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Panel Method for Multistorey Fiat Plate Structures

Calcul de structures en dalles plates ä plusieurs etages

Berechnung von mehrstöckigen aus Flachdecken und Stützen bestehenden
Bauwerken

S FRENCH DC BLACK

Teachmg Fellow Research Fellow

VA PULMANO AP KABAILA
Senior Lecturer Associate Professor

School of Civil Engineering, The University of New South Wales, Kensington, Austraha

Introduction

The continuing search for economy in buildings has led to the recognition of
the contribution made by flat plate floors to the overall lateral structure stiffness.

Current practice is to approximate each floor by equivalent beams spanning
between the columns, in the direction of the lateral load. These may be used in the

analysis of an equivalent frame as mentioned in most building codes, e.g. the ACI
Code 1971 [1] and the SAA Code 1480-1974 [2]. This approach produces a very
inadequate representation of the three dimensional behaviour ofeach floor. Transverse
behaviour is only approximated by adding a torsional component to the column
stiffness, whilst diagonal interaction is neglected completely. Carpenter [3] found
that the moment carried over longitudinally from one column to the next by the
floor is less than that predicted by the ACI equivalent beam approximation.
The ACI method, when estimating the effective width of the equivalent beam,
takes no account of the effects of the dimensions of the column, or the plate.
In addition, the equivalent frame method is generally applicable only to the
internal bents in a structure.

To overcome these problems, this paper presents an alternative method of
analysis, referred to here as the "Panel Method". This method considers a structural
system consisting of columns and floor slab panels, which are defined by the grid of
lines through the column centres in both directions. Once the bending stiffnesses of
the panels are known, the structure is analysed by the stiffness procedures used

for ordinary frame structures.
The bending stiffness of regulär Square column supported plates has been

investigated by Faulkes [4] and Smith [5], using non-conforming finite elements.

They found that appreciable moments did not carry over more than one bay away
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from the point of moment application. They were thus able to produce (8 x 8)

matrices representing the moment stiffnesses of the three types of floor panels,
namely the corner, edge and internal panels, as shown in Fig. 2.

In this paper the panel stiffnesses have been recalculated using compatible
quadrilateral elements [6]. The scope has been expanded to include rectangular
panels with an aspect ratio of 1.5:1 and also to include the vertical freedom at
each node (Fig. 1). This inclusion is essential where column axial deformation
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Fig. 2. Fiat plate floor comprised of corner edge and internal panels.

The evaluation and the application of these stiffness matrices are described in
this paper. Results have been obtained for three values of column/span (c/L),
covering the normally used ränge. The stiffnesses of both rectangular and Square
panels are tested in multistorey building analyses. To provide a Performance
comparison, analyses of the buildings were also carried out using a complete finite
element representation and the equivalent frame method.
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Stiffness of Panel Element
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Method of Obtaining Panel Stiffness

A finite element analysis was carried out for each of the panel configurations
investigated. The plates considered were 4x4 bays. However, by utilizing symmetry
only one quarter of each plate had to be analysed. Boundary conditions specified
along the lines of symmetry represented either symmetry or antisymmetry.

Stiffness values at the columns were obtained by applying in turn unit
displacements at each column freedom, the resultant forces at each freedom being the
stiffness terms for that displacement.

Finite Elements Used in Obtaining Panel Stiffness

Compatible quadrilateral elements, as described by Kabaila et al. [6], were
chosen for the analysis. Their superior Performance has been demonstrated by
Black et al. [7]. The meshes used for the Square and rectangular cases are
shown in Fig. 3b and c. To provide accurate modelling in regions of high curvature,
the mesh grading technique of Somervaille [8] was used extensively.

Column axes were connected to the boundaries of abutting elements by
"rigid arm".
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Extraction ofPanel Stiffnesses

Output from the finite element program consisted of the (27 x 27) stiffness
matrix of the quarter plate for each value of c/L and each set of boundary
conditions. Suitable combination of the boundary conditions produced the stiffness
which would result from an analysis of the complete plate. The (12 x 12) stiffnesses
of the corner, edge and internal panels were extracted from these results. The
numerical value of each panel stiffness coefficient had to be divided by the number
of panels through which that action was transmitted.

The non-dimensionalization ofeach panel stiffness followed the method of tabula-
tion used by Przemieniecki [9]. First, the whole stiffness matrix was divided by
D/LS, where D Et3/12(1 — u2) and L and S are the side lengths of the panel.
This left factors of S and L in all rows and columns relating to the freedoms
dw dw
— and — respectively. The appropriate rows and columns were then divided by
dx dy
S or L as indicated in the tables. This procedure, on reversal, gives the stiffness
of any size panel with that aspect ratio.

Tables 1 to 3 give the non-dimensionalized stiffness coefficients for corner,
edge and internal square panels respectively. The three values in each square of
the tables are the stiffness values for column/span ratios of 1/8, 1/16 and 1/20
respectively. Similarly, Tables 4 to 7 give the stiffness matrices for rectangular
panels which have an aspect ratio of 1.5:1 and the same column/span ratio in
both directions. Four tables are required in this case because the edge panels
may have either their long or short sides along the free edge.

Illustrative Examples

To use the tabulated stiffnesses it is necessary only to reintroduce values of the
appropriate parameters as described in the Appendix. Stiffness values for c/L ratios
other than those tabulated may be obtained by interpolation. The matrices thus
formed may then be used directly as input data for a three dimensional stiffness

program. Assembly of the structure stiffness follows the same procedure as for
other structural elements.

The Performance of the panel method is demonstrated by the analysis of the
two structures given below. A description of these buildings is followed by an
outline of the two methods used for comparison.

Example 1: Interior Bay of a Ten Storey Building

To check the Performance of the stiffness matrices of rectangular panels, one bay
of the building shown in Fig. 4 was analysed by the panel method for a distributed
lateral load. The structure has three bays in the transverse direction and is assumed
to have many bays in the longitudinal direction. The columns have a uniform
cross-section and are proportioned so that the column/span ratio (c/L) is 1/8 in each
direction.
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The building was also analysed using a füll finite element Solution and by the

equivalent frame method. Displacement and column moment diagrams are given in
Figs. 6, 7 and 8. The values are given in Table 8.
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Example 2: 3x3 Bay Ten Storey Building

This example demonstrates the manner in which horizontal shear loads are
distributed within a structure. The building, whose details are given in Fig. 5 spans
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three bays in each direction. The tabulated stiffnesses for c/L 1/8 and aspect
ratio 1 were used. The results (Figs. 9a, 9b and Table 9) show the horizontal
deflection and column shear forces for a uniformly distributed lateral load.

The power of the method over equivalent frame methods is also demonstrated
by the analysis of the structure subjected to a distributed twist load. The rotations
produced by this loading are plotted in Fig. 9c. For each loading case the füll
finite element Solution results are also given.
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Fig 6 Example 1 lateral deflection (mm)
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Both structures were analysed using finite element meshes to represent the floor
plate. Compatible quadrilateral elements were used in the substructure program
described by Pulmano et al. [10]. The division of the floor plates into finite
elements is shown in Figs. 4c and 5c. This method provides the dosest available
approximation to the elastic Solution and its results are used as reference values.

FEM

— EQF

25 -100 -75 -50 -25 0 25 50 75 100(kN-m)

Fig 8 Example 1 bending moment diagram of interior column

Equivalent Frame (EQF)

A two dimensional equivalent frame representation of the first example was
analysed for the applied lateral loads. Several investigators have suggested various
parameters with which to estimate a reliable value of the effective width (Se) of
the slab. Qadeer and Stafford Smith [11], by simultaneously rotating two
columns of an internal panel using finite difference methods, produced a family
of curves for effective width. In a discussion of this paper, Michael [12] produced
a single graph for effective width. From this graph the value of Se - 0.59S was
obtained for example 1.

Note that the recommendations of both papers are only strictly valid for
internal panels of an internal bay. In a structure such as that of example 2
the distribution of shear forces differs significantly from the assumed conditions thus
rendering the effective width recommendations inapplicable.
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Discussion of Results

The lateral deflection curves for both examples show close correlation between
the panel method and the finite element method. The maximum difference, which
is less than 2'/2%, is due to the difference between the finite element meshes used

in the FEM Solution and those used in generating the panel method (PM) stiffnesses.

From the deflection and column moment results it can be concluded that both the

square and rectangular PM stiffnesses provide a close approximation to the more
sophisticated methods of analysis. The reduction in the number of unknowns and
hence of storage requirements and computation cost savings, is an attractive
feature.

In contrast with these results, the deflection at the top of the equivalent frame
is 40% greater than the FEM value. This results from the failure of the method
to properly reflect all the relevant parameters. Although the deflection predictions
for this case are on the safe side, there is no guarantee that this will be maintained
for other column and panel configurations.

The column shear force diagram for example 2, shown in Fig. 9b indicates the

way in which shear forces are distributed within a flat plate building. Although the
horizontal displacement of all columns is the same at each floor level, the

interior columns carry the largest shear loads. This is due to the greater slab

bending stiffness at these joints causing them to attract a greater share of the load.
An equivalent frame analysis could not take this transverse redistribution into
account.

Excellent correlation is achieved between the FEM and PM results for the
second example when it is subjected to a distributed twist load. The analysis of non-
symmetric structures or non-symmetric loading is not possible using the equivalent
frame method.

Applications

Until the present time, the Situation relating to the lateral analysis of flat plate
structures has been one of conflict and uncertainty. The ACI Committee 442 on
Response of Buildings to Lateral Forces [13] noted that little research has been
done to represent the stiffness of flat plates which connect columns. In fact, available
test results have shown that values for effective width of less than the füll slab width
[11], equal to the füll width [14], and greater than füll width [15] are valid
under different circumstances.

This Situation is greatly clarified by the application of the Panel Method to the
analysis of these buildings. As the method accounts for all the dimensional
parameters of the plate, the resultant stiffness is more accurate, thus giving greater
reliability to the results. The danger of significantly over or underestimating the
plate stiffness is effectively eliminated. The economy inherent in the concept of flat
plate structures may thus be expected to be enhanced.

For regulär structures, the implementation of the Panel Method is straight-
forward. The column centre to centre spans in each direction define the size of the

panels and their aspect ratios (L/S). By following the method outlined in the Appendix,
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the stiffness matrix of each panel may be tabulated. This data, plus the column
stiffness matrices would then form the overall structure stiffness to which vertical
and lateral loads may be applied. The analysis would then follow the stiffness

analysis procedures of ordinary frame structures. Such an analysis would yield the

moment transferred, and the movement of each column/slab joint. Any of several

available mthods could then be used to design or check the details of the structural
members.

Conclusions

In this paper, the proposed panel method of analysis for multistorey Hat plate

buildings under lateral and/or vertical loads has been presented. The method

assumes a structural system which consists of columns and floor slab panels which

are defined by adjacent column lines in both directions. The method has been

shown to model plate behaviour with comparable aecuraey to a refined finite
element analysis. It achieves this with a smaller number of equations and hence

with less computation cost.
The proposed structural system requires the least approximation of the actual

structure whilst allowing for vertical, horizontal and twist loadings. The problems
of determining the stiffness and carry over factors of conventional equivalent
beams are eliminated whilst all the necessary parameters, particularly the column/span
ratio, are included. Finally, the proposed method of analysis allows the moment
resultants in the floor slabs to be defined more accurately, thereby enabling
engineers to achieve greater economy and safety in the design of buildings with
flat plate floors.
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0 Ol
n ni

3 92
2 74
7 51

3 18
2 12
1 97

3 76
2 19
1.91

0 75
0 11
0 09

0 78
0 39
n 3?

0 07
0 02
n m

-0 05
-0 02

n ni

0 04
0 02
n n?

0 02
0 03
n n7

0 Ol
-0 Ol
-n.m

0 04
0 02
n.n?

0 03
0 05
n ns

0 Ol
0 Ol
n ni

1 76
1 09
n 97

Table 4 Lower Triangulär Stiffness Matrix for Rectugular Corner Panel

[All values to be multiphed by Et3/12 (1 - n2)LS]

1

15 30
11 13
10.44

Square, Row 1

Row 2

Row 3

c/L =¦ 1/8
c/L 1/16
c/L 1/20

f
f1
1

I

i;

12

3

s
0 00
0 00
0 00

3 Ol
1 95
1.78 t8

L
3 38
2 24

0 00
0 00
0.00

1 51
1 00
0.91

i

1

5 07
-4 12
-3.98

2 43
-1 62
-1 48

-0 17
-0 16
-0 16

15 30
11 13
10 44

i

I5
2 44
1 60

1 02
0 55
0.47

0 10

0 07
0.07

0 00
0 00
0.00

3 Ol
1 95
1.77

l4 6 V

S

ymmetric

L
-0 16

0 16

0 10
0 07
0.07

-0 06
0 03
0.0.3

3 38
2 24
2.0.3

0 00
0 00
0.00

1 51
1 00
0.91

1

1 02
0 89

0 21

-0 18
-0 25

-0 18
-12 48
-9 37

8 RR

0 00
0 00
n.no

3 16
2 08
1.89

15 96
12 49
11.96

s

S

0 33
0 32
0.31

0 29
0 20
0.18

0 12
0 08
0.07

0 00
0 00
0.00

0 71
0 35

.,0,30

0 00
0 00
0.00

0 00
0 00
0.00

2 88
2 05
1.90

L
0 11

0 10
0 06
0 04
0.04

0 05
0 03
n.n.3

2 92
1 90
1.71

0 00
0 00
o.nn

0 57
0 31
0.26

0 03
0 05
0.05

0 00
0 00
0.00

1 46
1 02
0.94

1

12 48
-9 37

0 00
0 00

3 16
-2 08

1 02
0 89
n 8R

0 21
0 18
n 17

-0 25
0 18

-n 17

-4 18
3 57

-3 50

1 91
1 35
1 75

0 02
0 02
0 07

15 96
12 49
11.96

S

0 00
0 00

-0 71
0 35

0 00
0 00

-0 33
0 32

0 29
0 20
n 18

0 12
-0 08
-n 07

1 91
-1 38
-1 78

0 77
0 46
n.41

0 Ol
0 Ol
O.Ol

0 00
0 00
n oo

2 88
2 05
1 90

L
2 92
1 90
1.71

0 00
0 00

..0,00

0 5"
0 31
0 76

0 11

0 10
0,09

0 06
0 04
0,04

0 05
0 03
n n3

0 02
0 02
0 04

-0 Ol
0 Ol
0.01

0 04
0 02
0.02

0 03
0 05
n.ns

0 00
0 00
0.00

1 46
1 02
n.94

Table 5 Lower Triangulär Stiffness Matrix for Rectugular Edge Pannel Free Edge on Long Side

[All values to be multiphed by Et3/12 (1 - u2)LS]
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16 21
13 Ol

r12.53
In each Square Row 1 c/L 1/80 00 2 88

0.00 1.89
Row 2 c/L 1/16
Row 3 c/L 1/20 f11 \s

0 00 0 00 1 53 fio 12
1

7 9

n nn n nn
1

1

3 97 1 85 0 00 16 21
3 29 1 28 0 00 13 Ol 1

3 71 -1.18 n.nn 17.53

iL 3

js
1 84 0 75 0 00 0 00 2 88 I4 .61 31 0 44 0 00 0 00 2 04
1 71 0 -.8 0.00 o.on 1 .89
0 00 0 00 -0 03 0 00 0 00 1 53
0 00 0 00 -0 02 0 00 0 00 1 07
1.00 0.00 -0.02 0.00 o.on 0.91
0 24 -0 52 -0 21 13 82 0 00 -3 11 16 21
0 03 0 48 -0 18 -11 32 0 00 -2 12 13 Ol Symmetrie
o.oo 0.47 -0.17 -10.96 n nn -1 9 17 53
0 5j 0 36 0 10 0 00 -0 77 0 00 0 00 2 88
0 48 0 26 0 06 0 00 -0 44 0 00 0 00 2 04
0.47 0.74 0.06 0.00 0. ,9 0,00 0.00 1 .89
0 20 0 09 0 04 3 04 0 00 0 55 0 00 0 00 1 53
0 17 0 06 0 02 2 02 0 00 0 30 0 00 0 00 1 07
0.16 0.06 O 07 1 86 o on 0 75 n.nn n nn

-13 82 0 00 -3 11 0 24 0 52 -0 21 -3 97 1 85 0 00 16 21
-11 32 0 00 -2 12 0 03 0 48 -0 18 -3 29 1 28 0 00 13 Ol

10,96 0.00 1.04 0 on 0 47 n 17 -3 71 1 1R
0 00 0 77 0 00 0 53 0 36 0 10 1 84 0 75 0 00 0 00 2 88
0 00 0 44 0 00 0 48 0 26 -0 06 -1 31 0 41 0 00 0 00 2 04
0,00 0,39 o.nn n 47 0 74 0 06 -1 71 n -a
J 01 0 00 0 55 0 20 0 09 0 04 0 00 0 00 0 03 0 00 0 00 1 53
2 02 0 00 0 lO 0 17 -0 06 0 02 0 00 0 00 -0 02 0 00 0 00 1 07
l.fift 0.00 P. ,2S 0.10 -n niy OH?. n.nn n ni) 11 n? .o.on n.nn.. 0.91

Table 6 Lower Triangulär Stiffness Matrix for Rectugular Internal Panel
[All values to be multiphed by Et3/12 (1 - n2)LS]

18 52
13 49
12 65

In each squar 3, Row 1

Row 2

Row 3

c/L
c/L
c/L

1/8
1/16
1/20

1

0 12
i

3 98
2 80
7 5R

3 19
2 13
1 93 i:

t:

8

0 00
0 00
0.00

0 00
0 00
0.00

1 73
1 07
0 95

7 ,,9

3

al

j
—?

ii

-3 88
-3 04

2 91

-1 80
-1 22

1 11

0 00
0 00
0.00

16 29
12 91
12.40

1 87
1 29
1 18

0 76
0 44
0.39

0 00
0 00
n nn

0 Ol
0 02

2 90
2 08 4

|
6

0 00
0 00
o nn

0 00
0 00
n on

-0 03
-0 02
-n n?

0 00
0 00

0 00
0 00

1 43
0 99

0 jl
0 17
n 17

0 49
-0 42

n 4n

-0 iS
-0 13

n m

-13 90
11 34

0 Ol
0 02
0.02

3 13
2 10

-1.9?

16 29
12 91 ymmetric

0 54
0 48
0 46

0 37
0 26
0.24

0 08
0 03
0.07

0 Ol
0 02
0.0?

-0 79
-0 47

0 41

0 00
0 00
o.on

0 Ol
0 02

2 90
2 08

0 07
-0 08
-0.08

0 02
0 00
O.Ol

0 Ol
0 02
0.02

3 06
2 03
1.86

0 00
0 00
n nn

0 55
0 29
0 75

0 00
0 00
n.nn

0 00
0 00

1 43
0 99

-16 28
12 13

-11 51

-1 94
1 38
1.28

-3 93
2 41

-7 14

0 31
0 17
n 17

0 49
0 42
n /in

0 33
-0 13

-3 88
3 04

-7 91

1 80
1 22
1 11

0 00
0 00

18 52
13 49
12.6S

-1 96
-1 39
-1. >n

1 06
0 55

-0.46

0 32
0 18

-n 16

0 54
0 48
0 /if.

0 37
0 26
0.24

-0 08
-0 03
0.02

-1 87
-1 29
-1 1»

0 76
0 44
0.39

0 00
0 00
0.00

3 98
2 80
2.58

3 19
2 13
1.93i 88

2 34
2.09

0 31
0 17

0.15

0 77
0 38
0.32

0 07
0 08

-0.08

-0 02
0 00
0.01

0 03
0 02
n n?

0 00
0 00
n.nn

0 00
0 00
n nn

-0 03
-0 02

n ni

0 00
0 00
n.nn

0 00
0 00
n nn

1 73
1 07
n nc

Table 7 Lower Triangulär Stiffness Matrix for Rectangular Edge Panel Free Edge on Short Side

[All values to be multiphed by Et3/12 (1 - u2)LS]
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FLOOR

LEVEL

COLUMN END MOMENTS (kN-m)

EXTERIOR COLUMN INTERIOR COLUMN

FEM PM EQF FEM PM EQF FEM PM EQF

10 13.63 13.96 19.12
1.72

-0.82
4.11
0.96

2.72
-1.73

8.55
5.80

6.13
3.82

9.56
4.68

9 13.24 13.S2 18.63 9.39
4.72

10.73
6.22

11.02
3.24

17.35
14.26

15.84
12.73

18.74
12.72

8 12.63 12.85 17.81 14.79
10.22

16.24
11.74

16.31
8.46

27.22
23.97

25.57
22.46

28.94
22.48

7 11.76 11.94 16.62 20.36
15.86

21.71
17.31

21.77
13.92

36.81
33.65

35.23
32.24

38.68
32.30

6 10.65 10.78 15.05
25.90
21.56

27.14
22.92

27.13
19.42

46.37
43.34

44.88
42.05

48.43
42.17

5 9.29 9.37 13.10
31.47
27.35

32.56
28.57

32.50
25.04

55.85
52.97

54.49
51.85

58.08
52.02

4 7.68 7.74 10.79
37.09
33.22

38.01
34.28

37.80
30.78

64.00
62.59

64.02
61.65

67.54
61.94

3 5.84 5.88 8.12 42.76
39.7.3

43.48
40.59

42.78
37.70

74.16
71.94

73.18
71.25

76.14
71.93

2 3.79 3.81 5.13
47.01
47.02

47.48
47.59

44.60
47.88

81.69
83.36

80.98
82.97

80.95
85.59

1 1.61 1.61 2.03 42.87
82.92

43.04
83.10

31.60
93.63

68.20
95.57

67.87
95.52

57.62
106.62

Table 8, Example 1: Lateral Deflections and Column End Moments

FLOOR

LEVEL

LATERAL COLUMN END MOMENTS (kN-m) ROTATION DUE TO APPLIED

DEFLECTION(mm) COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 TWIST (10-6 RADS)

FEM PM FEM PM FEM PM FEM PM FEM PM FEM PM

10 10.65 10.42 5.37
-8.40

5.43
-8.41

10.88
-4.22

10.26
-4.71

7.70
-6.06

8.67
-5.85

16.38
0.34

16.11
0.12 2.98 2.99

9 10.31 10.11 16.27
-8.59

16.32
-8.64

20.20
-3.48

19.98
-3.90

18.41
-5.74

18.92
-5.32

25.08
2.61

25.06
2.54

2.88 2.89

8 9.80 9.63 20.75
-7.40

20.84
-7.50

27.62
0,15

27.33
-0.35

24.65
-2.96

25.35
-2.52

35.87
9.27

35.87
9.12 2.74 2.75

7 9.07 8.93 24.50
-4.80

24.60
-4.95

33.50
5.05

33.22
4.49

29.95
1.25

30.62
1.64

44.60
17.19

44.70
17.04 2.53 2.54

6 8.09 7.99 27.00
-1.24

27.15
-1.44

38.41
10.97

38.17
10.34

34.05
6.43

34.84
6.78

52.60
26.17

52.80
25.99

2.26 2.27

5 6.88 6.81 28.40
3.84

28.59
3.56

42.00
18.17

41.81
17.47

37.05
13.00

37.82
13.27

59.00
36.02

59.38
35.95

1.92 1.93

4 5.45 5.40 27.64
11.87

27.90
11.52

43.10
27.85

42.98
27.10

37.60
22.20

38.43
22.41

62.60
48.00

63.00
47.78 1.52 1.52

3 3.85 3.82 22.43
26.58

22.75
26.20

38.80
42.80

38.76
42.12

33.15
37.22

33.93
37.32

59.50
63.50

60.00
63.29

1.07 1.07

2 2.19 2.17 7.16
55.20

7.50
54.80

22.55
69.80

22.60
69.17

17.30
64.60

18.03
64.81

42.10
88.20

42.59
88.06 0.60 0.61

1 0.72 0.71 -29.68
118.70

-29.35
118.50

-20.47
123.30

-20.29
123.00

-23.55
121.70

23.06
121.61

-8.95
129.10

-8.44
128.92 0.20 0.20

Table 9, Example 2: Lateral Deflections, Column End Moments and Lateral Twist
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Appendix

Data Preparation

To illustrate the procedure for evaluating a panel stiffness matrix, a typical
panel, shown in Fig. 10b will be examined. In this example c/L 1/8 in each
direction and the aspect ratio (L:S) is 9m:6m. Stiffness values for the panel are
therefore taken from the top rows (since c/L= 1/8) of Table 7.

Using as data E 25000 MPa, r Ö.2m and ^i 0.15 the value of Et3/12
(1 - u2) LS is 316 kN/m.

To establish the value of K(8,3), for instance, we note that the values of
row 8 are multiphed by L, and the values of column 3 are multiphed by S.

K(8,3) would therefore be (316 x 103) x 9 x 6 x 0.084 1433 kN/m.
In like manner, the füll matrix may be evaluated.
As this panel is oriented differently from the reference diagram of Table 7,

the stiffness matrix must be rotated. This is performed by a congruent transformation
which has the form:

K RKRT

© ©

Free
Edge

f© © 4 6 X

(a) Reference diagram of Table 7

Y

10 12

© ©

Free
Edge

© ©.

b) Example panel.

Fig. 10. Panel rotation to suit boundary conditions.
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where K is the resultant stiffness matrix.
Matrix R contains four submatrices r, which perform the axis rotation of the

three freedoms at each node.

In terms of generalised forces, the matrix r forms the relation:

Pi
P.2

P3J

Cn
c21

.£-31

£-12

C22

c 32

£-13

C23
C33 L^3J

where Ci;- are direction cosines.

For the example panel, the rotation is 180°, therefore:

r
1 0 0'
0 -1 0

0 0-1
The moment sign Convention used is that positive rotations cause a positive

slope in the direction of the axis.
The final step is to move the nodes to their new positions. In this example,

node 1 is interchanged with node 3, which is achieved by placing submatrix

r in R(3,l). Likewise the other nodes are interchanged as indicated in the matrix:

~0 0 r 0~
0 0 0 r
r 0 0 0

.0 r 0 0J

R

Notations

The following Symbols are used in this paper:
Ctj direction cosines.

c column thickness in x direction.
D flexural rigidity of plate.
d column thickness in v direction.
E Young's Modulus.
EQF equivalent frame method.
FEM finite element method.
K panel stiffness matrix.
K transformed panel stiffness matrix.
L column centre to centre span in x direction.
P lateral point load.

P; generalized nodal forces.

P; transformed forces.

PM panel method.
R rotation transformation matrix.
r transformation submatrix.
S column centre to centre span in y direction.
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Se effective width in y direction
t plate theckness
w nodal deflection orthogonal to plate
u Poisson's Ratio
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Summary

Presented herein are the stiffness matrices of flat plate floor panels m non-
dimensional form for use as input data for a three dimensional frame analysis
Computer program The tabulated stiffness values take into account the parameters
involving the size of the floor panel and the cross sectional dimensions of the

supportmg columns
Two multistorey buildings are analysed to demonstrate the application of the

method and its advantages over alternative methods
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Resume

Les auteurs etudient les matrices de rigidite de dalles plates — dans une
presentation sans dimension — en tant que donnees pour un programme de calcul
ä Fordinateur de cadres tridimensionnels. Les valeurs de ridigite indiquees en forme
de tableaux tiennent compte de parametres relatifs aux dimensions des dalles
ainsi qu'aux sections des colonnes.

Deux bätiments ä plusieurs etages sont calcules et montrent 1'application de la
methode ainsi que ses avantages par rapport ä d'autres procedes.

Zusammenfassung

In der vorliegeden Arbeit werden die Steifigkeitsmatrizen für die Felder von
Flachdecken in dimensionsloser Form zum Gebrauch als Eingabedaten für ein
dreidimensionales Computerprogramm dargestellt. Die tabellarisch angegebenen
Steifigkeitswerte berücksichtigen die Abmessungen der Deckenplatten sowie die
Querschnittsabmessungen der Stützen.

Zwei mehrstöckige Bauten werden berechnet, um die Anwendung der Methode
und ihre Vorzüge gegenüber anderen Verfahren zu belegen.
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