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Panel Method for Multistorey Flat Plate Structures
Calcul de structures en dalles plates a plusieurs étages

Berechnung von mehrstéckigen aus Flachdecken und Stiitzen bestehenden
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S. FRENCH D.C. BLACK
Teaching Fellow Research Fellow
V.A. PULMANO A.P. KABAILA
Senior Lecturer Associate Professor

School of Civil Engineering, The University of New South Wales, Kensington, Australia.

Introduction

The continuing search for economy in buildings has led to the recognition of
the contribution made by flat plate floors to the overall lateral structure stiffness.
Current practice is to - approximate each floor by equivalent beams spanning
between the columns, in the direction of the lateral load. These may be used in the
analysis of an equivalent frame as mentioned in most building codes, e.g. the ACI
Code 1971 [1] and the SAA Code 1480-1974 [2]. This approach produces a very
inadequaterepresentation of the three dimensional behaviour of each floor. Transverse
behaviour is only approximated by adding a torsional component to the column
stiffness, whilst diagonal interaction is neglected completely. CarPENTER [3] found
that the moment carried over longitudinally from one column to the next by the
floor is less than that predicted by the ACI equivalent beam approximation.
The ACI method, when estimating the effective width of the equivalent beam,
takes no account of the effects of the dimensions of the column, or the plate.
In addition, the equivalent frame method is generally applicable only to the
internal bents in a structure.

To overcome these problems, this paper presents an alternative method of
analysis, referred to here as the “Panel Method”. This method considers a structural
system consisting of columns and floor slab panels, which are defined by the grid of
lines through the column centres in both directions. Once the bending stiffnesses of
the panels are known, the structure is analysed by the stiffness procedures used
for ordinary frame structures.

The bending stiffness of regular square column supported plates has been
investigated by Faurkes [4] and SMit [5], using non-conforming finite elements.
They found that appreciable moments did not carry over more than one bay away
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from the point of moment application. They were thus able to produce (8 x 8)
matrices representing the moment stiffnesses of the three types of floor panels,
namely the corner, edge and internal panels, as shown in Fig. 2.

In this paper the panel stiffnesses have been recalculated using compatible
quadrilateral elements [6]. The scope has been expanded to include rectangular
panels with an aspect ratio of 1.5:1 and also to include the vertical freedom at
each node (Fig. 1). This inclusion is essential where column axial deformation

effects are significant. The three freedoms at each node are thus (w, Z—W, a(;l)
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Fig. 1. 12 Degree of freedom panel.

m) m (o 7 (n
1 | 1
1 | 1
c | E | E ! ¢
1 I I
R oo 9------ @ - 3
1 1 |
1 ] 1
E | I X I X E
; 1
o [ g------ I%I —————— Oo------ (=
i 1
t I 1
C | £ i E ! c
| i |
m) n n o

C = Corner Panel
E = Edge Panel
I = Internal Panel

Fig. 2. Flat plate floor comprised of corner edge and internal panels.

The evaluation and the application of these stiffness matrices are described in
this paper. Results have been obtained for three values of column/span (c/L),
covering the normally used range. The stiffnesses of both rectangular and square
panels are tested in multistorey building analyses. To provide a performance com-
parison, analyses of the buildings were also carried out using a complete finite
element representation and the equivalent frame method.
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Stiffness of Panel Element

Method of Obtaining Panel Stiffness

A finite element analysis was carried out for each of the panel configurations
investigated. The plates considered were 4 x 4 bays. However, by utilizing symmetry
only one quarter of each plate had to be analysed. Boundary conditions specified
along the lines of symmetry represented either symmetry or antisymmetry.

Stiffness values at the columns were obtained by applying in turn unit dis-
placements at each column freedom, the resultant forces at each freedom being the
stiffness terms for that displacement.

Finite Elements Used in Obtaining Panel Stiffness

Compatible quadrilateral elements, as described by KaaiLa et al. [6], were
chosen for the analysis. Their superior performance has been demonstrated by
Brack et al. [7]. The meshes used for the square and rectangular cases are
shown in Fig. 3b and c. To provide accurate modelling in regions of high curvature,
the mesh grading technique of SOMERVAILLE [ 8] was used extensively.

Column axes were connected to the boundaries of abutting elements by
“rigid arm”.
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Fig. 3. 4 x 4 Bay plates used in stiffness generation.
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Extraction of Panel Stiffnesses

Output from the finite element program consisted of the (27 x 27) stiffness
matrix of the quarter plate for each value of ¢/L and each set of boundary
conditions. Suitable combination of the boundary conditions produced the stiffness
which would result from an analysis of the complete plate. The (12 x 12) stiffnesses
of the corner, edge and internal panels were extracted from these results. The
numerical value of each panel stiffness coefficient had to be divided by the number
of panels through which that action was transmitted.

The non-dimensionalization of each panel stiffness followed the method of tabula-
tion used by Przemieniecki [9]. First, the whole stiffness matrix was divided by
D/LS, where D = Et*/12(1 — p*) and L and S are the side lengths of the panel.
This left factors of § and L in all rows and columns relating to the freedoms

0 0 : . ..
il and lrespecuvely. The appropriate rows and columns were then divided by

0x ay
S or L as indicated in the tables. This procedure, on reversal, gives the stiffness
of any size panel with that aspect ratio.

Tables 1 to 3 give the non-dimensionalized stiffness coefficients for corner,
edge and internal square panels respectively. The three values in each square of
the tables are the stiffness values for column/span ratios of 1/8, 1/16 and 1/20
respectively. Similarly, Tables 4 to 7 give the stiffness matrices for rectangular
panels which have an aspect ratio of 1.5:1 and the same column/span ratio in
both directions. Four tables are required in this case because the edge panels
may have either their long or short sides along the free edge.

INustrative Examples

To use the tabulated stiffnesses it is necessary only to reintroduce values of the
appropriate parameters as described in the Appendix. Stiffness values for ¢/L ratios
other than those tabulated may be obtained by interpolation. The matrices thus
formed may then be used directly as input data for a three dimensional stiffness
program. Assembly of the structure stiffness follows the same procedure as for
other structural elements.

The performance of the panel method is demonstrated by the analysis of the
two structures given below. A description of these buildings is followed by an
outline of the two methods used for comparison.

Example 1: Interior Bay of a Ten Storey Building

To check the performance of the stiffness matrices of rectangular panels, one bay
of the building shown in Fig. 4 was analysed by the panel method for a distributed
lateral load. The structure has three bays in the transverse direction and is assumed
to have many bays in the longitudinal direction. The columns have a uniform
cross-section and are proportioned so that the column/span ratio (c/L) is 1/8 in each
direction. '
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The building was also analysed using a full finite element solution and by the
equivalent frame method. Displacement and column moment diagrams are given in
Figs. 6, 7 and 8. The values are given in Table &.
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Fig. 5. Example 2: 3 X 3 bay 10 storey building.

Example 2: 3 x 3 Bay Ten Storey Building

This example demonstrates the manner in which horizontal shear loads are
distributed within a structure. The building, whose details are given in Fig. 5 spans
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three bays in each direction. The tabulated stiffnesses for ¢/L=1/8 and aspect
ratio =1 were used. The results (Figs. 9a, 9b and Table 9) show the horizontal
deflection and column shear forces for a uniformly distributed lateral load.

The power of the method over equivalent frame methods is also demonstrated
by the analysis of the structure subjected to a distributed twist load. The rotations
produced by this loading are plotted in Fig. 9¢c. For each loading case the full
finite element solution results are also given.
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Finite Element Method (FEM)
Both structures were analysed using finite element meshes to represent the floor
plate. Compatible quadrilateral elements were used in the substructure program
described by PuLmano et al. [10]. The division of the floor plates into finite

elements is shown in Figs. 4c¢ and 5c¢. This method provides the closest available
approximation to the elastic solution and its results are used as reference values.
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Fig. 8. Example 1:bending moment diagram of interior column.

Equivalent Frame (EQF)

A two dimensional equivalent frame representation of the first example was
analysed for the applied lateral loads. Several investigators have suggested various
parameters with which to estimate a reliable value of the effective width (S,) of
the slab. QADEER and Starrorp SmitH [11], by simultaneously rotating two
columns of an internal panel using finite difference methods, produced a family
of curves for effective width. In a discussion of this paper, MicuaeL [12] produced
a single graph for effective width. From this graph the value of §,=0.59S was
obtained for example 1.

Note that the recommendations of both papers are only strictly valid for
internal panels of an internal bay. In a structure such as that of example 2
the distribution of shear forces differs significantly from the assumed conditions thus
rendering the effective width recommendations inapplicable.
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Discussion of Results

The lateral deflection curves for both examples show close correlation between
the panel method and the finite element method. The maximum difference, which
is less than 2% %, is due to the difference between the finite element meshes used
in the FEM solution and those used in generating the panel method (PM) stiffnesses.
From the deflection and column moment results it can be concluded that both the
square and rectangular PM stiffnesses provide a close approximation to the more
sophisticated methods of analysis. The reduction in the number of unknowns and
hence of storage requirements and computation cost savings, is an attractive
feature.

In contrast with these results, the deflection at the top of the equivalent frame
is 40% greater than the FEM value. This results from the failure of the method
to properly reflect all the relevant parameters. Although the deflection predictions
for this case are on the safe side, there is no guarantee that this will be maintained
for other column and panel configurations.

The column shear force diagram for example 2, shown in Fig. 9b indicates the
way in which shear forces are distributed within a flat plate building. Although the
horizontal displacement of all columns is the same at each floor level, the
interior columns carry the largest shear loads. This is due to the greater slab
bending stiffness at these joints causing them to attract a greater share of the load.
An equivalent frame analysis could not take this transverse redistribution into
account.

Excellent correlation is achieved between the FEM and PM results for the
second example when it is subjected to a distributed twist load. The analysis of non-
symmetric structures or non-symmetric loading is not possible using the equivalent
frame method.

Applications

Until the present time, the situation relating to the lateral analysis of flat plate
structures has been one of conflict and uncertainty. The ACI Committee 442 on
Response of Buildings to Lateral Forces [13] noted that little research has been
done to represent the stiffness of flat plates which connect columns. In fact, available
test results have shown that values for effective width of less than the full slab width
[11], equal to the full width [14], and greater than full width [15] are valid
under different circumstances.

This situation is greatly clarified by the application of the Panel Method to the
analysis of these buildings. As the method accounts for all the dimensional
parameters of the plate, the resultant stiffness is more accurate, thus giving greater
reliability to the results. The danger of significantly over or underestimating the
plate stiffness is effectively eliminated. The economy inherent in the concept of flat
plate structures may thus be expected to be enhanced.

For regular structures, the implementation of the Panel Method 1s straight-
forward. The column centre to centre spans in each direction define the size of the
panels and their aspect ratios (L/S). By following the method outhined in the Appendix,
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the stiffness matrix of each panel may be tabulated. This data, plus the column
stiffness matrices would then form the overall structure stiffness to which vertical
and lateral loads may be applied. The analysis would then follow the stiffness
analysis procedures of ordinary frame structures. Such an analysis would yield the
moment transferred, and the movement of each column/slab joint. Any of several
available mthods could then be used to design or check the details of the structural
members.

Conclusions

In this paper, the proposed panel method of analysis for multistorey flat plate
buildings under lateral and/or vertical loads has been presented. The method
assumes a structural system which consists of columns and floor slab panels which
are defined by adjacent column lines in both directions. The method has been
shown to model plate behaviour with comparable accuracy to a refined finite
element analysis. It achieves this with a smaller number of equations and hence
with less computation cost.

The proposed structural system requires the least approximation of the actual
structure whilst allowing for vertical, horizontal and twist loadings. The problems
of determining the stiffness and carry over factors of conventional equivalent
beamsareeliminated whilst all the necessary parameters, particularly the column/span
ratio, are included. Finally, the proposed method of analysis allows the moment
resultants in the floor slabs to be defined more accurately, thereby enabling
engineers to achieve greater economy and safety in the design of buildings with
flat plate floors.
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0.00 | -0.11 | 0.00}-0.31 | 0.10 | -0.08 [-1.76 | 0.37 | 0.00 | 0.00 | 1.40
000 b-oqn !l 000l-0.30 | 0,00 |.007 [-162 | 032 | 0.00 | 0.00 | 129
2.49 § 0.00 § 0.66[ 0.35 |-0.1z | 0.15 | 0.00 | 0.00 | -0.20 ] 0.00 | 0.00 | 1.97
1.70 | o.00 | 0.57] 0.31 |-0.08 { 0.10 } 0.00 | o0.00 | -0.11 | 0.00 | o0.00] 1.40
1.56 | 0.00 F 0.321] 0.30 |-0.07 | ooe [ o.00 | 0,00 -0.10 | o0:00 | o0.00 | 1.20
1 5 L 1 s L 1 s L 1 s

Table 3: Lower Triangular Stiffness Matrix for Square Internal Panel
[All values to be multiplied by Et*/12 (1 — p?)LS]
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17.52
1 11.56
10.55 Y
3.78 3.34 In each square, Row 1: ¢/L = 1/8 L=1.58
s 2.30 | z2.09 Row 2: ¢/L = 1/16
20al 1,87 Row 3: ¢/L = 1/20 T” ls
4.13 ] 0.51 1.82
L 2.42 1 0.26] 1.11 U |
212} 0,221 0,98 ]
4,96 | -2.47 | -0.11}15.34 1
1 -3.84 | -1.61 ] -0.06 | 11.02 ! S
_3.65 1 -1.46 | -0.05 [ 10,32 fz 5
2.38 | 1.04] 0.07] 0.01 | 3.02 1 3 4
s 1.53 | 0.56| o0.04| 0.02 | 1.97 e ofoft X
1.37 1,48 0.04 0.02 178
_0.16 | -0.11 | -0.06| 3,40 | 0.00 | 1.51
L {-0.13)-0.081% -0.02| 2.22 | 0.00 | 1.00
=013 -0.07 =0.02 2.02 .00 £.90
1.12 | -0.24 | -0.21 }12.54 | o0.01 | -3.17 | 15,99
1 1.06 | -0.22 | -0.12|-9.39 | 0.02 |-2.08 | 12.40 symmetric
1,06 =021 -0,111-8.9] 0. 02 =189 11.87
0.28 | 0.30 1 o0.10] 0.01 |-0.68 | 0.00 | 0.01 | 2.89
s 0.24 | 0.21 0.06 | ¢.02 |-0.37 | 0.00 | ©0.02 | 2.07
0.23 0.19 0,05 Q.02 =0, 32 0.00 0,02 1.92
0.11 | 0.07 | 0.04t 2.95 | 0.00 | 0.57 | 0.03 | 0.00 | 1.47
L 0.08 {1 0.04 ] o0.02] 1.87 | 0.00 { 0.30 | 0.05 | 0.00; 1.01
0.08 0,04 0.02 1.69 .00, .26 Q.05 0.00 0,93
T14.94 | -1.43 | -4.00 | 1.02 § 0.19 | -0.24 |-4.120 | 1.87 } 0.02 | 18,29
1 (-10.23 | -0.79 | -2.40 | 0.95 | 0.14 | -0.37 | -3.32 1.29 | ©0.02 | 13.01
=948 -{.69 =2.13 0.96 Q.13 =015 =3.19 117 0.02 12,18
T1.61 ] -0.95 | -0.36 |-0.33 | 0.29 |[-0.13 | -1.94 { 0.79 | ©0.01 | 3.92 | 3.18
s |-1.06 | -0.45 | -0.21}-0.29 | 0.20 |-0.08 |-1.36 | 0.47 | 0.0% 2.74 | 2.12
-0.57 =0.38 =0.18 1-0.28 Q17 =0.07 =1.28 .41 001 2.51 .92
3.76 ¥ 0.25 | 0.78 | 0.07 }-0.05 | 0.04 0.02 | -0.01 | -0.04 | 0.03 | 0.01 | 1.76
i 219 | 0,11 ] o0.39) 0.02 |-0.02 | 0.02 | 0.03 | -0.01 | -0.02 | 0.05 f 0.01 | 1,09
1.91 0. 09 0,32 0,01 =001 0002 002 =0.01 =007 0..0s 0.0l 097
1 5 L 1 s L 1 s L 1 S L

Table 4: Lower Triangular Stiffness Matrix for Rectugular Corner Panel
[All values to be multiplied by Et®/12 (1 — p*)LS]

15.30
1 %1.15
0.34 ¥
o_é’o 50T In each square, Row 1: ¢/L = 1/8 ‘
s 0.00 1,95 Row 2: ¢/L = 1/16
000 1.78 Row 3: ¢/L = 1/20 _ Ill ts
3.38 | 0.001 1.51 b g2 ___ I

L 2.24 0.00 1.00
2.03 0,00 0,91

]
-5.07 | -2.43 ] -0.17 [ 15.30 :
1 | -4.12{ -1.62 | -0.16]11.13 T

-3,98 | -1.48 | -0.16110.44
2.44 1.02 0.101 0.00 3.01

1451 0.47 1 007l 0

T0.16 | -0.10 | -0.06] 3.38 | 0.00 | 1,51
2
2

L -0.16 | -0.07 | -0.03 24 0.00 1.00
-0.16 ! -0.07 } -0,03 03 i 0,00 0.91

1,02 } -0.21 } -0.25 +12.48 0.00 | -3.16 | 15.96
1 0.89 | -0.18 | -0.18 1 -9.37 0.00 | -2.08 | 12.49 symnetric
.88 =0.17 =0.17 { =8 88 0.00 -1.89 11.36
+0.33 0.29 0.12 | 0.00 |-0.71 0.00 0.00 2.88
S 0.32 0.20 0.08 | 0.00 |-0.35 0.00 0.00 2.05
0,31 0,18 0.07 | 0,00 {-0,30 0.00 0,00 1.30
0.11 0.06 0.05 1} 2.92 0.00 0.57 0.03 0.00 1.46
L 0.10 0.04 0.03 ¢ 1.90 0.00 0.31 0.05 0.00 1.02
0.09 0.04 0,031 1,71 0,00 0.26 0.05 0.00 0,94
-12.48 0.00 | -3.16 | 1.02 0.21 }-0.25 | -4.18 1.01 0.02 { 15.96
1 -9.37 0.00 ¢ -2.08 | 0.89 0.18 {-0.18 | -3.57 1.35 0.02 |12.49
-8 88 0.00 -1.89 .88 417 =017 =3.50 1.25 002 11.96
0.00 | -0.71 .00 1-0.33 0.29 | -0.12 {-1.91 0.77 .01 0.00 2.88
S 0.00 t -0.35 0.00 | -0.32 0.20 {-0.08 |-1.38 0.46 0.01 0.00 2.05
0.00 [ -0.30 0,000-031 1 018 1-0.07 | -1.28 0.4% 0.01 0.00 1.90
2,92 .00 0.57{ 0.11 | -0.06 0.05 0.02 | -0.0% | -0.04 0.03 0.00 1.46
L 1.90 .00 0.31 0.10 |-0.04 0.03 0.02 | -0.01 | ~0.02 0.05 0.00 1.02
1.71 0.00 0,261 0,09 1-0.04 0.03 0.04 1 -0.01 =0.02 0.05 .00 0,

1 s L 1 s L 1 S L 1 S L

Table 5: Lower Triangular Stiffness Matrix for Rectugular Edge Pannel, Free Edge on long Side
[All values to be multiplied by Et*/12 (1 — p?)LS]
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16,21
1} 13.01 Y
12.53 Y
g.gg %.gs In each square, Row 1: ¢/L = 1/8
S . .04 Row 2: ¢/L = 1/16 11 8
0.00 1 1.89 Row 3: c/L = 1/20 r f
0.00 | 0.00| 1.53 10 12 7 9
L 0.00 { 0.00] 1.07 . R
004 0,00, 091 5
-3.97 | -1.85 | o.00] 1s.21 ! X
1 {-3.29 | -1.28] o.00| 13.01 i
=321 b -1.18 1 o.00l 12753 '2 fs
1.84 [ 0.75 [ 0.00| 0.00f 2.88
S 1.31 | 0.44| o0.00| o0.00{ 2.04 T ot8 X
.21 .38 0, 00 Q.00 1. 89
0.00 [ 0.00] -0.03| 0.00] 0.00| 1.55
L 0.00 | 0.00] -0.02| o0.00] o0.00| 1.07
0,00 1 0,001 -0.02] 0.00f{ 0.Co| 001
0.24 | -0.52 | -0.21 |-13.82 | 0.00| -3.11] 16.21
1 0.03 | -0.48 | -0.18 |-11.32| 0.00| -2.12]13.01 symmetric
000 ! -0.47 1 -0.17)-10961 ool -Terli3sa
0.55 | 0.36 | 0.10| 0.00| -0.77| o0.001 0.00 | 2.88
s 0.48 | 0.26 | 0.06 | 0.00| -0.44} o¢.00{ 0.00 | 2.04
047 1 024 | o006l o000l 0390 o.npi oo | 180
0.2 0.05 [ 0.04 | 2.04f 0.00] 0.55| 0.00 | 0.00 | 1.53
L 0.17 | 0.06 | 0.02! 2.02| o.00f 0.3 0.00 | 0.00 | 1.07
pd6 [ 006 | 002t 1.8 ] oo0l o3| oe0 | 0oo | 0o
-13.82 | 0.00 | -3,11} 0.24] 0.52] -0.21-3.97 | 1.85 | 0.00 |16.21
1 311,32 | 0.00 [ -2.12§ 0.03] o0.48] -0.18)-3.20 | 1.28 | ¢.00 |13.01
-10,.96 2,00 -1.904 0.00 0.47 017} -3.21 1.1R8 440 12 53
0.00 |-0.77 | 0.00 | -0.53} 0.36| -0.10{-1.84 { 0.75 | 0.00 | 0.00 | 2.88
s 0.00 !-0.44 | 0.00} -0.48} 0.26| -0.06|-1.31 | 0.44 | ©¢.00 | 0.00 | 2.04
0,00 -0.39 0,00 =0.47 0.24 00481 -1 .21 0. 38 .00 000 1 1 89
5.04 | 0,00 | 0.55) 0.20) -0.00] o0.04] 0.00 | 0.00 | -0.03 | 0.00 | ©0.00 | 1.53
L 2.02 0.00 0.30 0.17 | -0.06 0.02 ] 0.00 0.00 | -0.02 0.00 0.00 1.07
1.86 0,00 0,25 Q.16 =006 102 {400 .80 =0.02 £ 0 10..00 0.9
1 s L 1 s L 1 s I 1 S L
Table 6: Lower Triangular Stiffness Matrix for Rectugular Internal Panel
[All values to be multiplied by Et*/12 (1 — p*)LS]
18.52
1 | 134990
12.65 ¥
3.08 3.19 In each square, Row 1: ¢/L = 1/8 I
S 2.80 2.13 Row 2: ¢/L = 1/16 11 8
2.58 1.93 Row 3: ¢/L = 1/20 , {
0.00 | 0.00| 1.73 10 12 7 9
b 0.00 | 0.00| 1.07 =t Sak R
0.00.| 0.00] 095
-3.88 [ -1.80 0.00 [ 16,29 ‘
1 | -3.04 ) -1.22] 0.00] 12,01 !
=291t -1l o0 12,40 *2 ]s
1.87 1 0.76 | 0.00| 0.01] 2.90
s 1.26 { 0.44] o0.00| o0.02] 2.08 e oy i o A5 X
1.18 0,39 0.00 Q.02 1.92
o.00 | 0.00{ -0.03] o.00( 0.00 | 1.43
L 0.00 | 0.00 | -0.02| o0.00| v.00 | o0.09
0,00 Q. 00, =0.02 0.00 000 0.91
0.31 | -0.49 | -0.33 [-13.90| 0.01 |-3.13 | 16.29
1 0.17 | -0.42 | -0.13 | -11. . - ;
0,17 _g 4% _g 11r31 -H g? 8 8% _%.21;(2) :1[53% FrmmEtRLcal
0.54 [ 703771 0.08 | 0.01]-0.79 | 0.00 | 0.01 | z.90
5 0.48 | 0.26 | 0.03! 0.02|-0.47 | 0.006 | o0.02 | 2.08
0.46 0.24 0,02 0,02 1-0.41 0,00 0,02 1.92
-0.07 | 0.0z | 0.05] 3.06| 0.00 | 0.55 | 0.00 | 0.00 | 1.43
L |-0.08 | 0.00 | 0.02| 2.03] 0.00 | 0.29 | 0.00 i 0.00 | ©.99
=0,08 1-0.01 | 0021 1.8 000 3 025 | ogo | oon | ne)
-16.28 | -1.94 | -3.93 { 0.31] 0.49 }-0.33 |-3.88 | 1.80 | 0.00 | 18.52
1 i-12.13 }-1.38 | -2.41 | 0.17{ 0.4z [-0.13 |-3.04 | 1.22 | 0.00 | 13.49
=11.51 =1.28 =2.14 017 040 =010 =-2.91 111 0.0p 12.65
-1.96 [-1.06 [ -0.32 | -0.54 | 0.37 |-0.08 |-1.87 | 0.76 | 0.00 3.981 3.19
§ §-1.39 |-0.55 | -0.18 | -0.48 | 0.26 |-0.02 {-1.20 | 0.44 | 0 00 2.80] 2.13
-2.30 120046 |-n 6] -0 asl 022 J-00> 123738 1 003 0.00 2.581_1:8%
5.88 | 0,31 | 0.77 § -0.07 {-0.02 | 0.03 | 0.00 | 0.00 |-0.03 o.00[ 0.00 | 1.73
L 2.34 | 0.17 | 0.38} -0.081{ 0.00 | 0.02 | o0.00 [ 0.00 |-0.07 0.00| 0.00 | 1.07
2.09 Q.15 0.32 1 -0.081 0,01 0.02 400 0.00 | -0.01 g.o0l 000 Q.95
1 5 L 1 s L 1 s L 1 s L

Tuble 7: Lower Triangular Stiffness Matrix for Rectangular Edge Panel, Free Edge on Short Side

[All values to be multiplied by Et3/12 (1 — p?)LS]
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COLUMN END MOMENTS (kN-m)
FLOCR LATERAL DEELECTION (mm)
EXTERIOR COLUMN INTERIOR COLUMN

LEVEL: FEM PM EQF FEM M EQF y FEM PM EQF
0 | ses | tses | waz | L2143} 27Iop 8 6as ) SR
o | w2 | omsz | omes | 3RO RE LSRNk 8n | bn
o | mes | maes | me | M| e ) tes ) maz o mer ) e
B I e e I B B 3 N - 3¢~
s | w65 | ws | wmses | Z0| 2 mas | odeE |l | aed
s | s | e | wmao | BT | gse | smse | sees | sas |
o | ores | omms | ows | Z% | o) mee ) oei ) % | O
A T e T B I I 8 B
2 | osa | ome | osas | 0| dnas e | om0t | R0
L | e | one | oees | 28| s ) oser | oshmo o S84 e

Table 8, Example 1: Lateral Def lections and Column End Moments

LATERAL COLUMN END MOMENTS {kN-m) ROTATION DUE TO APPLIED
FLOOR | DEFLECTION (mm) COLUMN 1 coLuMN 2 COLUMN 3 . COLUMN 4 7 TWIST (10-6 RADS)
LEVEL FEM PM FEM PM FEM PM FEM PM FEM PM FEM PM
TR TR FURCR I Wt it B I et e e 2.99
o | wos o | RN BR | E6 | B | B e | B | e 2.89
s | esofses| WIS NN | NE| 2| B V| e | 2.75
P | sor| mes | S| SN TRRR| MR NG 0N Tw | e 2.5¢
o | mos| neo | NI 0e | G0E| NN | eR | B0 | ee | 2% 2.27
s | sse| em | P90t RR| D | W | 1500 | 1527 Selos | sl | 12 1.3
o | sas| s | TSI ) SR S| | Be | e | v sz
3| ses| s | G RE| SR EE| P09 en|an | 1 1.07
2 | zas| 2w | (01 00| S50 | 6i7 | beieo | ehst| asiz0 | see | O 0.61
S IR NN it Pt Pt preied brerll Proiped Prosecl PR e B 0.20

Table 9, Example 2: Lateral Deflections, Column End Moments and Lateral Twist
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Appendix
Data Preparation

To illustrate the procedure for evaluating a panel stiffness matrix, a typical
panel, shown in Fig. 10b will be examined. In this example ¢/L.=1/8 in each
direction and the aspect ratio (L:S) is 9m:6m. Stiffness values for the panel are
therefore taken from the top rows (since ¢/L = 1/8) of Table 7.

Using as data E=25000 MPa, t=02m and p=0.15 the value of Et3/12
(1—p?)LS is 316 kN/m.

To establish the value of K(8,3), for instance, we note that the values of
row 8 are multiplied by L, and the values of column 3 are multiplied by S.

K (8,3) would therefore be (316 x 10°) x 9 x 6 x 0.084 = 1433 kN/m.

In like manner, the full matrix may be evaluated.

As this panel is oriented differently from the reference diagram of Table 7,
the stiffness matrix must be rotated. This is performed by a congruent transformation
which has the form:

K=RKR?
IY
11
f‘o ?7
]2 5 9
Free
Edge
2 5
f{:) 3 14 6 X
— ®a—»
(;) Reference diagram of Table 7

Free
Edge

b) Example panel.

Fig. 10. Panel rotation to suit boundary conditions.
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where K is the resultant stiffness matrix.

Mairix R contains four submatrices r, which perform the axis rotation of the
three freedoms at each node.

In terms of generalised forces, the matrix r forms the relation:

El C11 C12 C13 P1

}_)2 = C21 sz Czs Pz

P3_ C31 C32 C33 P3
r

where C;; are direction cosines.
For the example panel, the rotation is 180°, therefore:

1 0 0
r=|0 -1 O
0 0 -1

The moment sign convention used is that positive rotations cause a positive
slope in the direction of the axis.

The final step is to move the nodes to their new positions. In this example,
node 1 is interchanged with node 3, which is achieved by placing submatrix
r in R(3,1). Likewise the other nodes are interchanged as indicated in the matrix:

0O 0 r O

{0 0 0 r

R=l, 00 0

O r 00
Notations

The following symbols are used in this paper:
direction cosines.

column thickness in x direction.

flexural rigidity of plate.

column thickness in y direction.

Young’s Modulus. '

equivalent frame method.

finite element method.

panel stiffness matrix.

transformed panel stiffness matrix.

column centre to centre span in x direction.
lateral point load.

generalized nodal forces.

transformed forces.

panel method.

rotation transformation matrix.
transformation submatrix.

column centre to centre span in y direction.
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effective width in y direction.

plate theckness.

nodal deflection orthogonal to plate.
Poisson’s Ratio.
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Summary

Presented herein are the stiffness matrices of flat plate floor panels in non-

dimensional form for use as input data for a three dimensional frame analysis
computer program. The tabulated stiffness values take into account the parameters
involving the size of the floor panel and the cross sectional dimensions of the
supporting columns.

Two multistorey buildings are analysed to demonstrate the application of the

method and its advantages over alternative methods.
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Résumé

Les auteurs étudient les matrices de rigidité de dalles plates — dans une
présentation sans dimension — en tant que données pour un programme de calcul
a I’ordinateur de cadres tridimensionnels. Les valeurs de ridigité indiquées en forme
de tableaux tiennent compte de parameétres relatifs aux dimensions des dalles
ainsi qu'aux sections des colonnes.

Deux bitiments a plusieurs étages sont calculés et montrent I’application de la
méthode ainsi que ses avantages par rapport a d’autres procédeés.

Zusammenfassung

In der vorliegeden Arbeit werden die Steifigkeitsmatrizen fiir die Felder von
Flachdecken in dimensionsloser Form zum Gebrauch als Eingabedaten fiir ein
dreidimensionales Computerprogramm dargestellt. Die tabellarisch angegebenen
Steifigkeitswerte beriicksichtigen die Abmessungen der Deckenplatten sowie die
Querschnittsabmessungen der Stiitzen.

Zwei mehrstockige Bauten werden berechnet, um die Anwendung der Methode
und ihre Vorziige gegeniiber anderen Verfahren zu belegen.
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