M%t + AsM*;

in which As the movement of the shear center downward.
The elements of the 8x8 point transfer matrix can be expressed by the

nondimensional form as follows:

<1.1H§) (1.3)-4^
(2,2)= 1.0 (2, 4) An

<-=(!)(§) -Kl

(8,8)

in which Ar) T|^(fc^/feJ) — r|„; r\g, r\f the values of r|0 on the left and the right
side elements at point i and kb, kd, kb, kf the values of kb and kd on the left and
the right side elements at point i, respectively.

The unspecified elements are equal to zero.

Notation

The following Symbols are used in this paper:
a distance between point on cross section and shear center.
b flange width.
d depth of plate girder.
dw web height.
E Young's modulus of elasticity.
F field transfert matrix.
G modulus of elasticity in shear.

GKT St. Venant torsional stiffness. _GKT equivalent St. Venant torsional stiffness defined by GKT + K.
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Iw warping moment of inertia.
1^ moment of inertia about weak axis.

K \aa2dA.
kb, kd ratios of flange width and depth of plate girder at arbitrary point to those

at reference point.
Ko> kd0 ratios of flange width and depth of plate girder at ends to those at reference

point.
L span length.
M bending moment.
M„ critical moment.
My yield moment of cross section without residual stress.

My, bimoment produced by warping.
Mz torsional moment.
Mn bending moment about weak axis.

M0 bending moment at midpoint of element.

(My)0 yield moment of cross section without residual stress at reference point.
(M0)ecr elastic critical moment of simply supported beam under pure bending.
(M„)cr elastic critical moment of fixed beam under pure bending.
(M0)ecr0 elastic critical moment of tapered beam under pure bending.
(mX (MoyjMy.
(m% (MFoyjMy.
(m0)ecro (M0)ecJ(My)0.
m, n dividing number of flange thickness and width.
P point transfer matrix.
R, R' Boundary matrices at left and right ends.
5 section modulus.

lateral shear force.
t flange thickness.
u lateral displacement.
w web thickness.
tx ratio of flange width to depth of plate girder, a b/d.
ß ratio of web height to depth of plate girder, ß djd.
Yi» Y2 sectional constants in inelastic ränge defined in Eq. 8 c.

As movement of shear center.
8 strain at point on cross section.

er residual strain.
Ey yield strain.

s^ strain due to bending.
s0 uniform strain on cross section.
r\d distance from x axis to point on cross section.
r\0d distance from x axis to shear center.
6 slope of lateral displacement.
k reduction factor (subscripts kt, iw and iy denote KT, Iw and Iy).
u coefficient defined by Eqs. 7 (subscripts kt, s, iw and iy denote KT, S, Iw

and Iy).
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vVKn
K l/V (̂mo)cro

v Poisson's ratio.
v E/G
t,b distance from y axis to point on cross section

p angle of twist per unit length
ct stress on cross section

rjrc, CTrr residual compressive and tensile stresses

ay yield-stress level
cJ) curvature

angle of twist
(j)y curvature corresponding to first yield in flexure
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Summary

It is shown that the lateral buckling strength of I-shaped plate girders can be

expressed by only the ratio of the depth of the cross section to the web height with
respect to the cross sectional geometry in both the elastic and inelastic ranges.

Then, the influence of such factors as cross sectional geometry, loading
conditions, yield stress levels and residual stress distributions is discussed. Further-
more, the effect of the variations of cross sections with tapering flange widths or
web depths is investigated in both the elastic and inelastic ranges.

Resume

La contrainte critique de deversement de poutres en double te peut s'exprimer,
tant dans le domaine elastique que dans le domaine inelastique, ä l'aide d'un
parametre de section unique: le rapport de la hauteur totale de la section ä la
hauteur d'äme. L'auteur envisage de plus l'influence de divers facteurs tels que la
forme de la section, les conditions de charge, la valeur de la limite elastique et la
repartition des contraintes residuelles. On etudie enfin, pour les domaines elastique
et inelastique, l'effet des variations de sections (largeur des ailes ou hauteur de
l'äme variable).

Zusammenfassung

Die kritische Kippspannung eines I-förmigen Trägers lässt sich, sowohl im
elastischen als auch im unelastischen Bereich, durch einen einzigen Querschnittsparameter

ausdrücken: das Verhältnis der Gesamthöhe des Querschnittes zur
Steghöhe. Anschliessend wird der Einfluss der QuerSchnittsgeometrie, der
Belastungsanordnung, der Höhe der Fliessspannung und der Verteilung der
Eigenspannungen besprochen, und schliesslich der Einfluss von Querschnittsänderungen
(veränderliche Flanschbreite bzw. Steghöhe) im elastischen und unelastischen
Bereich.
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