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Preface

Par les « Mémoires» qu’elle publie, ’AIPC s’honore d’offrir aux ingénieurs du
monde entier, agissant dans des milieux divers au profit des structures, une tribune
de valeur reconnue. Chaque contribution n’a pas la méme valeur sur le plan
pratique, mais toutes contribuent 4 améliorer 1’état de la science et la connaissance
du comportement des ouvrages. Je n’hésite pas a répéter ici le veeu émis de voir les
auteurs apporter des conclusions pratiques afin que toute étude théorique, souvent
difficile 2 comprendre pour le praticien de tous les jours, trouve son point d’accro-
chage dans la vie. Ces conclusions contribueraient & accroitre I'intérét pour nos
«Mémoires» et par 1a augmenteraient leur audience.

Je remercie et félicite tous les auteurs pour I'intérét témoigné et la quahte
des travaux.

Zurich, avril 1975.
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Prof. MAURICE COSANDEY
Président de I’Ecole Polytechnique Fédérale de Lausanne
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Yorwort

Mit ihren « Abhandlungen» betrachtet es die IVBH als Ehrenpflicht, den in den
verschiedensten Sparten der Baukunst titigen Ingenieuren der ganzen Welt ein
Forum von allseitig anerkanntem Niveau zu bieten. Nicht jeder Beitrag besitzt
denselben Wert in praktischer Hinsicht, doch tragen alle Aufsdtze dazu bei, den
wissenschaftlichen Stand und unsere Kenntnisse iiber das Verhalten von Bauwerken
zu vertiefen. Ich zdgere nicht, meinen frither gedusserten Wunsch zu wiederholen,
das heisst praktische Schlussfolgerungen zu ziehen. Dadurch soll jede theoretische,
fiir den Praktiker des Alltags hdufig schwer verstindliche Untersuchung ihren
Ansatzpunkt im Leben finden. Diese Schiussfolgerungen wiirden dazu beitragen,
das Interesse an unseren « Abhandlungen» zu erhéhen und ihnen dadurch vermehrt
Gehor zu verschaffen.

Ich begliickwiinsche alle Autoren und danke ihnen fiir das bewiesene Interesse
und fiir die Qualitét ihrer Arbeiten.

Zirich, April 1975.

Der Prisident der IVBH :

Prof. MAURICE COSANDEY
Prisident der Eidgendssischen Technischen Hochschule Lausanne

Die Generalsekretire:

Dr. sc. techn. HANS vON GUNTEN Dr. sc. techn. PIERRE Dusas
Professor an der Eidgendssischen Professor an der Eidgendssischen
Technischen Hochschule Ziirich Technischen Hochschule Ziirich

JORG SCHNEIDER
Professor an der Eidgendssischen Technischen Hochschule Ziirich



Preface

By their “Publications” the TABSE consider it an honour to offer to the
engineers all around the world and working in the most different branches of building,
a tribune of recognized standard. Not each of the published papers has the same
value on the practical field but they all contribute to improve the scientific standing
and our knowledge on the behaviour of structures. I don’t hesitate to repeat
hereby the formerly expressed desire adressed to the authors for drawing practical
conclusions. Thereby any theoretical study often rather difficult understandable
by the practician should meet its point of application in realty. These conclusions
would contribute to increase the interest on our “Publications™ and to obtain
sustained hearing.

I thank and congratulate the authors for their interest and for the quality of
their work.

Zurich, April 1975.

The President of IABSE:

Prof. Maurice COSANDEY
President of the Swiss Federal Institute of Technology, Lausanne

The General Secretaries:
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An Engineering Analysis of Crack Growth at Transverse Stiffeners
Une analyse technique de I'accroissement de fissures aux raidisseurs transversaux

Eine technische Berechnung der Ausbreitung von Rissen an Querversteifungen

P. ALBRECHT J.W. FISHER
Asst. Prof. of Civil Engr., University of Maryland ; Prof. of Civil Engr., Assoc. Director, Fritz
former Research Asst., Fritz Engineering Lab., Engr. Laboratory, Lehigh University, Bethlehem,
Lehigh University Pa.
Introduction

In this paper the fatigue behavior of welded beams and girders with transverse
stiffeners is described.

Further, it is shown that for purposes of design, the constant amplitude fatigue
life of stiffener details often encountered in highway bridge construction can be
predicted using fracture mechanics concepts of crack propagation. To accomplish
this, the stress intensity factor is estimated and the analysis is performed assuming
that the portion of the life expended during initiation is negligible when compared
with the number of cycles required to propagate the crack. Such an assumption
appears to be justified for details having a high notch effect, and which are
susceptible to initial flaws built-in during the fabrication process.

In general; initiation and growth of fatigue cracks are most likely to occur in
areas subjected to a high tensile stress range and where initial flaws exist. The
higher the stress range and the larger the initial flaw, the faster fatigue cracks will
propagate. Both conditions exist along the toe of the fillet welds connecting the
stiffeners to the web or flanges.

The initial flaw condition is given by discontinuities at the weld toe, such as
weld cracking, slag inclusions and undercut [3, 5]. Imperfections of this nature are
common to all welding processes. They cannot be avoided, although their sizes
and frequency of occurrence may be controlled by good welding techniques.

Secondly, the critical tensile stress range which drives the crack is brought about
by a combination of two effects. One is the geometrical stress concentration
produced by the weld geometry and the stiffener which magnify the stresses due to
the applied loads. Further, a residual tensile stress field is generated by the welding
process. The net effect of having residual tensile stresses and the stresses due to
the applied load is a tension-tension stress range at the weld toe, even in cases of
nominal stress reversal. In fact, fatigue cracks were also observed at weld toes sub-
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jected to a nominal compression-compression stress cycle. These cracks, however,
arrested as they outgrew the residual tension field and did not impair the load carrying
capability of the beam.

Experimental Investigation

The experimental investigation consisted of testing thirty 14-inch (168 mm) deep
beams and twenty-two 38-inch (965 mm) deep girders. All specimens had stiffeners
welded to the web, as well as stiffeners welded to the web and flanges. The stiffeners
were located in a region of moment gradient as shown in Fig. 1.
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Fig. 1. Details of Test Girders.

To permit the statistical evaluation of the significance of several stress and
geometrical variables, the specimens were arranged into factorial experiments.
The experimental data including an analysis of the test variables were presented
in Refs. 1 and 2. It was found that the bending stress range is the dominant
variable which defines the fatigue strength of full depth transverse stiffener details.
Other variables such as maximum stress, specimen size, yield strength, and type of
stiffener (welded to the web alone or to the web and flanges), are not significant
for purposes of design of stiffened bridge members.
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Crack Initiation and Growth

Fatigue cracks at the stiffeners, whether welded to the web alone or welded to
the web and flanges, had one major feature in common: the cracks initiated and grew
from surface flaws at the toe of non-load carrying fillet welds. Also, the plane of the
crack remained at all stages perpendicular to the direction of the principal stress.

Stiffeners Welded to the Web and Flanges

A typical fatigue crack causing failure at a stiffener welded to the web and the
flanges is shown in Fig. 2. Crack growth was characterized by the two stages
illustrated in Fig. 3. During the first stage, one or more cracks initiated along the
toe of the fillet weld connecting the stiffener to the tension flange, and propagated
in a semi-elliptical shape as shown in Fig. 4. When the small cracks grew larger
they joined and eventually assumed the shape of a larger semi-elliptical crack as
illustrated in Fig. 5. By the time the leading edge reached the extreme fiber of the
tension flange, the crack width had spread over most of the weld length. After
breaking through the extreme fiber, it grew in the second stage as a through
crack across the tension flange and up into the web. Visual observation of several
specimens indicated that approximately 96% of the number of cycles to failure

Stage I: Part - Through Crack

~

3/16 (5)

L
i

Stage 2: Through Crack

Specimen SGB 312

A\

4100% (2,012,000
Fig. 2. Typical Failure at Stiffeners Welded to Cycles)

Web and Flange. B

Fig. 3. Stages of Crack Growth at
Stiffener-to-Flange Connection.
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Fig. 4. 0.028-inch Deep Crack at the Toe of the
Stiffener-to-Tension Flange Weld.

Fig. 5. Multiple Fatigue Crack Growth at the Toe of Stiffener-to-Tension Flange Weld.

Fig. 6. Typical Fatigue Crack Surface at Failure.
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were consumed growing the crack through the thickness of the flange. The remaining
4% of the life was spent in Stage 2 of growth. Figure 3 illustrates the extent of
crack growth observed on the surface of the flange plate at different numbers of
applied cycles. The contour and depth of the leading edge of the part-through at
80% and 92% of the final life are shown qualitatively.

Figure 6 shows a fatigue crack surface at failure. The crack is seen to have
initiated at the stiffener-to-flange weld. As it eventually advanced up into the web,
it joined with several semi-elliptical cracks growing from the toe of the stiffener-
to-web weld.

Stiffeners Welded to the Web Alone

The cracks causing failure at the stiffeners welded to the web alone initiated at
one or more points along the toe of the stiffener-to-web weld. They propagated in
a direction perpendicular to the principal tensile stress.

The overall appearance of the crack seemed to indicate two growth patterns, one
diagonally off the end of the stiffener-to-web weld, the other following the weld toe
before branching off diagonally into the web as illustrated in Fig. 7. The fatigue
crack surfaces were exposed by saw cutting most of the net section and prying
the remaining ligaments open. This fractographic examination revealed the reasons
for the two observed patterns. Cracks initiating at the end of the weld (at one point),
grew in all stages along a plane perpendicular to the changing direction of the prin-
cipal stress as illustrated in Fig. 8. Cracks following the weld toe had multiple
initiation points from which individual cracks grew in separate planes, each one per-
pendicular to the direction of the principal stress at that point. As the individual
cracks overlapped they broke through and joined each other, forming a longer
crack with an irregular contour along the weld toe as illustrated in Fig. 9b. This
phenomena gave the appearance of a crack growing along the toe of the weld,

Fig. 7. Typical Failure at Web Stiffeners.
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Fig. 8. Typical Fatigue Crack Surface at Web Stiffener at Failure.

before branching off diagonally. Once this pattern had developed it was sustained by
the stress concentration effect of the weld which created a more severe path for
propagation along the toe than in the web away from the weld toe.

Typically, the crack advanced through the three stages of growth as depicted by
Fig. 10. In the first stage, one or more semielliptical cracks were driven through
the thickness of the web plate, as shown in Fig. 9. Each one retained the ap-
proximate shape of a semiellipse as long as it did not join and interact with
adjacent cracks.

Once the crack front had penetrated the web plate, the crack changed into a
two-ended through crack. This transition after web plate penetration into Stage 2
occurred within a short number of cycles. Figures 9c¢ shows one part-through crack
at the beginning of the transition and one at the end.

In the third stage, after the lower front of the two-ended crack had broken
through the extreme fiber of the tension flange, it grew as a three-ended crack
(see Figs. 8 and 10) across the flange and extended further up into the web.
Eventually, the ever decreasing net section of the flange yielded, and the test was
terminated before the flange fractured. No “brittle” fracture was observed in any of
the specimens.

Of the total number of cycles to failure at web stiffeners, 80% were consumed
growing the crack through the thickness of the web plate during Stage 1. The
sccond and third stages amounted to 16% and 4% respectively as indicated
schematically in Fig. 10.
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Figure 9 shows small ellipses inside the fatigue crack surface. They correspond
to the crack size at the time the beam had failed at stiffeners welded to the web
and flange and reflect the oxidation of the crack area.

(a) 0.035-inch Deep Crack. (b) Multiple Fatigue Cracks.  (¢) Multiple Fatigue Cracks
through the Web.

Fig. 9. Fatigue Crack Growth at the Toe of Stiffener-to-Web Weld.

Mathematical Model for Crack Propagation

The fatigue life of a detail is defined by the sum of the number of cycles required
for crack initiation and the number of cycles required for crack propagation to
failure. Available information indicates that the fatigue life prediction of welded
details can be based on crack propagation alone [1, 4, 5]. In this study fatigue
life was estimated by considering crack propagation alone and any initiation phase
was ignored.

SionEs et al. [3] showed that fatigue cracks initiate at the toes of fillet welds
from mechanical defects constituting a sharp notch with a typical root radius of
0.0001 inch (0.0025 mm) or less when the applied stress was perpendicular to the
weld toe. These crack-like defects exist in welds made with all conventional welding
processes. They are equivalent to an initial crack, which propagates under repeated
loading. WaTkinsoN et al. [5] reported directly comparable fatigue lives for welded
joints in an as-welded condition and welded joints with an additional machined
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notch with a depth of 0.005 inch (0.127 mm) and 0.0005 inch (0.013 mm) root
radius. Since the added notch did not lead to a further reduction in fatigue
strength, it was assumed that the sharp weld defects constituted an equally severe
initial crack condition and that fatigue life prediction of welded joints can be
based on crack propagation alone.

Stage |+ Part-Through Crack in Web

Stage 2: Two-Ended Through Crack in Web
Stage 3: Three-Ended Crack

Specimen SGB 211

h N

N

{100% (4,433,000 Cycles) _

(5)

%6 AN

Stage 3

Stage 3

Fig. 10. Stages of Crack Growth at Web Stiffeners.

Analysis of Crack Propagation

The fracture mechanics approach to crack propagation appears to be the most
rational method currently available for predicting the fatigue life. It has been used to
provide an explanation of the fatigue crack growth of a number of welded steel details.

The empirical differential equation of crack growth proposed by Paris [6] has
the form:

da
—=C (AKY)’ 1
and relates measured rates of crack growth (da/dN) to AK, the range of the stress-

intensity factor K proposed by Irkwin [7]. C and n are constants. Equation 1 can
be integrated to obtain the number of cycles N required to propagate a crack
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from an initial size a; to a final size a;. For stress ranges of constant amplitude
and assuming that C and » remain constant within the span of AK values which are
of major importance, the integration yields:

14 1 o, Y da

“cloxr®= ¢l Griy @

As was noted in Ref. 8, Eq. 2 suggests that the relationship between the Life N
and the applied stress range o, is exponential and can be expressed as:

N=Go,™ (3)
where
1% da
g, LE @)

- Eai (AK/o,)"

Since AK, the range of the stress intensity factor, is directly proportional to the
applied stress range o,, G is independent of o,. The results of an extensive statistical
analysis of fatigue data collected from over 500 full size beam specimens [1] [8]
bears out the validity of the above conclusions for purposes of fatigue design of
structural details built from steels commonly used in highway bridge construction.
Indeed, of all models investigated, the linear regression equation

log N=B; — B, log o, (5)

provided the best fit to the experimental data. From Eqs. 3 and 3 it is also
apparent that B, and n are the same.

The solution of Eq. 2 requires a knowledge of the constants C and n, and an
adequate approximation for the stress intensity factor for the crack at the detail
being examined.

Crack Growth Rates

The coefficient C and the exponent n in Eq. 1 are constants which define the
rate of crack growth for a given value of AK. They are determined empirically
from tests of precracked “fracture mechanics™ specimens for which an analytical
expression for the stress intensity factor, AK, is known. From measurements of
crack size, the increases in size corresponding to increments of cyclic loading are
related to the range of the stress-intensity factor, AK.

Several investigators have reported growth rates for structural steels [9, 10, 11, 12].
Barsom [ 9] found that the growth rates in four ferrite-pearlite steels fell into a band.

He suggested that the slope of the logarithmically transformed data decreased
slightly as the yield strength increased. The slope varied from 3.3 to 2.8 for steels
with yield strengths between 36 (25) and 69 ksi (48 kN/mm?). Data have also been
reported by CroOKER and LANGE [11]. A relatively large scatterband was indicated
for carbon and low-alloy determined the growth rates for four different weld metals.
Three of the weld metals had yield strengths equal to about 67 ksi (46 kN/mm?)
and the fourth to 90 ksi (62 kN/mm?).
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Most of the test data on crack growth is for AK values above 10 ksi \/B
(11 MP aﬁ). Only a limited amount of data is available below that level.
Paris [10] reported on very slow growth and suggested a threshold value at
AK = Sksi . /in. (5.5 MPa\/rﬁ).

From a study of experimental results published in the literature, Harrison [13]
concluded that fatigue cracks will not propagate in mild steel if AK < 3.3 ksi \/B

(3.6 MPa\/E). The level of the threshold was observed to be also a function of
the mean stress [10], the threshold being lower the higher the mean stress. Hence, a
low threshold value can be expected for fatigue crack growth from weld toes
where the applied stresses are magnified by the discontinuities of the weld geometry
and where high residual tensile stresses are known to exist.

The coefficients of the crack growth equation were also established by Hirt and
Fisner [ 14] using the equivalence between the crack growth equation and the stress
range-cyclic life relationship for plain welded beams. A penny-shaped crack was as-
sumed to describe the disc-like cracks that grew in the flange-to-web weldment of
beams. This yielded values of n~ 3 and C ~ 2 x 1071° where C has the units implied by
Eq. 1 assuming AK in units of ksi \/1; and da/dN in units of inches. (C = 3.8 x 10
when AK in. MPa,/m and da/dN in millimeters).

In this study it was assumed that C and n remained constant for all values
of AK. The relationship found by HirT and Fisuer was rounded and used. The
crack growth rate was taken as

da

— =2x10"1° AK? 6
AN~ ©)
for all details. The relationship developed from beam test is in good agreement
with the crack growth data from fracture mechanics specimens. The beam tests had
indicated that crack initiation took place at values of AK between 3 (3.3) and
5 ksi \/1_ . (5.5 MPa\/a). This was at or below the threshold level suggested by
Paris [10].

Stress-Intensity Factors for Part-Through Cracks at Fillet Weld Toes

With an appropriate expression for the stress-intensity factor K at the toe of a
non-load carrying fillet weld, the propagation of a crack through the thickness
of the web or flange can be predicted. As noted in the discussion of crack growth at
stiffener details, 80% of the total number of cycles to failure for web stiffeners
were consumed by crack propagation of a flaw through the thickness of the web
and 96% for stiffeners welded to the flange. Hence, an analysis of this stage of
fatigue crack growth represents essentially a study of the fatigue life of beams with
stiffeners.

It was observed that cracks at both types of stiffeners initiated from discon-
tinuities at the weld toe and propagated as a semi-elliptical crack through the
thickness of the web or the flange plate during most of the specimen’s life.
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The average change in shape of crack size was found empirically. After the
beam had failed at the critical stiffener the planes through the weld toes of the
other less critical stiffeners were exposed. Subsequent examination of the surfaces,
both visually and with a 50 x microscope, revealed the presence.of part-through
cracks at specific stages of growth in a large number of specimens [2]. The measured
crack sizes are plotted in Fig. 11, together with the exponential relationship.

b = 1.08840-946 (7)

describing the average change in size, where b and a are the two semi-axes of the
semi-elliptical crack. This variation of b with a was considered in the analysis of
fatigue crack propagation. Equation 7 is seen to approach the circular crack
(a/b = 1) with increasing crack size.

CRACK DEPTH a, mm
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Fig. 11. Size of Part-Through Cracks at Fillet Weld Toes.

Part-through cracks which initiated at more than one point are also plotted in
Fig. 11 as open triangles. They were not included in the regression of b on a.
Three part-through cracks observed at the end of longitudinally welded cover
plates [81] arc shown as circles and fall near the mean regression line.

The stress-intensity factor for a part-through crack developed by IRwiN [ 16] can be
used with the secant correction [17] for a free surface representing the side of
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the plate opposite from the crack opening to describe the condition illustrated in
Fig. 12a. This results in

1+0.12(1—a/b ] |
K= * (D(,a/)crﬁa Secrzc_? (8)

where @, is an elliptical integral which depends on the minor to major axis ratio,
a/b, of the crack.

Equation 8 cannot be directly applied to part-through cracks at the toe of non-
load carrying fillet welds connecting stiffeners to the flange and the web, unless the
stress concentration effect of the weld is considered. If the part-through crack
is removed from the uniformly stressed flat plate shown in Fig. 12a, then the
stress field, o, will remain constant throughout the plate. This is not the case for
the detail shown in Fig. 12b which represents a plate strip of either the web or the
flange with a portion of the stiffener welded on.

In the absence of a crack, the weld geometry acts as a stress raiser, magnifying
the nominal stress at the weld toe by the stress concentration factor K. The
stress concentration effect decays rapidly with increasing distance from the weld toe.

In order to apply the stress intensity factor given by Eq. 8 to the detail shown
in Fig. 12b requires an additional geometry correction function accounting for
the stress magnification effect of the weld. Frank used a finite element and com-
pliance analysis to evaluate the stress-intensity factor for tunnel-shaped cracks at

\p

Fig. 12a. Part-through Crack in a Flat Plate.
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Fig. 12b. Part-through Crack at the Toe of a Non-load Carrying Fillet Weld.
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the weld toe of cruciform joints [4]. On the basis of this analysis he developed
a correction function for the weld geometry which was equal to the stress
concentration factor, K, for vanishing crack size and which decreased as the
crack propagates into the plate (see Eq. 9). Others have assumed a constant
value of Ky for the correction function of a similar detail but did not make an
allowance for the decay with increasing distance from the weld [19].

The idea of utilizing the theoretical stress concentration factor, Ky, to arrive at
an estimate of the stress intensity factor, K, is not a new one. It is well known,
for example, that K for a small crack emanating from a much larger circular hole
in a sheet [18] is approximately equal to the value of K for a free surface crack
multiplied by the stress concentration factor for the circular hole. As the crack
deepens it runs out of the area effected by the stress concentration, and the K
calculation can be based upon a crack length larger than the actual crack size
only by the diameter of the hole.

A similar approach was taken in this study. The solution suggested in Ref. 4
is the only known approximation for the stress-intensity factor K at fillet weld toes.
There are obvious differences in the stiffener details evaluated in this study and
the welded cruciforms examined by Frank. In the cruciform joint a half tunnel
crack was assumed at the weld toe together with a plate stress condition. Sym-
metry was also considered with plates attached to both surfaces. At the stiffener
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details semi-elliptical cracks were observed. In addition, the stiffener was only
attached to one side of the web or flange plate.

Two solutions were used to describe the stress-intensity factor at the fillet weld
toes on the web or flange. One modified the solution obtained for a tunnel crack
to reflect the semi-elliptical surface cracks. The decay polynomial obtained by Frank
was assumed to describe the weld geometry effect and its decay with increasing
crack depth. This yielded

Kz(2) = Kr[1— 32155+ 7897 £ 9288 () + 4.086(2)"] ©)

A second decay characteristic was also examined [ 2]. This assumed the geometry
correction function to decrease parabolically from a- maximum of Ky with an
infinitesimal crack, to no effect at a depth equal to the weld size. The relationship
was assumed and had the following form:

for0<a<w:;

I
=
o

and for a = w: KT(%)

where w is the weld size.
The stress intensity factor for part-through cracks at fillet weld toes is then
given by:

a
14+012(1 ——
+ ( b)

K= K= =
Y T(I)G ma_ [sec— (11)

where K (%) is a magnification factor which accounts for the stress raising effect of
the fillet weld; a is the crack depth, and ¢ is the thickness of the plate in which
the crack is growing.

Equation 9 describes the correction function for the weld geometry in terms of
the ratio a/t; it is independent of the weld size, w except for its effect on K.
The decay characteristic given by Eq. 10 is written in terms of the ratio a/w, crack
size to weld size, in an attempt to better account for variation in geometries, such
as may occur when stiffeners are connected to flanges by fillet welds where the
difference between t and w is substantial.

Both decay characteristics are useful when evaluating crack propagation at
welded structural details where crack growth occurs at the weld termination.
Equation 9 and 10 are compared in Fig. 14 for a girder with a % inch (12.7 mm)
flange and a stiffener attached with Y4 inch (5 mm) fillet welds.

Equations 9 and 10 provide about the same estimate of stress concentration
factor in the region of critical crack size. Equation 10 provides simplicity in estimat-
ing K and appears to be applicable to a wider range of plate thickness.
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Fig. 14. Change in Stress Intensity Factor at Fillet Weld Toe with Crack Size.

Analysis of Crack Growth at Stiffeners

Equations 2, 6 and 11 were used to evaluate the crack propagation through
the web and flange of the stiffener details. Since all crack were observed to grow
perpendicular to the principal stress, only Mode I crack growth was considered
as there was no evidence of other modes of crack growth. Before carrying out the
analysis, the theoretical stress concentration factor K at the fillet weld toe was
determined using a finite element solution. The results are tabulated in Table 1.
The weld and stiffener geometry were found to have only a local concentration
effect on the stress field.

The nominal stress range at stiffeners welded to the web alone was taken as the
principal stress range at the end of the stiffener-to-web weld. The nominal bending
stress range at the stiffener-to-flange weld was used for stiffeners welded to the web
and flange.

A family of curves depicting the relationship between initial crack sizes and
fatigue life for the stress range levels of this study were constructed. These curves
are plotted in Figs. 15, 16 and 17 for the two types of stiffeners. The final crack
sizes correspond to the values of plate thickness listed in Table 1. The points on
the curves correspond to the observed fatigue lives of beams with stiffeners which
experienced crack propagation through the web or flange thickness at the weld toe.
For stiffeners welded to the web alone this corresponded to about 80% of the total
life. For stiffeners welded to flange and web the failure life was used.
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Fig. 17. Propagation of a Part-Through Crack at the Stiffener-to-Flange Connection Using Eq. 10.

Both Eqgs. 9 and 10 were used to estimate the stress-intensity factor at the toe
of stiffeners welded to the web and flange. A comparison of Figs. 16 and 17 shows
the effect of the different stress-intensity estimates. The crack propagation analysis
yields a set of curves dependent on the stress range level and the initial crack size.
Both analysis agree well with the test data from beams and girders. The predicted
curves are in an ordered arrangement when Eq. 10 is used. Equation 9 provides
curves that are not in sequence with the stress range levels.

The observed fatigue lives correspond to initial crack sizes which are within
the range of weld flaws reported in the literature [3, 5]. The average initial crack
size is about 0.003 in.

The solution of Eq. 2 can also be used to construct stress range — cycle
life (S-N) relationships for various initial crack sizes. This was done for the stiffener
welded to the web and flange since nearly all the fatigue life was consumed when
the crack propagated through the flange thickness. The results are shown in Fig. 18
for crack sizes of 0.001 in. (0.025 mm), 0.003 in. (0.1 mm), and 0.020 in. (0.5 mm). The
relationship derived for aninitial crack size 0of 0.003 in. (0.1 mm) is directly comparable
to the mean fatigue strength; and the predicted relationship for an initial crack size
of 0.020 in. (0.5 mm) provides good agreement with the lower bound of the test
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Fig. 18. Comparison of Predicted Fatigue Life with Test Data for Stiffeners Welded to Web and Flange.

data. Only test data at the 13.8 ksi (9.5 kN/mm?) stress range level exceeded the
predicted life. As can be seen in Figs. 16 and 17, specimens with average or below
average initial crack sizes may be at or below the fatigue crack growth threshold.
The probability of this happening increases with a decreasing stress range.

The results obtained from the analysis indicate that the proposed mathematical
model for propagation of a part-through crack at the weld toe of stiffeners is in
good agreement with the observed fatigue behavior.

Conclusions and Application

Fracture mechanics was used to analyze the fatigue behavior of transverse
stiffeners welded to the web alone or to the web and flanges. The analysis con-
sidered crack propagation of a crack through the thickness of the web and the
flange. This showed that 80% of the total number of cycles to failure at web
stiffeners and 96% at web-flange stiffeners were consumed during this stage of growth.

The main conclusions are:

1. The fatigue cracks initiated from weld discontinuities at the fillet weld toes.
They retained the approximate shape of a semi-ellipse as they propagated
through the plate thickness.

2. The stress-intensity factor for a part-through crack in a flat plate can be used in
conjuction with a correction function accounting for the stress concentration
effect of the weld geometry to describe the stress condition at the leading edge
of the crack.
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3. Integration of the differential equation of crack growth revealed that the mean
fatigue life corresponded to an equivalent initial crack depth of about 0.003 in.
(0.1 mm).

4. The scatter in the test data can be associated with the variation of the initial
crack sizes.

5. At the lowest stress range, to which the test specimens were subjected, and an
equivalent mean initial crack size a; = 0.003 in. (0.1 mm), crack growth appeared
to occur slightly below the threshold levels reported in the literature.

6. 98% of the number of cycles required to propagate the part-through crack
across the plate thickness elapsed as the leading edge of the crack advanced to
a depth of 0.75 t. '

Application: Since most of the details fatigue life was consumed growing a part-
through crack, the study emphasizes the need for properly designing a structure to
assure adequate performance without premature failure. There is little likelihood of
detecting part-through cracks before failure or in fabricating smaller discontinuities.
The paper shows that design for a proper stress range level and adequately
assessing the loading of structures are the most realistic and reliable means of
assuring the desired service life.

The method also provides a means to evaluate the formation and propagation
of cracks in other types of welded built-up structures.

Notation
a crack size, minor half-axis for semi elliptical crack.
as final crack size.
a; initial crack size.
B, B,  regression coefficients.
b major half-axis for semi-elliptical crack.
C coefficient in crack growth equation.

da/dN  rate of crack growth, inch/cycle.

G constant in regression equation (= 1051),
K stress-intensity factor.

Ky theoretical stress concentration factor.
N number of applied stress cycles.

n exponent in crack growth equation.

t plate thickness.

d, complete elliptical integral of the second kind.
AK stress-intensity factor range.

c stress.

o stress range.
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Summary

The fatigue behavior of welded beams with transverse stiffeners was determined
experimentally by carrying out 52 tests on 350 mm and 970 mm deep beams.
Initiation of fatigue cracks from defects at weld toes and their propagation through
characteristic stages of growth to failure of the beams are described. Fracture
mechanics concepts are applied to the stage of growth as a part-through crack
during which most of the fatigue life is spent, in order to relate the observed life
to the crack size.

Résumé

La résistance a la fatigue des poutrelles d’acier de 350 mm et 970 mm de
hauteur pourvues de raidisseurs soudés a ¢été déterminée a l’aide de 52 essais.
L’article montre que les fissures commencent le long des soudures et se propagent
en plusieurs stages caractéristiques. En utilisant les méthodes d’analyse de la
mécanique de rupture, on établit la relation entre le nombre de charges appliquées
et les dimensions de la fissure pendant le premier stage, qui est le plus important.

Zusammenfassung

Die Ermiidungsfestigkeit geschweisster Stahlbalken mit Querversteifungen wurde
experimentell anhand von 52 Versuchen an Balken von 350 x 970 mm bestimmt.
Der Artikel zeigt, dass die Risse entlang den Schweisstellen beginnen und sich auf
mehrere charakteristische Stadien ausbreiten. Unter Verwertung der Berechnungs-
methode iiber die Mechanik des Bruchvorganges wird die Beziehung zwischen der
Zahl der angewandten Lasten und den Abmessungen des Risses wihrend der ersten
Phase, welche die wichtigste ist, aufgestellt.
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Introduction

Moment-curvature-thrust relationships are of prime importance in the analysis
of reinforced concrete columns. For a biaxially loaded columns, the appropriate
loadings are bending moments M, and M, and axial force P. The corresponding
deformations are bending curvatures ¢, and ¢, and axial strain g, at corner 0.
The positive directions of force and deformation vectors are shown in Fig. la.
For convenience in further discussion, the following vectors of force and deformation
are defined ;

M, Oy .
{Fl=1<M, {D} = cpy} (1)
P €, '

Herein a study is made of the relationship of the force vector {F} with the
deformation vector {D} for a reinforced concrete column segment in biaxial
bending.

The non-linear stress-strain relationship in compression as well as the low strength
in tension of concrete complicate the analysis of structures using such a material.
Hence it is useful to establish an analytical relationship of the force deformation
equation in terms of the infinitesimal changes {3F} and {8D}. This leads to an
assumed linear relationship between these vectors.

{8F} =[Q] {aD} @

The matrix [Q] is defined as the tangent stiffness matrix as it represents the
tangent of the force-deformation curve as well as the stiffness of the cross section.



24 W.F. CHEN - M.T. SHORAKA

X

€x

=
-
b
v

X 0 ,
0 y' y
\\ o o][$ e
N i
. . ° .
Y b aed N\\s/ _: i o
e \\\e\). = . .
v
B/_C”‘r’)' * & ¢S 1 |e e |o 1
w il
x' —
{c) X' (d)

Fig. 1. Moment, Curvature and Strain in Cross Section and Partitioning of Cross Section.

Once this linear relationship is established, it is easy to answer the following
three questions:
1. For a given path of force {F}, the corresponding path of deformation {D} can
be obtained by step-by-step calculations using Eq. 2, in the form
{oD} =[0]" {6F} (3)

and by applying the tangent stiffness method developed in Ref. [1] (Fig. 1b) for
numerical solutions.

2. For a given path of deformation {D}, the corresponding path of force {F} can
be obtained by direct step-by-step application of this linear relation, Eq. 2
(Fig. 1c).

3. This incremental equation (Eq. 2) can also handle any mixed path of force and
deformation. For example, the column may be first loaded axially to some
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value; and then, holding the axial force P constant, the bending curvatures ¢,
and @, may be increased proportionally in magnitude from zero. The cor-
responding bending moments M,, M, and the axial strain ¢, can then be
obtained by simply subdividing the stiffness matrix [Q] into submatrices. Thus,

oM, ) Q11 Q12 Qi3||00s
M, = Q21 Qa2 Q23190 4)

6P Q31 Q32 Qaz](%%

Since {8P} =0, and 3¢, and 3¢, are known,
-1 dp

dg,= —1 ] * 5
o o 0l g

and OM 011 Qi Qus||0¢x
= op, (6)

8I\dy QZI Q22 Q23 680

A somewhat similar solution for this particular mixed path of force and deformations
has recently been reported by WarNER [2]. Based upon the equations formulated,
a computer program has been developed to provide various numerical results.
The elements of the tangent stiffness matrix were evaluated numerically by dividing
the concrete section into finite elements and by considering each steel bar as an
element (Fig. 1d).

Assumptions

The procedure is based on the following assumptions.
1. Concrete has no tensile strength, Fig. 2a, and in the usual notation

o f;: - &,
—J° _Owheng = <0
P when g, - (7)

2. The stress-strain relationship for concrete in compression is nonlinear and
is of the form as shown in Fig. 2a

o= B+ B -211) 82 +(r1 —2)&° when 0<% =<1 (8a)
_ 1—2g,+¢&°
=1— — %" whenl<Eg< 8b
fi=1- 0y s When 155 5, (8b)
f.=0 wheng, =7y, (8¢)
where _E, &, 8d)
Vl—klfc

and v, represents the point of intersection of the stress-strain curve with the strain
axis. '
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3. The stress-strain relationship for steel is elastic perfectly plastic in both tension
and compression (Fig. 2b), and in the usual notation

fs=£=—1 when§S=§5<—1 (9a)
5 &

fo=7% when —1<%,<1 (9b)

f.=1 wheng, > 1 (9¢)

4. The effects of creep and shrinkage of the concrete are disregarded.
5. Plane sections remain plane before and after bending.

1.0

fc

_ fe
ky fe
Y

€c = €c/e; v2

{a)

€= ES/sy

-1.0
(b}

- Fig. 2. Stress-Strain Relations.

Formulation of the Basic Equation

Consider the partially yielded cross section shown in Fig. 1¢. Equilibrium is
satisfied when the internal forces equal the external forces. In x-y coordinate
system,

M,={cydA (10a)
M,={ocxdA (10b)
P=|cdA (10¢)
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in x'-y’ coordinate system,

M,=—[ocy dA (11a)
M, =—[ocx dA (11b)
=[ocdA (11¢)

In order to evaluate the internal actions, the concrete area is divided by
horizontal and vertical lines into a total of N, small rectangular elements, AA,
(Fig. 1d). The total steel area is assumed to be distributed in N, elements, all of
equal area AA,. The relation between AA, and A4, is

AA, =p' AA, (12)
N , N, A (13)
where P—Nspa p_ab

and Eq. 11 may be rewritten in the form (Fig. 1d)

M, = fzz z"y, A z i pz Vi (fol) A, (14)
M, = — z :z AN zxk £~ kz X ()} A4, (14b)
P=(X T(by+r T 3 (A4 (140)

where N, and N, are the numbers of rows and columns of elemental concrete areas
respectively, and N, is the number of bars.
The incremental forms of the equilibrium equations are

M= =[5 3 50+ 3 oAk Y () A (15a)
R IS AL T} (15b)
P<(3 ¥ Gl +p z AR WYY (150

The incremental changes of stress and strain in concrete are related by

of. =G, d¢, (16)

where G.=0,wheng, <0 (17a)
k. f/ k. f!

G ="ty Ml g e a3 ) (17b)

C (4 (4
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when O0<eg <g,
kif ky f)
and G,=2 - 1Je =2 — 1. € (17¢)
€ (l=2y;+7,%)  e’(1=2y2+ 77
when g, <8 <€ 7,
and G.=0, wheng, > €. v, (17d)
The incremental changes in stress and strain of steel are related by
&f, = G, 3¢, (18)
where G, =0, when g, < —¢, (19a)
and G, = &= E,when —g,<g <g, (19b)
8)7
and G, =0, when g, > ¢, (19¢)

Substituting £, and 3f, from equations 16 and 18 into equation 15, we have,

Na Np Ns

!Z Z y] Ctj 68 L]+p Z yk (Sss)k_

i=1 j=

p Z Vi (Go (Be )i} AA, (20a)
Na No
M, =—{3 Zx(G i (e +p' Zxk )e (&) —
i=1 j=
P’ Z Xi (G (Be k) AA, (20b)
Ng Nb Ns Ns
8P = { (Gc)ij (Sgc)ij'l'p, Z (Gok (Beh — P’ Z (Geh (Ssc)k} AA, (20c¢)
i=1 j=1 k=1 k=1

The strain ¢ at any point in the cross section with respect to x'y’ coordinate
can be expressed in a linear form as

= _y’ (le——xl (Pyl+ao (21)
where g, is the strain at the corner 0 (Fig. 1). The incremental change of the strain is

de = — ) d9,, — x’ 8¢,, + dg, (22)

or (Fig. 1d)
(8e.);; = — ¥ 8¢,, — x; 3@, + O¢, (23a)
() = (8e.) = — Vi 3, — X B9, + Bg, (23b)
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where 8¢, is the strain increment at the corner 0 of the cross section. Combinations
of equations 20 and 23 gives a set of simultaneous linear equations which can be
written in the matrix form as

oM., Q11 Q12 Qi3] |00k
M, + = {021 Q22 Q23400 (24)
oP Q31 Qi 0az]|oe,
where Q;; is defined as
Ng Np Ns Ns
Qu={Y Y 0P G+p ¥ 0 (Gh—p" Y i) (G} A4, (252)
i=1j=1 k=1 k=1
Na Np Ns Ns
Qsa=1{> > (xi)? (G + P ¥ X (G —p" Y. (x1) (Go)} AA, (25b)
i=1j=1 k=1 k=1
Na Np Ns Ns
Q33 =1 (Goij+1" Y, (Gh—1" ). (G} AA, (25¢)
i=1 j=1 k=1 k=1
Na Ny Ng
Q= 21-—IZ Zx G+ Zxkyk(G = Zkak ey A4, (25d)
i=1j=
Ne Np Ns )
Qi3=0Q3=—{) Z Vi(Gi+ 1 Z Ve (G — 1’ Z Vi (Gh} AA, (25¢)
i=1 j= k=
Ng Np
‘Q23—Q32——IZ Z u"“P Zxk(G —p' Zxk(G }AA (25f)
i=1 j=

Equation 24 can be rewritten as
(5Fy=[0] (8D} (26)

The symmetric matrix [ Q], whose elements are given by Equation 25 is known
as the tangent stiffness matrix as it.-represents the tangent of the force-deformation
curve as well as the stiffness of the cross section.

Numerical Studies

Based upon the equations formulated, a computer program using the tangent
stiffness technique [1] was developed to provide numerical results. The numerical
work was performed on a high speed digital computer (CDC 6400). The specific
case of a square section with the following input values was treated as a standard
concrete column cross section:

a =241n,b=241n, N,=10,N, =10

N,=12,p= —00325kfc’ 4.2 ksi

k, =085 fs 600k51 g = 0.002

E, = 29,000,000 psi, E, = 57,600 \/ 1. (for normal weight concrete)

v, =4, vy, = computed from Eq. 8d.
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The elements of the tangent stiffness matrix of the cross section were evaluated
numerically by dividing the cross section into finite elements N, (Fig. 1d). The
value of N, was varied from 100 (10 x 10) to 400 (20 x 20) for the square section.
The increase in accuracy obtained by using the finer grids was only 0.1%. A par-
titioning of the concrete cross section into 100 elements and the steel areas into
12 elements distributed uniformly around the sides of the section are used herein.
A somewhat similar partitioning was also suggested in Ref. 2.

The strain and stress in each element were computed as the average value at its
centroid. All force and deformation vectors are nondimensionalized as,

Force vector -
P Mx My
flab flab* f'a*b

Py (py €o

EICE

The allowable error in P/f.'a b was 0.002.

The resultant moment on the section may be represented by the two components
M, and M, or by a vector M of magnitude ./M,* + M,* and inclined at the angle
¥ = tan™! (M,/M,) to the y axis (see Fig. 1b). The resultant curvature ¢ of magnitude
/ @<° + ¢, and inclined at the angle 6 =tan™ (o,/p,) to the y axis (Fig. 1c) is
nondimensionalized as ¢/(c./b).

Deformation vector

Example — Given Path of Loading

The moment-curvature curves plotted in Fig. 3, 4, 6, 7, and 8 are for M, vs. @,
for various values of M,. The column section is first loaded axially up to some
value and then bent by M, to some other value while keeping P constant and
finally bent by M, to failure while keeping P and M, constant. The curves
have been terminated when the strain ratio ¢,/¢, reaches the value 3.0. To indicate
the magnitude of the strains in the cross section, two other lines of constant
&,/6c = recommended by ACI [3] and 2.0 have been plotted across the main
curves (dotted lines in the figures).

It is of interest to note that the values of the maximum moment M, /f ab?
lie between the values of ¢,/g. = 2.0 to 3.0 and generally very close to the constant
line g,/e; =3.0. The maximum values of the moment are indicated by the small
circles in Figures 3 to 8. These moment curvature curves indicate that the maximum
strength of short columns in biaxial bending and compression are not unduly
sensitive to the variations in the assumed concrete ultimate strain which is often
chosen in the range between 0.003 and 0.004,

The moment curvature curves shown in Fig. 3 are considered to be the standard
cases. The important factors influencing the behavior of the curves are the magnitude
of compression force P, concrete quality k; £/, steel quality f,, and percentage of
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) P
- =05
Op—T+—= flab 0

y - lol o As 25
- 1S 3-0.03

To®y K fe = 4.2ksi

b f, = 60ksi
025
My
— =001 MAX
0.20 2 0% =
ad //’
0.09
0.15 T
x \b"\/ 4 4:.0/
oA/ 014 o
f abé . -
7 7/
Q10— 7 7/
Y/ 7/ 047
s
oos- SRR 7
| | I | |
0 | 2 3 4 5
Py /e'c /a

Fig. 3. Moment-Curvature Relations: Standard Case.

reinforcement A /ab. The variations of these factors with respect to the standard
case are given in Figs. 4, 6, 7, and 8.

The influence of axial compression force on the moment curvature curves is
shown in Fig. 4. The unloading of the moment, M,, with respect to an increase
in curvature @, is not seen for the curves P = 0.1 f,a b within the range g,/e, = 3.0
but is rather rapid for the curves with P = 1.0 f/ab. It is also observed, that when
P=10 f/ab and the bending moment M, = 0.05 f.a>b, there is a very rapid un-
loading for both moment M, and curvature ¢,. The curvature @, or the resultant
curvature @ is, of course, not unloaded with respect to an decrease in moment M,,
as shown in Fig. 5.

The influence of concrete quality k, f."and steel quality f, on the moment
curvature curves is shown in Figs. 6 and 7. The results are calculated for concrete
with k; f=3.0 ksi and 5.0 ksi (Fig. 6) and for steel with f, =40 ksi and 80 ksi
(Fig. 7) respectively. As can be seen, an increase in material qualities significantly
. increases the stiffness and strength of a biaxially loaded cross section,

Figure 8 shows the influence of the percentage reinforcement A,/ab on the
moment curvature relationships. It is evident rom the figure that the percentage
steel reinforcement has an appreciable effect on the behavior of a biaxially loaded
cross section.

The maximum points of the moment curvature curves as shown by the small
circles in Figs. 3 to 8 represent the maximum strength of the biaxially loaded cross
section. The maximum loads obtained in this way for the standard cross section
(Fig. 3) with three values of strain ratio, g,/¢, = 1.5, 2.0 and 3.0 are represented by
the interaction curves in Figs. 9 to 13. The small circles in these figures indicate



32 W.F. CHEN - M.T. SHORAKA

0201~ TR
fc a“b MAX
015/ <570~ 003 -7
) (5 P X
MK ¢0‘ // '5.9/ A
T2 ab? 7 o033 Opr—1— —a-g—=o.o325
OIO— 4 / // ‘ " [
i 7 P LN . k fo = 4.2 ksi
/ =0.1
Y F st , : .60 Ksi
o5 // fe ab 0.8b fy O ksi
b

o 0.5 1.0 1.5 . 20 2.5 3.0
"r”x/‘t:./a

Fig. 4. Moment-Curvature Relations: Axial Compression Force Effect.

the regions where the maximum load is controlled either by the maximum concrete
strain or by the overall stress distribution of the cross section. The important
factors influencing the maximum carrying capacity of a biaxially loaded short
column are the axial compression force, P, the concrete quality, k; f., steel quality,
f,» and percentage of reinforcement A /ab, as shown in Figs. 9 to 13, respectively.
Since the interaction curves are nondimensionalized, they can be directly used in
analysis and design computations.

00 el @ &=00325
P My 006 ' °| @ o>
= IO, =0. | O 1 s
f(; ab f(': sz y S ' (o] klfc=4.2k5l
T 'I ' f,= 60 ksi
b
0.06}— :
MAX. MAX MAX
L (ML by
~ (My,P)
0.04—
My 4 RN
f":cubz i _—
v M
BBl (My, &)
i l 1 ] l '] l L l 1 l
0 0.4 08 i.2 1.6 2.0 2.4

by fel 1a or ¢>y/e(':/b or $/ec/b

Fig. 5. Moment-Curvature Relations: Complete Unloading.
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Example — Given Mixed Path of Loading and Deformation

The moment-curvature curves plotted in Fig. 14 are for e/b vs. ¢ for a given set of
values of 8 = tan™ (@,/¢,) = 15° and P/P,= 0.2, 0.4, 0.6 and 0.8. In the figure, the
column section is first loaded axially to some value; and then the axial force P
is held constant while the bending curvatures ¢, and ¢, (or ¢ =./¢,> + ¢,?) are
increased proportionally in magnitude from zero. The corresponding bending
moments M, and M, (or e = M/P = | /M2 + M ?/P) and axial strain g, at the cor-
ner 0 (Fig. 14) can be obtained by the Egs. 5 and 6 using the iterative procedure
reported in Ref. 2. These moment curvature curves were compared with those
obtained previously by Warner and an excellent agreement was found in all cases [2].

The maximum difference between the angles 6 and P, i.e. between the directions
of the resultant curvature ¢ and resultant moment vectors, o =¥ — 0, is also
shown in Fig. 14. It can be seen that the moment and curvature vectors nearly
coincide in direction throughout the entire range of loading. The maximum
difference between the two vectors is of the order of ten degrees.

It is also of interest to note that a similar conclusion is also true for the
case of other loading paths. For example, in Fig. 15, the section is first loaded
axially to some constant value and then the axial force P is held constant while
the bending moments M, and M, are increased proportionally in magniture;
ie. ¥ =tan™' (M,/M,). The corresponding bending curvatures ¢, and ¢, and axial
strain g, can be obtained by Eq. 3 using the iterative procedure reported in Ref. 1.
The maximum difference between the angles 6 and W is again only of the order
of ten degrees.

Simple Interaction Equations

The general form of the interaction curves shown in Figs. 9-13 may be
approximated by a non-dimensional interaction equation [4]:

M \o M, \a '
(Mxo) +(Myo) =1.0 (27)

where M,, and M,, represent the load carrying capacities of a particular column
under compression and uniaxial bending moment about x and y axes, respectively.
Thus, for a given compression P, M, and M, are the values given on the M, =0
and M, =0 axes shown in Figs. 9-13. The value o is the exponent depending on
column dimensions, amount and distribution of steel reinforcement, stress-strain
characteristics of steel and concrete, and magnitude of axial compression. For a
given compression and a given column characteristic, the value of « is a numerical
constant.

The interaction surface corresponding to the column section given in Figs. 9
and 10 is shown in Fig. 16a. The interaction curves given previously in Figs. 9 and
10 for the particular case of strain ratio ¢,/e,= 1.5 are now non-dimensionalized by the
values M, and M, and plotted in Fig. 16b. These curves corresponding to constant
values of P/f/ ab=0.1, 0.5 and 1.0 which may be thought of as “load contours”.
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(a}
Zs . 00325
ab
k fe = 4.2 ksi
fy = 60ksi
P
foab
My
Myo Exact

———Equ. (27

Fig. 16. Comparison of Interaction Curves. !

Using Eq. 27, values of o are calculated for this column. The calculated values
of o are found, varying from 1.3 to 1.4 for P/f/ab=0.1 and 0.5 but jumping
to 1.7 for P/f, ab = 1.0. The comparison between the actual curves computed directly
on the basis of stress-strain relations and the theoretical curves obtained from
Eq. 27 is also shown in Fig. 16b and good agreement is observed. The values
of o for columns with a wide range of variation in values of f/, f, and A/ab
are tabulated in Table 1 for the particular case of strain ratio ¢/, = 1.5 (recom-

Table 1. Computed Values of o in Eq. 27

P 2 A, . :
ki f, 1, — ‘ o Note

frab ' ’ ab

0.5 42 60 0.0325 1.3

0.1 42 60 0.0325 14

1.0 42 60 0.0325 1.7

0.5 3 60 0.0325 13 €0

0.5 5 60 0.0325 14 oo L5

0.5 4.2 40 0.0325 1.4 for all cases.

0.5 42 80 0.0325 12

0.5 42 60 0.0125 14

0.5 42 60 0.0833 1.1
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mended by ACI). In general, the values of o in the range 1.1 to 1.4 are seen
to give a good approximation for all the cases investigated in the low and moderate
axial compression range, but large variation in values of o is observed for columns
with high axial compression.
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Notations

depth of section.

width of section.

{9, 9, &,} = deformation vector.

modulus of elasticity of concrete.

modulus of elasticity of steel.

¥ = (Fig. 1b).

{M, M, P} =force vector.

concrete stress.

specified cylinder compression strength of concrete.

Jelfe-

steel stress.

Ity

specified yield strength of reinforcement.

5f.

e,

0 fs

e,

ratio of strength of concrete in member to specified cylinder compression

strength.

UM I

moment with respect to x and x’ axes respectively.

maximum moment capacity with respect to x and y axes respectively.
moment with respect to y and y" axes respectively.

number of rows of elemental concrete areas.

number of columns of elemental concrete areas.

N, N, = total number of elemental concrete areas.

number of reinforcement elemental areas.

compression force in section.

failure load of section for zero eccentricity.

Ajfab.

N,

N

defined in Eq. 27.

E; g

ky 1S

the point of intersection of the stress-strain curve with strain axis (Fig. 2a).
strain.

concrete strain.
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€ concrete strain when concrete stress is ky fo.
_ €
€ —

&
g, strain at corner O.
£ steel strain.
g, steel yield strain.
_ &
g ~

8.)’
0 inclination of the curvature vector to the y axis.
G stress.

2 2
¢ VO @y .
Oy Qs curvature with respect to x and x’ axes respectively.
Py Oy curvature with respect to y and )" axes respectively.
b4 inclination of moment vector to the y axis. And
® ¥ —0.
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Abstract

Analytical formulations and procedures are developed for computing moment-
thrust-curvature relations for reinforced concrete column sections in biaxial bending.
The cross section is partitioned by a rectangular grid into a large number of small
elemental areas of steel and concrete. The moment-thrust-curvature relations are
obtained by step-by-step application of the analytically developed linear force-
deformation equation using the tangent stiffness iterative procedure. The method
is found to be extremely powerful and efficient for computer solution.

Numerical results are obtained for two types of loading paths: (a) given path
of loading; and (b) given mixed path of loading and deformation. Results are
presented in the form of moment-curvature-thrust curves and interaction curves
relating axial compression and biaxial bending moments. The important factors
influencing the behavior of these curves are discussed such as strength of materials,
percentage of reinforcement and the magnitude of compression force. Simple
analytical expressions to approximate the interaction curves of square sections
are obtained.
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Objective consequénces with respect to the security and economy

The elastic-plastic behavior of an isolated, reinforced concrete column subjected
to an axial load, and two bending moments acting in two perpendicular directions,
is an important technical problem with frequent engineering applications. The
obvious example 1s a corner column in a space building frame. Because the
behavior of a space structure is characterized by the behavior of each of its
individual members, it is of fundamental importance in the analysis and design
of a three-dimensional space structure that we develop basic knowledge of the
response of each individual member to forces acting at its ends and/or to loads
acting on it. '

Solutions that describe the elastic-plastic in-plane (two-dimensional) behavior
of columns and beam-columns comprise the most highly developed aspect of column
research in recent years. Applications to practical analysis and design for building
frames are quite common, and the basic techniques are given in several texts and
codes.

Despite this progress in obtaining solutions for in-plane behavior of columns,
their extensions to three-dimensional space situations are just beginning, although
some solutions have been obtained. The mathematics of such columns is quite
involved, even for the special case of relatively short columns for which the effect of
lateral deflections on the magnitudes of bending moments is negligible. For the
most part, analysis and design of such columns have in the past been directed
toward the study of ultimate strength of reinforced concrete short columns, For the
case of long columns, the present design procedure of biaxially loaded columns
does not differ from uniaxially loaded columns. The 1971 ACI Building Code,
for example, recommends to calculate the moment magnifier separately and apply
to the moment about each axis independently. The long columns are then designed
according to the given axial compressive load and the magnified biaxial moments.

Although this procedure has been used extensively in design computations,
it does not give accurate indications of the true load carrying capacity of a
biaxially loaded column. To determine the ultimate strength of such a column,
it 1s necessary to perform an elastic plastic stability analysis that considers the
entire range of loading up to ultimate load. In order to perform such an analysis,
we must have the knowledge of elastic-plastic behavior of a section under com-
bined axial force, and biaxial bending moments. This is described in the present
paper. '

In this paper, an elastic-plastic analysis of a reinforced concrete segment under
combined axial force, and biaxial bending has been obtained. The segment can be
loaded with various combinations of loading path. For example, the section can be
loaded first under a constant axial load P, and bending moment M, and then P,
and M, held constant while the section is loaded to its fully plastic state by the
bending moment M,. Computer programs have been used to replace the tedious
calculations and series of plots which would have to be made to obtain the cor-
responding generalized strains of the segments at various stages of loading. With
the knowledge of this elastic-plastic behavior of a segment under combined axial
force, and biaxial bending, this fundamental result has been applied successfully
to obtain elastic-plastic long column solutions. Several design criteria for reinforced
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concrete columns subjected to compression combined with biaxial bending are
developed and reported elsewhere (IABSE Symposium on Design and Safety of
Reinforced Concrete Compression Members, Quebec, 1974).
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Summary

An analytical formulation of the force-deformation equations in terms of the
increments has been developed which enables one to obtain the complete moment
curvature relationships of a short reinforced concrete column, subjected to axial
load and biaxial bending moments, at all load levels. The method is found to be
extremely powerful and efficient for computer solution.

The computer program based on this formulation can be integrated into the
long column analysis or into overall structural analysis programs, and is probably
very useful and essential in such a study.

Résumeé

On développe une formulation analytique des équations force/déformation en
termes de I’accroissement permettant d’obtenir les relations complétes de moment/
courbure d’une courte colonne en béton armé soumise a une charge axiale et a
des moments de flexion biaxiaux pour tous les degrés de charges. La méthode
est extrémement efficace pour la solution par ordinateur. Le programme d’ordina-
teur basé sur cette formulation peut étre intégré dans 1’analyse de colonnes longues
ou dans tous les programmes d’analyse structurale et s’avérera probablement
trés utile.

Zusammenfassung

Es wird eine rechnerische Formulierung der Kraft/Deformations-Gleichungen
in Termen des Zuwachses entwickelt, die es gestattet, die vollstindige Moment/
Kriimmungsbeziehung einer kurzen Stahlbetonstiitze unter Einfluss axialer Belast-
ungsstufen zu erfassen. Die Methode erwies sich als dusserst wirksam und
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brauchbar fiir eine Losung mittels Computer. Das auf der Formulierung beruhende
Computerprogramm lisst sich entweder auf die Berechnung fiir lange Stiitzen
oder auf alle baulichen Rechenprogramme anwenden und erweist sich voraus-

sichtlich als ebenso niitzlich wie wesentlich.



Analysis of Metal Plate-Stringer-Diaphragm Bridge Decks

Analyse de tabliers métalliques renforcés par entretoises longitudinales et
transversales

Berechnung von Briickenfahrbahnen aus Metallplatten mit Léings- und Quer-
verstrebungen

D.1. DEAN R.R. AVENT

Professor of Civil Engineering, North Carolina Assistant Professor, Civil Engineering, Georgia
State University, Raleigh, North Carolina U.S.A. Institute of Technology Atlanta, Georgia U.S.A.

Introduction

The object of this paper is the derivation of formulas for the analysis of deck
systems constructed of thin plates reinforced and composite with a set of equally
spaced longitudinal stringers which are braced by a set of equally spaced transverse
diaphragms (see Fig. 1). The formulas will be applicable for the design of cellular
decks-systems with both top and bottom plates — as well as orthotropic decks-
systems with a top plate only. Specifically, the formulas are for the exact
elastic analysis of those systems that 1) are proportioned and detailed so that all

Fig. 1, Thin Element Plate-Stringer-Diaphragm Deck.
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components have negligible out-of-plane stiffness and 2) are simply supported at
the ends. Thus, the linear superposition of several solutions is required to analyze
decks that are continuous over intermediate supports.

The thin element plate-stringer-diaphragm deck in either cellular or orthotropic
form is one of the most efficient load carrying systems employed by designers
today and the literature includes many references to recommended methods of
analysis. However, none of the existing methods are rationally based even though
some are rather complex and require voluminous computations. The present methods
of analysis fall into three categories, 1) use of totally empirical design formulas
to compute an “effective flange width” and the distribution of loads between the
resulting “T” beam stringers (8); 2) use of a “smearing out” technique to replace
the mixed discrete-continuous system by an “equivalent” (usually orthotropic) con-
tinuum (5, 9) and 3) use of a discrete or latticed system to approximate the
real system through a finite difference or finite element approach (1, 7).

The “equivalent continuum” method is attractive in that a single continuum
solution can be used for preliminary design studies of a variety of discrete-con-
tinuous deck systems; however, the steps of selecting the substitute continuum
and interpreting the results for the real system lack rational bases and introduce
significant errors for coarse lattices and those closely stiffened decks with relatively
stiff ribs. Also, the solution for the approximate continuous model is often more
difficult and less elegant than the solution for the exact discrete-continuous model.

Of the various substitute lattice approaches the finite element method is currently
the most popular and canned programs are available for office use; however, their
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. Furthermore
the state of the art of error analysis for this method is not sufficiently well
developed to insure against errors which are orders of magnitude larger than pre-
dicted. One example of such a situation is the case of a deck with stiff ribs and
a flexible plate so that the higher harmonics contribute significantly to the
deflection field. In such a case it is extremely difficult to get a meaningful
stress analysis via a finite element approach.

The concept of deriving exact formulas for the elastic analysis of reinforced
bridge decks is not entirely new as both the micro discrete field approach (i.e.
use of difference equation models) (2) and the macro discrete field approach (i.c.
use of summation equation models) (3, 4) have been used for the rational analysis
of ribbed plates or decks composite with supporting stringers. This paper extends
the use of the macro approach to thin plates supported by both stringers and
diaphragms and thus covers the more general concept of an orthotropic deck.

It is proposed that the exact elastic analysis presented herein be used for final
design review. (While the formulas may be considered complex for manual com-
putations, they can be conveniently employed through the use of a small
computer or one of the several programmable electronic desk calculators that have
recently come on the market). A secondary goal is to make available a standard
analysis for use in studying existing and proposed approximate formulas in order
to establish range of applicability, magnitude of errors, etc. This should obviate
the unsatisfactory practice of making judgements based upon comparison of one
empirical method with another empirical method.
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The major results are numerically illustrated through use of the formulas for
the analysis of realistic structures. One bridge is also analyzed by a finite element
method for comparative purposes.

Mathematical Model

A macro discrete field approach (3) is used to find the in-plane interactive
forces, H(r, y), between the stringers and the plate and the out-of-plane interactive
forces, R{r, s), between the stringers and the diaphragms (see Fig. 1). The macro
approach is dictated by the fact that an analysis of the entire top plate is tractable
for a general loading due to the simple end support conditions at y=0 and 5.
A rational micro discrete field approach, on the other hand, is not possible as
it requires the general boundary solution for a typical rectangular plate element,
between two successive stringers and diaphragms, which is unavailable.

The solutions for continuous and discrete deflection or force fields are found
in terms of infinite and finite sinusoidal series, respectively. For example the
unknown horizontal interactive forces between the top of the stringers and the
plate is expressed as follows:

H(r Z & Sin A2 cos &y (1)

”MS

knr

Z H (v, y) sin 2% cos &,y dy (2)

r=1

Q’—ﬂ

in which@; =£and r=1, (1), m —

The continuous plate deflections can be found in terms of the unknown
stringer plate interactive forces as follows:

u(x,y) = i [ H{owm) K™ (x,y, 5 0,m)dn (3)

=1
-1

5

v(x,y)=1"(x,y) + H(em) K?(x, y, 5 o 1)dn) (4)

a=1

QL—-—?U_‘

in which K™ and K" are the kernel functions for u and v respectively due to a
unit inpulse load in the y direction on the plate with simple edge supports
(see Egs. A-2-5) and " and ¢" are the homogeneous solutions due to the side
boundary displacements v*(5, y) (see Eqs. A-8-13).

Substitution of Eqs. A-2, A-3, A-8, and A-9 and use of the relation given
in Eq. 2, gives the following series for the continuous plate displacements in terms
of the boundary displacement coefficients -17,.1. and the interactive force coefficients
H,;:

A R * o
ulx,y)= 3 Y G ¢ V;A4;+2H; A;;) cos ax sin &y ()
i=1i=0
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in which H;; is sine wise cxchc haying a pgrlod of 2m, with respect to the first
index and thc coefficients A;;, B;; A and B;; are given by Egs. A-4, A-5, A-12

ij ij
and A-7 respectively. The stringer hne dlsplacements v(r,y) can be expressed as a

mixed finite-infinite series thru use of Eq. A-17 with the following results:
v(r,y) = Z Z Vi B,q + Hy; B,;] sin kr cos &, Bl (7)

in which By, and Bj; are given by Eqs. A-23, and A-24 respectively.

The stringer and diaphragm deflections depend upon the out-of-plane plate
loads, N(r,y), which are applied along the stringer lines, and the out-of-plane
stringer-diaphragm interactive node forces, R(r,s), as well as the in-plane plate-
stringer interactive forces H(r,y). The series expression for these additional
quantities are:

w m-—1
N(ry)=3Y Y Ny sm"—”smay (8)
i=1 k=1
m~1 b
Ny=ws 3 | N(ry)sin ¥ sin a;y dy (9)
r=1o0
n—1m-1
R(rs)= % 3 Ry sin%rsin i (10)
I=1 k=1
n—1m-1
Ru=m Y Y R(rs)sin %= sin &= (11)
s=1 r=1

The series for the in-plane and out-of-plane displacements at the tops of the
interior stringers can now be written as follows:

: w m—1 %
v(ry)= > ¥ [51 N,;— B; Hy; "D ;i Ry;] sin 82 cos &y (12)
i=1 k=1
e * id n x 1o kur
w(rny)= 3 [A; Ny, —D; Hy; —3 A; Ry;] sin %2F sin &y (13)
j=1 k=1

in which r=1,(1), m—1,0<y<ph, ;ij, §j and Sj are given by Eq. A-27 and Ry;
is sinewise cyclic on j with a period of 2n ie. Ry =Ry 25p41= — Ry 25u—; for
integer values of J.

The double finite series for the out-of-plane stringer node deflections is found
by use of Eq. A-17 as follows:

n—1m—1
=Y Y [W—Wd — 4, Ry] sin 7 sin 22 (14)

i=1 k=1

in whichr=1,(1), m— 1,5 =0, (1), n, 4, is given by Eq. A-29
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+ @

*
W/k]zv= z A21n+lNk2J’n+l A; Ny (15a,b)
J= =
+ o0
Wi = Z D21n+szan+1—D1Hkt (I6a,b)
J==-mw

The out-of-plane node deflections of the diaphragms depend upon the out-of-
plane side boundary deflections as well as the stringer-diaphragm interactive forces.

(W$ + W) sin &y (17)

Ms

w(a,y) =

J
n—

il
»—A»-

w(r,s)= Y Z [C. Wil + Af Ry] sin ¥ sin i (18)

I1=1 k=1

in which r=1,(1), m—1, s=0, (1), n, A{ is the discrete kernel function coefficient
for a typical diaphragm, similar to Eq. A-29 for stringers, i.e.

. 1 o3 — G,
A= @ T

12B4™
and B? equals the flexural rigidity of the diaphragm.

oy =1~ cos*r (19a,b)

W;c,anH (20a)

J=—w

B w¥  for k odd
Wi = (20b)
W4 for k even

m—1" m—1
1= Y Gsin%;, 1-22= Y Cysinlw (21a,b)

k=1,3,.. k=24,..
C,=Zcotk ' (21¢)

The relations developed thus far are sufficient for the analysis of a deck k system
or orthotropic panel with known side boundary displacements, e.g. V,U ij =0;
however for the typical bridge deck one usually has to determine the side boundary
displacements so as to establish compatibility with the boundary stringers, which
have physical properties denoted by B, ¢’ and p® and may be loaded as follows:

N(my) =

J

18

(P% + P¥)sin &y (22)

1

1l

The compatibility of boundary stringer and deck boundary displacements can be
established by expressing the boundary stringer displacements in terms of their
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applied loads plus the loads transferred to them by deck action. For example,
consider the stringer at r =0

b

0(0,y) = | [P*(0,n) K;** (y,m) + T* (0,m) Kp¥ (y,n)]dn (23)
b
w(0,y)=[ [P*(0.n) K" (y,m) + T (O,m) K3 (y,m)]dn (24)
in which the coefficients of K}?, K}*, K%?, and K% are as given by Eq. A-27 except

that all the interior strmger descrlptors B, & and Jp» are replaced by boundary
stringer descriptors, B?, ¢’ and p® to get Ab B® and D%. The quantities P*(0, ) and
T' (0,m) represent total out-of-plane or transverse and in-plane or longitudinal load
components applied to the boundary stringer from all effects. That s,

POY)=NOY+ T T R@HI-H30—1H 2s)
T05) = (0)+ T T Hlewn) KDy fon)dn (26)

or carrying out the indicated operations

® m—1
PO, y)= > [(P>+P¥)+% > CeRy]sindy (27)
j=1 k=1
[) m—1
T (0,y)= 3 [(TS V5 + T VYF)+ Y By Hy]cosay (28)
Jj=1 k=1

in which T% and T% are given by Eq. A-15 and By; is given by Eq. A-24c.

All the necessary relations are now available to complete the mathematical
model needed to solve for Hy;, Ry, V3 (or V¥°) and W3 (or W%) as follows:
1) compatibility of in-plane stringer line displacements between the plate and the
stringer tops is obtained by equating Eqs. 7 and 12; 2) compatibility of out-of-plane
node displacements between the stringers and the diaphragms is obtained by
equating Egs. 14 and 18; 3) compatibility of in-plane boundary displacements is
obtained by substituting Eqs. 27 and 28 into Eq. 23; and 4) compatibility of out-
of-plane boundary displacements is obtained by substituting Eqs. 27 and 28 into
Eq. 24. The resulting model (shown for symmetric component of boundary dis-
placements) is:

*. n 2y 4 n $ =
* %
Y Dogpri Hy agner + (A + A)Ry + CY, Wiinsr= > Azguet Ny 2gnst (30)
7 7 7
% _ * * *
; [BI; By; ij+%?,Dl} C, Rkj]-|~[BI} T%— 1] V§-= —DI;- P§- (31)

* *
Y [D% By; Hy; +%gA Cy Ryl + D” TSV —ws=— A% P (32)
k
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in which J = — o0, (1), + oo with convergence about J =0 and k=1, (2), m— 1.
To solve for antisymmetric boundary displacements replace all $ quantities by the
analogous a/s quantities and use k =2, (2), m — 1. It is apparent that this model
cannot be dealt with as a set of algebraic equations due to inconformability —
ie. Eq. 29 is for kj indexed quantities, Eq. 30 is for kI indexed quantities and
Egs. 31 and 32 are for j indexed quantities — and the fact that some terms are
sums; however, as will be shown in subsequent sections, the simaltaneous equations
can be solved by successive elimination of unknowns.

Solution for Simple Side Supports

For the case of a panel or deck with known side boundary deflections, V¥
(and/or V%) and W* (and/or W%"), Eqs. 31 and 32 are not needed and one can
solve Eqgs. 29 and 30 for H,; and Ry, in terms of Ny, V% and W* by using Eq. 29
to eliminate H,; from Eq. 30 which is then solved for Ry For example, consider
the title case of simple side supports, i.e. V&= V% =WS$=W% =0, such as an
orthotropic or sandwich panel with relatively rigid supports along all four edges.
The exact solution is:

%
BN —E Ry
kj= ¥
By; + B;
Wi — A%
Rkl = d n 4R
Al + Ak - -EA kil

(33)

(34)

% %
in which B; and D; are given by Eq. A-27; 4, and Aj are given by Eqgs. A-29
and 20; B, is given by Eq. A-24; W¥' is given by Eq. 15; Ry; is sinewise cyclic
on j with a period of 2n; and the two special terms A%, and A%, are:

%k %
g (D21n+1)2 Nk, 2Jn+1 ~ (Dl)2 Nkl

Ail - Z * ~ ¥ (353.,]3)
J=—-o Bky21n+l+BZJn+l Bkl+Bl
+ o A 2 5 )2
— D D
Ail - Z ( 2Jn+l) ~ ( l) (363, b)

E >~ 2
J=-o By 21+ Bajmsy  Bu+ B

It should be noted that for the simply supported panel each “k” (first index)
load harmonic yields a single “k” solution harmonic but the effect of a j (second
index) loading harmonic is different due to action of the diaphragms; i.e. each “j”
loading harmonic yields 1) a single finite series “I” solution harmonic, whose relation
to “j” is through [=j—2Jn or 2Jn—j(l<n) and 2) an infinite set of “j” solution
harmonics related to j through j'=2Jn+j.

An accurate approximate solution for Hy; and Ry, which contains only algebraic
terms, can be written by consistently truncating all the transformation series after
the first term. (e.g. use J =0 only so that Egs. 35b and 36b are used instead of

35a and 26a). The accuracy of such a rational approximation increases as the
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numbers of stringers, m — 1, and diaphragms, n — 1, increases. The result of this
simplification of Egs. 33 and 34 is:

14
) (_—) (Ny—2Ry)

ij R ﬁzk] (37)
Rkl - _2 levzkl_l_ —2 (38)
L+ Y [ = J
il
2 ja\2
v BB () T )
bB
o ey (o)

These approximate formulas for Hy; and Ry can be evaluated manually in less
than 10 minutes.

Numerical Example 1

In order to illustrate the numerical use of the above solutions for a simply
supported thin element plate-stringer-diaphragm system, consider a panel (similar
to Fig. 1 except simply supported, on the sides as well as the ends) with physical
data as follows:

a=144 in.; b=72 in,m=12, n=4, t=.125, pn=.3, E=29,000 ksi, B=3 E kip/in.?,
e=20 in., p?=% in.2; and B*=%3 E kip. in.2. The out-of-plane stringer line load
is harmomc ie. N11 01 k1p/1n All other Ny; =0 or N{(r, y) (.01) sin & sin 3
Some of the intermediate results are: A1 = 5.7080 in.*/kip, 31 = 05796 in.?/kip,
D1 = 49812 in.2/kip (Eq. A-27); WY, =.05708 in. (Eq. 15a); A; =.3173 in./kip
(Eq. A-29) or A~ ~.3171 in./kip (Eq. A-28b); A$=.95134 in./kip (Eq. 19); K=3983.5
kip/in. (Eq. A-1); B; ; = .14466 in.? /kip (Eq. A-5); B ; = .012770 in.? /kip (Eq. A-23c)
or By s = 01205 in.*/kip (Eq. A-23b); A%, = 03508 in. (Eq. 35a): 4, = 35096
in.2/kip (Eq. 36a) or A%, ~3.5081 in.?/kip (Eq. 36b); R, =.0204897 kip. Other
Ry = 0(Eq.34)or R, ~ .0202kip (Eq. 38);and H,, = 062410 kip/in., H, , = 000851
Kip/in., H, o = — 000590 kip/in, Hy,s=.000268 kip/in. and H,,, = — 000219
kip/in. (Eq. 33) or H,,; ~.06316 kip/in. (Eq. 37). These intermediate results were
used in the deflection field equations with the following results (inch units): The
out-of-plane node deflections (Eq. 19 with W4, = 0) are

w(r,s) = (.019493) sin % sin %.
The out-of-plane stringer line deflections (Eq. 13) are

w(r,y)=(019495) sin % [sin £+.000075 sin 7 — .000030 sin 2£+.000004 sin 132
— 000003 sin 132 + ..
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The in-plane stringer line deflections (Eq. 12 or Eq. 7) with ¥, ;=0) are:

v(r,y) = (7.9695 x 10*) sin ¥ [cos B+ .00081 cos T2
—.00045 cos 22 +.00012 cos 152 — 00009 cos 152+ ...]

and the continuous in-plane plate deflections (Eq. 6 with ¥, ;= 0)are:

v(x,y) = (7.5238 x 107%) sin Z[cos ¥ + .00025 cos 7 + .00011 cos 22 + ...]
—(.1463 x 107%) sin 232 cos 2 4 (.12408 x 10™*) sin 23™ cos B + ...

Note that convergence is rapid even for this case of a relatively small number of
diaphragms, n = 4. '

Analysis of Cellular Decks

As mentioned in the introduction, formulas for the exact elastic analysis of an
orthotropic deck can also be wused for the analysis of cellular decks that are
symmetric about the middle plane, i.e. the top and bottom plates have equal
thicknesses. All that is required is to modify the input data for an orthotropic
deck so as to produce a condition of anti-symmetry with respect to the middle plane
as follows: 1) use only the antisymmetric component of the top and bottom
stringer line loads (the symmetric component only squeezes the stringers and can
be ignored); 2) use one half the actual flexural rigidity of the stringers B and B,
and diaphragms, B?; and 3) use radius of gyration, p and p® equal to zero (or if
stringer representation is flexural rigidity and cross sectional area use an area
approaching infinity).

Numerical Example 2

In order to briefly illustrate modification of data for the analysis of a cellular
planel, consider the investigation of a cellular design alternative to example 1 using
the same amount of material; i.e., same stringers and diaphragms but two 1/16 in.
plates instead of a single 1/8 in. plate. For this case, the input data are a = 144 in.,
b=72in, m=12, n=4, t=.0625 in. un=.3, E=29000 ksi, B=Z E kip/in.%
e=20in, p* =0, B*=2§ E kip/in.? and N,; =.005 kip/in. (other N;;=0). The
calculations are too similar to those for Example 1 to warrant showing detailed
results, but a design comparison can be made by showing the out-of-plane node
deflections as follows:

w(r,s) = (01205) sin % sin %=

That is, the cellular construction gives a 62% stiffer panel with the same amount of
material.
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Solution for Flexible Side Supports

The most general case considered in this paper is that of an orthotropic deck
with flexible side supports. The two identical boundary stringers are of an arbitrary
size and shape with arbitrary loads. The analysis allows for possibility that the
boundary stringers are also composite with the deck plate, but detailing for non-
composite action can be dealt with by setting the boundary stringer eccentricity,
e®, equal to zero. For this gencral case, one must solve Eqs. 29-32 for Hy;, Ry,
VS (or V9<)and W% (or W%") in terms of the load coefficients Ny; and P% (or P%*)
This exact elastic model can be formally reduced to a single equation with one
unknown by successive elimination as was done with the two equation model for
the simple side support case; however, the results for the four equation model are
unwieldy and many of the coefficients are sums of obscure physical significance.
(Even in the simpler case of simultaneous algebraic equations, it is seldom practical
to derive an explicit formula solution for a model with more than three equations).
For this model, convergence of the series summed on J is very rapid and indications
are that computers, or programmable calculators will normally be used to get
numerical results; thus, an alternate procedure is recommended as follows:

1. Truncate the series on Hy; and W in Eq. 30 after one term (i.e. use J =0 only)
and solve Egs. 29 and 30 simultaneously for Hy and Ry (I <n) in terms of
Ny, VS (or V%) and W3 (or W),

2. Substitute the results of step 1 into Eqs. 31 and 32 solve the resulting algebraic

equation for VS (or V%) and W3 (or W9). :

Substitute results of step 2 into the results of step 1 to find Hy, and Ry,.

4. Use the cyclic properties of R,; (e.g. Ry = Ry 2,11 =Ry 1_2,) to solve Egs. 29
and 31 for the higher harmonics of H,; and V% (j>n) and then substitute
into Eq. 32 to find the higher harmonics of W% (That is, first use Eq. 29 to
eliminate H,; from Eq. 31 and solve for V} (or V%*). Then find H;; from Eq. 29
and, in turn, W? from Eq. 32).

5. If unusual accuracy is required, retain additional terms in the summations of
H,; and W% in Eq. 30 (J = —2 to + 2 is sufficient), solve for improved results
for Ry; and repeat step 4. (In most cases, the results obtained in step 4 on the
initial cycle are sufficiently accurate so that step 5 can be omitted).

This completes the algorithm for the general case of flexible side supports.
Note that the effects of the side boundary deflections invalidate the one-to-one
relation between the “k” loading and solution harmonics that existed for the
case of simple side supports. For example, a single “k odd” loading harmonic
will normally cause a deflection field with series coefficients containing all possible
k odd harmonics. The relation between the “j” (second index) loading and solution
harmonics is as described in the section on simple side supports.

8

Numerical Example 3

In order to illustrate numerical use of the general bridge deck formulas under
loading conditions which place a severe test on the convergence of the solution
series, consider a bridge with the following physical parameters and loading:
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a=360 in, b=720 in.; m=12; n=4; t=.375 in.; p=.29; E=29000 ksi;
B=PB"=10.2681 x 10° kip in.2; e=¢€"=14.4286 in, p=p"=35807 in. and
B?=8.41 x 10° kip in.2. The loading consists of two symmetrically placed 20 kip
concentrated loads, ie. N(r,y)=2085+38]) 8(y—3%) or Ny=3% (-1) = =
(— 1)%=* cos kz(k and j odd only) and P?% = P%* = 0. The combination of a relatively
small number of stringers and dlaphragms and loads of -infinite intensity tend to
show a harmonic analysis in a poor light due to slow convergence; however, as
the results below indicate, even for this case the convergence is quite good,
yielding practical results after only a small numbers of terms.

Some of the intermediate results are:

K =11,873. kip/in. (Eq. A-1); Al = 268.68 in.%/kip, Bl = 1.2374 in.?/kip and
D1 = 16.915 in.?/kip (Eq A-27); By; = 0.07295 in.?/kip (Eq. A-23); WY, = 4.8088 in.
(Eq. 15); A, = 1.494 in./kip., (Eq. A-29) .44 = .6834 in./kip. (Eq. 19); B,, = 2.2456
(Eq. A-24); and T§ = —26.179 ksi (Eq. A-15). V§= 01530 in, W?$= 2818 in.
(step 2 of algorithm p. 52); H,; = .1705 kip/in., R;; = .7203 kip (step 3 of algorithm
p. 52); V3= —1123x 10 in, H,;= —.02362 kip/in, W% = —5213 x 10°° i
(step 4 of algorithm p. 52); R,; =.7195 kip (step 5 of algorithm p. 52 which
confirms that recycling is unnecessary).

The deflection fields are as follows:

v(r,y)=[23.97 cos ¥ — 1.318 cos 3 + 2976 cos > +..]107° sin & 4 [5.774 cos B +
7076 cos 3 — 1253 cos 22 + .. ]1073 si 3"’ + [3.261 cos 3 + .01996 cos 3 —
00567 cos 25 S”y + ..]1073 sin 3 5’" F

w(r,y)=[848.0 sin 3 — 14.20 sin 3 + 1.876 sin 2Z +..]10% sin & + [92.89 sin & +
7.133 sin 3 — 8491 sin oy, ]103 i 3’"4—[6207 sin 7;2— 1742 sin 3@ 4+
01886 sin 2 +..]107 sin 32 + ..

The membrane stress resultant field, n,, (from Eq. A-1) is

ny(x,y)= — K{[.0944 sin % —.01433 sin 3+ .005499 sin 3% +..]10" sin =+
[02460 sin 1,1—!* 003893 sin 3 — 002209 sin 32+ . ]10 3 sin 3”—!—[01533
sin B + .00067 sin 2 — 000239 sin 32 + ..]10" sin 32 4

The membrane stress resultant, n,, at the center of the deck (x =%, y=24) is
n, = 1.293 kips/in. The finite element analysis described in the next section yields
a stress n, = 1.179, 1.192 or 1.419 kips/in. depending upon type of element utilized.

Comparison with Alternative Approaches

For comparative purposes the bridge system analyzed for Example 3 was also
analyzed by use of a more comprehensive theoretical model and by use of
discretized or finite element model. ,

The more comprehensive theoretical model was one which included the out-
of-plane stiffness or flexural actions of the deck plate as well as its inplane stiffness.
The composite membrane-flexural model treated N(r,y) as an unknown out-of-
plane interactive force between the stringers and the plate and rationally accounted
for the effects of deck loads applied between stringers. The computations were
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thus complicated considerably but gave essentially the same deflection field, for
example the maximum difference for w(r, y) was 2.3% which confirmed the authors’
hypothesis that the composite membrane model (Eqs. 29-32) is sufficiently sophis-
ticated to analyze metal deck bridges of orthotropic design.

There was also some question as to the need for a rational theoretical analysis
in view of the availability of various open form finite element programs which
can be modified to approximately model such decks. A space frame program
(for the stringers, diaphragms and pseado stud members of length e to model
composite action) was combined with a finite element plane stress program
(using elements whose width equaled the stringer spacing and length equaled %
the diaphragm spacing) to analyze the deck as an “equivalent” framework. Even
though double symmetry was utilized, this relatively coarse network required
two orders of magnitude more computing time than did the formula approach
(which incidently was written to give research accuracy rather than computational
efficiency) and, of more significance, required nearly three orders of magnitude more
input information (only one card is needed to read in data for the theoretical
approach). The finite element results were in error by up to 10% for deflections
and the plate stress distributions bore little resemblance to the exact results. The
need for rationally based formulas appeared to be confirmed.

Conclusions

Formulas were introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consisting of a set of evenly spaced stringers
that are composite with a rectangular plate and are braced by a set of evenly spaced
diaphragms. The system is simply supported at the ends with simple or flexible
side supports. The loading consists of an arbitrary distribution of stringer line loads.
The solution is readily modified to analyze cellular decks or, through superposition,
decks with intermediate supports.

The formulas are simple enough for manual use if the loading can be adequately
represented by one or two sinusoidal harmonics but in most cases the designer
will probably prefer to use a small programmable calculator or a computer.
Additional work using these exact formulas seems indicated to modify and determine
applicable range for the various empirical formulas presently in use and possibly to
point the way toward a more accurate finite element analysis.
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Reference Formules

Membrane Analysis. — Certain formulas from the classical plane stress elasticity
solution for a rectangular plate subjected to in-plane loads and boundary dis-
placements (see Fig. A-1) are needed to account for composite action between the
plate and stringers.

The membrane stress resultants in terms of in-plane displacements, are:

n.(x, y) D, “D, u(x, )
nxy(x’y) =K I_E_E Dy 1_2__EDx (A'l)
ny(x, ) Dy D, v(x,y)

in which D denotes differentiation with respect to the indicated variable, p equals
poissons ratio and K = Et/(1 — p?).

The kernel function solutlons for the v and v displacements due to a unit
concentrated load in y direction are:

* . —_— * —
A;; sin o€ cos o;m cos o,x Sin &,y (A-2)

8
-MS

K?(x,y.6.n) =%

~
1l

fun
-
Il

bt

*
¢ ;; 8in ouE cos oM sin a,x cos &y (A-3)

”M8
”M8

K (x,y.6n) =2

.

inwhichai=%,&j:1i,’—‘,$j=1——1/26(}.
0 — N[ +p) oy,
A= i % A-4) -
()t A
5 1207+ (1- 37
TR (-0 + 57T

.(A-5)

It should be noted that the displacement kernel functions K* and K* are for a
plate that is simply supported along all four edges ie. u(x,3)=n,(x,3)=0 and

v(ey)=n:(Gy)=0.
The in-plane membrane shear, n,,, due to the above impulse loading is:

o] [*e] *
KPx,pem)=5% > 3 431 ;j Sin o€ cos oM cos oyx cos Ay (A-6)
j=0 i=1
£ oyloy® —pa?)
B,=_ 2t =5/ _
N TS (A-7)

The homogeneous membrane solutions due to known boundary displacements
are:

= Y (V%+ V¥)cos a;y (A-8)

i=1
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P, V,B sinoxcos Ay 0<x<a (A-9)

"MS
IIM8

V=

y
V$ for i odd
Vs for i even

(a} Element {b) Surface

Fig. A-1. Membrane deck action.

=Y Y 17, 7 COS 0,;X sin &,y (A-11)
j=11i=0
3 Es - pay’)
M . o W o X A-12
I (o a7 A1)

Many applications require use of the following more rapidly converging mixed
formulas for v"

Ms

ro_ % 1
xy)= Y [VE+ V¥ (1—23)+4 z Vi ( ) sin o;x ] cos &y
: a

1 i

J

0= x

IA

. (A-13)

The boundary membrane shears due to known boundary displacements are:

nh (Gy)= Y [V3 TS+ Ve T%] cosay (A-14)
: &

Tﬁ- K - | sinh a; + ao;

T |= 5 (L= 0 | — A-15
[T‘}/J 2( 2 l:cosh ad; + 1 ] ( )

Series Transformation. — For a macro discrete field analysis, one typically needs
to express a discrete function as a finite sinusoidal series when the function is
given as a infinite sinusoidal series evaluated at evenly spaced intervals of the
independent variable. Thus it is required to transform a special infinite series
into a finite series; ie.
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o) m—1
f)| =Y Asin®=Y A, sinkz (A-16a,b)
r k=1

X=wm i=1

The forrriula for the finite series coefficients, 4,, in terms of the infinite series
coefficients A; (see Ref. 3) is:

+ co

*
A= Z Az pm+x (A‘17)

I

These transformation series are often available in closed form; for example
see Ref. (6).

Another typical problem is that of expressing a discrete load function, for
example a set of evenly spaced concentrated loads, as a continuous function in the
form of an infinite sinusoidal series. Consider the following functional form

P(x)= Y P(a)5 (x—20) (A-18)

in which the discrete load function, P, is available as a finite series, i.c.

m—1
P(@)= > P,sin%e (A-19)
k=1

m—1
Py=2 > P(a)sink® (A-20)
x=1

Substituting the infinite series for the Dirac delta function in Eq. A-18 and making
use of Eq. A-20 gives the following infinite series for the set of concentrated loads.

% Pi Sin ;X (A—21)

[ 8

Iﬂ;(x):

i

Il
-

in which P; is sine wise cyclic with a period of 2m for values of the index outside
the normal finite series range of O thru m; i.e.,

P.=Pypix=—Portm-1=Pr—21m (A-22a,b,c)

for all integer values of I.

Stringer Line Quantities. — In order to satisfy displacement compatability
between a membrane and a set of composite stringers it is necessary to transform
certain of the double infinite series in the continuous membrane analysis to mixed
finite-infinite series for quantities evaluated only along stringer lines. Some of the
required transformations are as follows:

a 1 3—nw ., - 14ypu - .
Bkj:(IZ p- kj[ ——-sinh A; + B {1 — cosh kjcos%)] (A-23a,b,c)
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+w

. x L
Bkj=71_z_: Bomik j > a Byj
g, —Snml, (L+phsinhd, (A-24a,b,c)
kj 45]”. —"kj , 0,
in which A,= %@, D,; = cosh X; — cos & A-25a,b)
J ] J

Stringer Analysis. — For the analysis of a deck in which the top surface is
composite with the stringers, a set of beam kernel functions (often termed a
Green’s tensor) is required to give the longitudinal and transverse displacement
fields at the top of the stringer due to independent unit impulse longitudinal
and transverse loads, that is, for N(y)= &(y-n) the w and v displacements are
K*? and K" respectively while for F(y)= 6(y-n) the w and v displacements are
K"’ and K" respectively (see Fig. A-2). The required kernel functions are

*

[sz(y 1) K (y,n) i l:A sin &M sin oy D oS ;1 sin o;y (A-26)
K(y,n) K”(y,m) ;=1 LD, sin &;n cos &y B COS &;1 cos Iy

in which

=1

* 1 = * 2 2
Aj B—'4 2 D j Ei_?:’ Bf 2 t?.e
o B

(A-27a,b,c)

Bequals the flexural rigidity of the stringer, e equals the eccentricity of the longitudinal
loads with respect to the stringer centroid and p equals the radius of gyration
with respect to the cross sectional axis parallel to the deck surface. (Note that the

term with By, is omitted due to the fact that F (y) will be self equilibrating).

Fig. A-2. Stringer forces
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In order to evaluate stringer node deflections due to a discrete loading
(c.g. at the stringer-diaphragm intersections) one requires the coefficients of a
discrete kernel function series 4; as follows:

to 4 g
A=3 Z Aggn1 =3 4, (A-28a,b)
J=—ow
1 (B\3 3~ o = in
A= & ——5 c;=1-—cos 3 (A-29a,b)
(o)
Notation

The following symbols are used in this paper:

So% T
N
i S =
Ox
-,

o

.
~
e

= R N s X
o~

!

o W
R
T w

=z

o]
=
&
~

by

e
H(r,y), ij
LJ

K

K* K% KTv
k, 1

m, n

N(r,y) Ny;
]¥x= nya Ny
P(x), P(a)
Pﬁ-, Pj-’s
R(r,s_), Rkl
T3, TYs

t

u,v

Vi, Ve 7,
w(r,y)
X,y

oy O

éjoa 5()( - n)

i

coefficients of infinite and finite series.
coefficients of stringer kernel functions.

coefficients of infinite kernel function series.

plate dimensions.

flexural rigidity of stringer.

coefficients of discrete kernel function series.
differential operators.

series parameter (Eq. A-25).

Youngs modulus.

eccentricity of membrane forces.

membrane — stringer interactive force and series coefficients.

indices for infinite series.

membrane plate stiffness.

membrane kernel functions.

indices for finite series.

limits of finite series indices.

applied stringer load and series coefficients.
membrane stress resultants.

continuous and discrete load functions.
coefficients of boundary stringer load series.
stringer-diaphragm interactive forces and series coefficients.
coefficients of boundary shear.

plate thickness.

membrane displacements.

coefficients of boundary displacements.
out-of-plane stringer displacements.
continuous coordinates.

ix I respectively.

Kronecker and Dirac delta functions.

series parameter (Eq. A-25).
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u Poisson’s ratio.

& n - impulse load coordinates.

R radius of gyration of stringer.
d; weighting function.

Practical implications

The thin element or metal plate-stringer-diaphragm bridge deck in either
cellular or orthotropic form is one of the most efficient load carrying systems
employed by designers today and the literature includes many references to re-
commended methods of analysis. However, none of the existing methods are
rationally based even though some are rather complex and require voluminous
computations.

- New formulas are presented herein for the exact elastic analysis of plate-
stringer-diaphragm bridge deck systems that 1) are proportioned and detailed so
that all components have negligible out-of-plane stiffness and 2) are simply
supported at the ends. The formulas are unrestricted as to range of parameters
in the structural class; that is, they apply equally well to decks with small edge
beams with diaphragms serving as transverse load distributers and to decks with
primary support by the edge girders with diaphragms serving as floor beams.
Minor modification of the formulas permits their use for symmetrical sandwich
decks and for decks continuous over intermediate supports.

It is proposed that these exact formulas be used for final design review. They
are in the form of double sinusoidal series and can be programmed for use of desk
top or miniature computers or simplified for manual calculations through truncation
of the series. The formulas can also serve as a standard analysis for use in studying
existing and proposed approximate formulas in order to establish range of
applicability, magnitude of errors, etc. This should obviate the unsatisfactory
practice of making judgements based upon comparison of one empirical method
with another empirical method.

Existing alternatives to the proposed method are: 1) use of code sanctioned
empirical formulas to compute an “effective flange width” for the stringers and to
compute distribution of loads between the resulting “T” beams; 2) use of a
“smearing out” technique to replace the mixed discrete-continuous system by an
“equivalent” (usually orthotropic) continuum and 3) use of a discrete or latticed
system to approximate the real system through a finite difference or finite element
approach. The “equivalent continuum”™ method lacks rational bases for selecting
the substitute continuum and for applying the results to the real system. The
errors introduced are significant for coarse lattices and for decks with stiff ribs.
The finite element version of the substitute lattice approach is superior to the
substitute continuum approach but lacks well-developed error analyses. Also, its
use for numerous alternate designs is quite expensive due to the voluminous
computations and the extensive input data required for each case. For example,
the relatively coarse finite element network used to check one of the numerical
examples required two orders of magnitude more computing time than did the
formula approach and nearly three orders of magnitude more input information.
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It is hoped that this introduction of a rational analysis for orthotropic bridge
decks will encourage expanded use by designers of this attractive system, especially
in those countries where they are not presently in popular use.
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Summary

Formulas are introduced which provide the designer with an exact elastic
analysis of thin element bridge decks consisting of a set of evenly spaced stringers
that are composite with a rectangular plate and are braced by a set of evenly
spaced diaphragms, The system is simply supported at the ends with simple or
flexible side supports. The loading consists of an arbitrary distribution of stringer
line loads. The solution is readily modified to analyze cellular decks or, through
superposition, decks with intermediate supports.

Résume

On introduit des formules fournissant au projeteur une analyse élastique exacte
d’éléments minces de tabliers composés d’un groupe de poutres longitudinales
réparties a distances égales et jointes avec une plaque rectangulaire et renforcées
par des diaphragmes répartis a distances égales. Le systéme est simplement sup-
porté aux extrémités par des supports latéraux simples ou flexibles. La charge agit
par une distribution arbitraire de charges linéaires. La solution est légérement
modifiée pour analyse des tabliers cellulaires ou, par superposition de tabliers avec
supports intermédiaires.
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Zusammenfassung

Es werden Formeln eingefiihrt, die dem Projektbearbeiter eine genaue elastische
Analyse diinner Fahrbahnelemente liefern, welche aus einem Satz in gleichem
Abstand verteilter Lingstrager bestehen, die mit einer Rechteckplatte verbunden
und durch eine Anzahl in gleichem Abstand verteilter Diaphragmen versteift sind.
Das System wird an den Enden durch einfache oder flexible seitliche Auflager
gestiitzt. Die Belastung besteht aus einer beliebig verteilten Lingstrager-Linienlast.
Die Losung lasst sich leicht modifizieren, je nachdem es sich um zellenformige
Fahrbahnen oder, durch Ubereinanderlagern, um Fahrbahnen mit zwischenliegenden
Auflagern handelt.
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General

In solution of plane stress problems by the finite element method trapezoidal
cells have advantage over cells of other shapes when the geometry of the plates
under investigation may be conveniently described in polar coordinates. In general
two quite distinct kinds of cells (elements) are possible, the bar or framework
cells and the no-bar cells. The cell proposed here is of the bar type, and it has the
shape of an isosceles trapezoid endowed with certain distinctive features contributing
to precision. The present study includes the description of the cell and the derivation
of its stiffness matrix in explicit form. This is followed by description of results of
application of the theory to examples.

Bar Cells

The bar cells used in plane stress problems are made of certain combinations
of elastic bars endowed with extensional stiffnesses assuring the same deformability
of the model as of the prototype in conditions of any arbitrary uniform stress.
The requirement of this equivalence of deformations may be most conveniently
satisfied, if the cell is made to deform identically with the plate in the following
three separate strain conditions: uniform normal strain g,, uniform normal strain g,
and uniform shearing strain vy,,. The deformations of the cell are judged by the
displacements of its corners [2].

The extensional bar stiffnesses EA, found from these relations, on the assumption
of the modulus of elasticity E being the same as in the plate, depend on the
geometry of the cell and the value of the Poisson’s ratio p of the material of
the plate.

In most cases some bar areas become negative within certain ranges of p and
proportions of the cell, and this at times results in lowering of precision. A bar
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area may sometimes also become zero. This in effect removes the bar from the
cell, making the model in some cases non-rigid and unusable for analysis. The
undesirable bar arrangement of this kind may be avoided by the use of additional
bars and other special measures.

With the necessary cell geometry decided upon and the bar areas known, the
stiffness matrix of the cell is determined.

In analysis of bar stresses in the cell the equations of equilibrium are written
for an undeformed structure, on the assumption that the deformations of the bars
do not affect appreciably the geometry of the model. Instability of particular bars
or groups of bars need not be contemplated.

In the model of the plate the cells of the chosen pattern join each other at the
main corners, outlining the shape of the cell. These joints may be considered
as hinges, although such articulation is not essential, since the bars are devoid of
flexural stiffness. Secondary junctions between the bars belonging to one cell only,
are also possible. These joints lie sometimes outside the outline of the particular
cell, as will be illustrated presently.

Trapezoidal Bar Cells

The shape of an isosceles trapezoid modelled by the cell is shown in Fig. 1.
It is described by the ratios k and k, of the two bases and the height of the cell.
The thickness of the plate is t.

<y 1 "’f)Aa
3

4 A, 4 Ap 17 Ay 3 %;__,7\3
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Fig. 1 Fig. 2
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k=—-andk1=——- (1)
a4 ay

The bar framework of the cell is presented in Figs. 2a, b and c, depicting a
single cell. It consists of several bars, whose cross-section areas are designated by
the letters 4 with different number indices. The areas of the top and bottom
bars 4, and A} in Fig. 2a are assumed equal, and so are the areas of the bars
A;y and A7, in Fig. 2b. The sloping bars 43 and A} are inclined at the same
angle 0 to the horizontal, and are also equal in areas. The area of the horizontal
bar A,, joining the points 5 and 6, is assumed for simplicity infinite. The bars
A go over the bar 4, and have common joints 3 and 4 with it, but their inter-
mediate joint 7 is separate from the bar 4,. The bottom bars A}; and A} are in a
similar situation.

The pairs of nodes 2-3 and 1-4 are joined by two sets of bars, the solid bars in
Fig. 2¢ and the ones in Fig. 2a, attached to each other in a special way at the
intersection, by means of a hinged rectangle of infinitesimal size. When the cell
is under the action of a loading symmetrical about the vertical axis, the diagonals
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2-3 and 1-4 are stressed equally, and the rectangle is fully capable of transmitting
their stresses through it, as if it were absent. On the other hand, antisymmetrical
loading of the cell would tend to make the stresses in the diagonals equal and
opposite in sign; the rectangle would not permit this, and the diagonals would
be inactive. In arriving at these conclusions it is necessary to view the cell
geometry as undeformed by stress. The area of the solid diagonal bar is assumed
vAj,, and of the hinged part (1 — v)A,, where v is a fractional coefficient. Thus, the
effective area of the diagonal is 4, under the symmetric loading, and vA, under the
antisymmetric.

The nodes 1, 2, 3 and 4 are the external joints, at which the cell connects
to its neighbours, and where it is acted upon by the external loads. The joints 5
and 6, where the bars A;, 4% and A, meet, are parts of the internal mechanism
of the cell, unattached to the other cells. With the angles 6 as shown, the nodes 5
and 6 protrude into the areas of the neighbouring cells; however, the action of these
bars is considered unaffected by such interpenetration.

Simple static analysis shows, that the bars 4;, A3 and A, are inactive, when
the loads are antisymmetric about the vertical axis of symmetry of the cell
At the same time the inclined bars A5 and A in Fig. 2b are inactive when the
loads are symmetrical about the same axis. In case of symmetrical loading the
bars Ay; and Aj; become combined with 4, and A’ respectively, and work
together with them. The inclined bars vA4, (Fig. 2¢) and the horizontal bars A,
and Aj; are the only ones which work both under the symmetrical and the anti-
symmetrical loads. ‘

The cell possesses two free parameters, to be assigned by special considerations,
as explained later, the fractional coefficient v of the diagonal bars and the angle 0
of inclination of the side bars 45 and Aj5. This angle may exceed 90°.

The number of bars in the cell is more than sufficient for its rigidity, even
when the values of the parameters k, k; and © combine to make some of the
bar areas zero, in other words, cause these bars to disappear.

The uniform strain conditions in the plate ¢,, €, and v,,, which the cell must
imitate, are illustrated in Figs. 3a, b and ¢, with the deformations of the cell
indicated by dotted lines. The corner forces X and Y, stated in Fig. 3, are found
by transferring the stresses, acting on the edges of the cell, to the corners on
the sides of each edge, the transfer being carried out in accordance with statics.
In each of the three conditions these corner forces are equal at all corners. It may
be observed, that the stress conditions represented in Figs. 3a and b are symmetrical,
and the one in Fig. 3¢ antisymmetrical about the vertical axis x.

l l’ IIl [ Y ENERIENTEER T EE N
vy

X X .
3 Y/ Conel 1 N E
e)(l y
ﬁyL + X H.le"

P X,
HLH(CJi)HHT (b
X = (e Etu X - Ar+)Ety
1 4x(r-u) 2" 2K(140)
¥ e AEtu Y = x Ety v= e+ Etu
DR £ Kid) 3 4K(rm) Fig. 3
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Determination of the Bar Areas

The cell of Fig. 2 is subjected to the strain Condition 1, uniform strain in
x direction, Fig. 3a. The four corners develop the forces X, and Y;, as shown.
The antisymmetrical bars 45 and A, of Fig. 2b remain idle. The stresses in the
bars A; and A5 are equal, in view of equality of their angles of inclination to
horizontal. The stresses F, and F, in the bars A, and A; may be expressed in
terms of the geometry of the cell, the elongation u and the areas of the bars.
Equating the sums of the x and y components of F, and F; to the nodal forces X,
and Y; in Fig. 3a, the areas 4, and A; are found as follows

[k + 1)+ 2uk, tan 0] [4k] + (k + 1)*]*?

- . 2
2 1612 (1 —p?) 2k; + (k+ 1) tan® @

[(k +1)* — dpki]

Al =
3= 31 = 57 [2k; cosB + (k + 1)sin 0] sin 26"

(3)

The cell is now strained horizontally in accordance with the Condition 2 in
Fig. 3b. The bars (4, + A4,,) and (4] + A},) are stressed equally in view of equality
of their areas and proportionality of elongations to their lengths. The bars of
Fig. 2b, other than A4,, and A}, again develop no stress. Following a procedure
similar to the one just outlined, the equation » Y=0 at one of the corners of
the cell leads to determination of the stress F, in the top and bottom horizontal
bars and to the expression for the sum of the areas (4, + 4,,).

(k + 1) [4uk? — (k + 1)*] + 2k, tan 0 [4k2 — p(k + 1)]

A+ Aqy)=
(4s + A1) 16k3(1 — p2) tan ©

a;t (4)

It may be pointed out that the equation ) X =0 can give no new information,
being satisfied automatically by Betti’s reciprocal theorem, irrespective of the areas
of bats.

The shear Condition 3 (Fig. 3¢) causes stresses in the antisymmetric system
of bars of Fig. 2b with participation of the diagonals vA,. The ratio of components
of corner forces in Condition 3 is

Xy 2%,

_ 5
Y, k+1 G)

This indicates, that the resultants of X, and Y; at all corners act in the
directions of the diagonals.

For purposes becoming clear later, it is desirable to subdivide the corner
forces X5 and Y, into parts carried by the diagonals vA4, and the antisymmetrical
bar system of Fig. 2b. These parts, expressed in terms of a new fractional
parameter 1), are presented in Figs. 4a and b. By equating the stress in the diagonal
in Fig. 4b to its expression in terms of the elongation of the bar vA,, the
parameter 1) is found related to v by the equation



TRAPEZOIDAL BAR CELLS IN PLANE STRESS 69

@) an (b) $(-n)Xs

(k + 1) [(k + 1) + 2pk, tan 6]

Vkl(l — ) [2k; + (k + 1) tan 0] (6)

(I-m)=

The antisymmetrically loaded structure of Fig. 4a is statically determinate, and
the stresses in all its bars, equal and opposite in sign on the opposite sides of
the axis of symmetry, are expressible in terms of the corner forces. Thus the stresses
in the horizontal members are

F ——kX k Y.

1_2k1 2 k+1n3

F, = 1X ! Y. i
2 T hEr1 N

The areas of these bars could be found in terms of the displacement u and
the geometry of the cell, but this is not needed for determination of the terms of
the stiffness matrix.

The bar systems pictured in Figs. 4a and b provide two independent alternative
routes for the corner forces X5 and Y; to travel through the cell. For this reason
the parameter m must be viewed at this stage as an arbitrary number of a
magnitude anywhere between zero and unity.

Terms of the Stiffness Matrix
Condition u,

If the bar areas in the cell are known, the nodal forces in it, produced by unit
displacements of any of the nodes, such as u; = 1, may be found using the equations
of structural theory. This however is a laborious procedure, and in many cases it
is possible to arrive at the same results more easily by a judicial combination of
several elementary strain conditions with knowledge of only a few bar areas, and
even without them. In the present case of the trapezoidal bar cell the method of
combination of elementary conditions also leads to a significant refinement of the cell,
resulting in improvement of precision. The combination producing the Condition
uy = 1, 1s presented in Fig. 5.

The three component conditions are the basic Conditions 1 and 3, and a non-
basic flexural Condition 4, in which the nodes move in x direction. The corner
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displacements in these three conditions add up to zero, except for the corner 1,
where their sum equals u,. The corner forces in Fig. 5, on comparison with those
in Fig. 3, are one half as great for the Condition 1 and one quarter as great for
the Condition 3.

The Condition 4, as the Condition 3, is antisymmetrical, and its corner forces
may be deduced from comparison of its corner displacements with those in Con-
dition 3. For this purpose Condition 4 is broken up into two parts, shown in
Figs. 6a and b, corresponding to separate actions of the diagonals and the
antisymmetric bar system.

As follows from comparison of corner displacements, the diagonal bars in
Fig. 6b deform less than in Fig. 4b in the ratio 7}, and so the components

of their stresses must stand in the same ratio.

‘_f%(“'i‘)xs -

\
\ K

2 ,%’,(anpﬁi ______ y i (7%
“Fr T 2]
) bt oy
Fig. 6
k—1 k—1
Thus, X = — (I —n)X;and Y=—"(1 — n) Y- 8
k+1( n)Xs k+1( n) Ys (8)

The corner displacements of the antisymmetrical bar system in Fig. 6a equal
those in Fig. 4a, and so must do the horizontal displacements of the junctions
of the horizontal and the inclined bars, in order to preserve the equilibrium between
the horizontal and the inclined members. For this reason all bar stresses in
Fig. 6a are numerically equal to those in Fig. 4a, although their signs, as indicated
by arrows in both figures, are in some members different.

The corner forces in Fig. 6a may now be expressed by comparison with
Fig. 4a, making use of Egs. (7).
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Xg=Xr=nX; |
Yo =m¥%,—2F; =5 iy, ©)
k+1 ;
Yr=mY—2F, = —{{——"—lﬂYa
k+1

s

Combining these. with the ones in Fig. 6b, the total corner forces in the
Condition 4 (see Fig. 7) are:

P __k—l + 2 A
=y et

k—1 2k
X e Xa———nX > 10
AT K+ 1 3 k+1n 3 ( )
Y.~y k—1
4B = 4-T'_k+1 3

Fig. 7

The members of the first column of the stiffness matrix of the cell, i.e. the
corner forces corresponding to Condition u; = 1, are found by adding up the values
of the three component cases in Fig. 5, and are stated in Table 1.

Condition v,
This condition may likewise be obtained by addition of the three component

conditions, the basic Conditions 2 and 3, and the non-basic flexural Condition 5,
in which the strains occur in y direction (Fig. 8).
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Table 1. Trapezoidal Bar Cell Table 2. Trapezoidal Bar Cell
) x x ) VI XVI‘
44(1 .],3 ” _J a, 43\”
h1 W \ helk YA
=k|as = .lq] Y
Yy
%L Ka,l Y [ kalx /\\ R
s ¥I =
X!z“, --.:L;,w Y. l'x,‘z” X;" Pn 1
A+ A
_(k+1)2+2kf(l—u)+2% ki"(l—u)} BT+ (k4 17 (1 — )+ 16 = ——k, (1—?)
X = Et Yo = Et
! L 8(k+ 1)k, (1 —p?) ! 16{k + 1)k; (1 —p?)
A+ 4
(k4 1) = 263(1 = ) — 23 K3(1 — ) 8 k1P (1 —p) =16 ="k, (1—p?)
= kat
Xyl = Et ¥ = Et
> 7L 8k + 1)k, (1 — p?) : 16(k + 1}k, (1 — p?)
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82 —(k+12(1—pw—16 2" "My (1~p
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The nodal forces of the flexural Condition 5 may be correlated with those of
Condition 2 by observing the displacements of the joints and the action of the
bars forming the cell (Fig. 9). Since both Conditions 2 and 5 are symmetrical
about the vertical axis, the bars A5 and Ag are inactive.

The horizontal movements of the nodes 1 and 2 are both outward and equal

v . . ' (Y : -
to —, while the displacements of the upper nodes 4—1kare outward in Condition 2 and

inward in Condition 5.

The nodal forces in both conditions are contributed by the inclined bars A4,,
A5 and A5, and the double horizontal bars (4; + A,,) and (4} + A4,). The stresses
in the inclined bars, and the nodal forces resulting from them, stand in the ratio
of the algebraic sums of their nodal displacements, i.e. in the ratio f+.

AsAd | H
/%XKKA‘—/ ; AN

‘\/Cand 2N N Cond. 5 v
L (7 B
)

Fig. 9
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The stresses F, are numerically equal in all horizontal bars in both conditions
2 and 5. In the first of these, F, are tensile, and in the second — tensile at the
bottom and compressive at the top, as indicated in Fig. 10. Their contributions,
Y5y at the bottom, and Ysr at the top, to the horizontal nodal forces may be
expressed as follows:
k—1 2

—F —F
k+1 Jl+k+1 L

k—lF 2k
k+1 ' k+1

Y53=F1:

and Ysp=-—-F;, = 10

The first parts of these expressions may be combined with the contributions
of the other bars, and the total nodal forces in Condition 5 may be expressed
through their counterparts in Condition 2 and the stresses I, as follows:

X—k_lX
ST k172
k—1 2
Y (bot. joints) = 11
5 (bot. joints) k+1Yz+k+1F1 (11)
k—1 2k

The corner forces X, and Y, of these expressions are given in Fig. 8. The
forces F, are:
_ (A; + Ayy) Evy
2ka,

The terms of the second column of stiffness matrix, corresponding to the
Condition »; = 1, are stated in Table 2.

F, (12)

Other Terms of the Stiffness Matrix

The matrix terms, produced by the displacements of the node 3, are found
by procedures similar to the ones described, and those corresponding to the
displacements of the nodes 2 and 4, by applying the principles of symmetry
to the terms already found.

Refinement of the Stiffness Matrix

The desired stiffness matrix should be applicable to isosceles trapezoids of all
kinds, including rectangles, whose coefficient k = 1.

While the matrix of Tables 1 and 2 describes stresses and strains in uniform
strain conditions perfectly, its descriptions of non-uniform conditions naturally is
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only approximate. Furthermore, the arrangement of framework in a rectangular
cell, viewed as a special case of a trapezoid, is different in x and y directions,
and so it may be expected, that the results of analyses of model made of such
‘cells, would depend on orientation of rectangles, with some unfavourable effect
on precision, which is likely to extend to cells with values of k distinct from
unity. Experience confirms correctness of this supposition.

Fortunately however, the existence of free parameters § and v or i makes
possible a refinement of the stiffness matrix with favourable effect on precision.
The idea is to assign to 6 and v such values, that the limiting case of a trapezoid
with k = 1 will have the same elastic properties in the directions of both axes.

The terms X*' and Y’ of the stiffness matrix in Tables 1 and 2 mvolve
quantities n and (4; + A,). These are present only in the last members of the
numerators of their expressions. Replace these members by different expressions
involving a new parameter ®. This version of the stiffness matrix is assembled in
Table 3. The parameter ® in it is related to n and (4, + 4,,) by the expressions

k(1 — 2(4;, + 4,,)(1 — p?
2 klalt.

On substitution of k =1 in Table 3 the terms X4' and ¥7' (see Fig. 11) become
24+ k(1 —p)+ 20

Xul s
' 8ky (1 —p?)
u 22F+1—p+24te (14)
L 8k (1—p?)
a, al
! |
AVE K,L. N/ 1\ @
|
lJ J i } l‘\('Vl y
____q-_ful -,l L—F
(a) x‘ (b) \/
Fig. 11

It may be pointed out, that introduction of the new parameter o is legitimate.
This is simply equivalent to attributing some particular values to the quantity n
and the angle 6. ® as | must be positive.

Change now the bar arrangement from Fig. 11a to Fig. 11c. The new expression
for X! is obtainable from the old by replacing k,; with . This makes X%' (changed)
identical with Y}! in Eq. (14). Similarly, Y?! (changed) is found the same as X4!.
It may be observed, that the members with o satisfying Eq. (13}, fit all terms of the
stiffness matrix, and not just X%! and Y}



TRAPEZOIDAL BAR CELLS IN PLANE STRESS 75

Table 3. Trapezoidal Bar Cell
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The Value of ®

The question of what values of @ should be preferably assigned to the cells
composing the model may be answered by resorting to the energy principles.

Suppose, that by using some particular values of this parameter the nodal
displacements of all cells in the model, under the action of given loads, have been
determined. Consider one of these cells by itself, and apply to it the three uniform
strain conditions in appropriate amounts, so that the nodes 2, 3 and 4 are placed
in their relative positions conforming to the distortion of the model, while the node 1
still remains short of its proper place. The cell so deformed is held in this state by
appropriate nodal forces, none of which is a function of the parameter ®. To make
the node | move the remaining distances u, and v, (Fig. 12), it is necessary to
apply to it additional forces '

X=X{"u,+ X4 v,
Y=Yy, + Yily, (15)

while restraining the other nodes from further movements.

The forces represented by the first terms in the expressions for X and Y always
act in the directions of u, and v,, irrespective of the signs of these displacements,
thus making positive contributions to the energy of deformation of the cell. The
contributions of the second terms to the energy of deformation may be positive
or negative, but their effect is minor.

Re-assemble now all cells of the model. The energy of its deformation U is
composed of the energies of individual cells. Assume, that o is decreased, while
all nodes are left in the same locations. For this they must be restrained, because
the assembly is no more in equilibrium. A smaller ® makes the terms X% and
Y{', and with them the energy of deformation U, smaller, while the potential
energy of the loads V is the same as before, because the nodes have not moved.
This makes the total energy of the system Tsmaller than before.

Now remove slowly the nodal restraints and allow the model to find its new
state of equilibrium. By the Rayleigh-Ritz principle the energies U and V change
in such a way, that their sum T decreases. A smaller ® thus has resulted in a
smaller T of the deformed structure.
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The same reasoning is equally valid in application to models constructed of
other types of cells, both bar and no-bar. Cells with smaller values of X{' and Y{*
would possess a smaller total energy T of the model than cells of the same shape
and size, but with bigger X% and Y7* terms.

A question still remains, which of the two sets of terms X%, Y?! or more
generally, what kind of cell, is better for precision of results. This question presents
itself, as the cells are subdivided into smaller units, with zero size being the limit,
when the model becomes in effect the actual plate prototype.

The numerical progress of energy T on subdivision of cells has been examined
closely on models composed of rectangular cells [4]. The value of Ton reduction of
the size of cells in such models was found to increase or to decrease, at times
non-monotonically, with the direction of change depending mostly on the stiffness
matrix terms of the cells used. Since rectangle is a special case of trapezoid,
one may expect, that with trapezoidal cells the convergence of the total energy
should also proceed up or down numerically depending on the particulars of the
problem, including the type of cells with their parameters k and k;, and the
geometry of the structure and its loading. These relationships will be demonstrated
below on examples.

A few explanatory words about the parameter o are in order. This parameter
should be positive, but not zero. If @ =0, the antisymmetrical bar system of the
cell is eliminated. This feature is not objectionable in itself, but it makes the
nodal forces, brought about by unit movements of the nodes 1 and 3, equal at
respective corners, which is unreasonable. If @ =0, a rectangular cell becomes
non-rigid. '

It is necessary to point out, that negative bar areas, making their appearance
in certain geometrical configurations of cells, and leading in some framework systems
to reduced precision, need not be feared in case of cells under consideration,
because they all become absorbed in a single positive parameter o.

While solution of a cell model resulting in a better energy T is superior to
the ones characterized by less satisfactory values of T, this does not necessarily
signify superiority of precision of displacements everywhere in the model. For its
equilibrium structure seeks condition of the least total energy. This roughly corres-
ponds to least weighted errors in deflections of the points of application of loads
in the directions of the loads. Deflections normal to the loads, as well as the ones
of the unloaded nodes, are not reflected in the value of T.

Examples

The application of the theory presented here is illustrated on displacement
analysis of a thin plate of thickness t in the shape of a 90° sector of hollow
circle (Fig. 13), acted upon by a radial load, applied on one radial edge, while the
other edge is supported on rollers, allowing its points to move only radially.
An exact solution of this problem is available [ 5].

In the examples solved here the inner radius is assumed to be one third of the
outer radius R. The Poisson’s ratio p=0.2. The boundary conditions allow the
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Fig. 13

plate to undergo an arbitrary vertical movement; this in the theoretical solution is
assigned a certain definite value. The expressions for the radial and tangential
displacements, u and v respectively, are given by Egs. (16) and (17), in which r
and 0 signify the polar coordinate of the point.

2

r r R?] | |
u=1) — 334882 (1 — ) n'z+ 150697 (1 = 3p) 75— 016744 (1 + 1) - |sin b —
r
P
— 10.5206 cos 8 + 6.69764 6 cos G}E—E (16)

. 2
D= {10.5206 sin 0 — [3.34882 ((1 ) +(- u)m%) + 1.50697 (5 + p) ';?—

R? P
— 016744 (1 + ) -2—] cos § — 6.69764 8 sin e}a (17)
r

The tangential stress by means of which the load P is applied to the edge 6 =0,
is given by the equation

[3.34882 301394 r 0.33488 RZ} P 18)
oo r " R? r t (

The finite element models used in solution of this problem are formed by
subdividing the plate into trapezoids by radial and circumferential lines. To trace
the improvement of precision with reduction of mesh size three models are used.
The coarsest one of 15 cells has 3 cells in radial direction and 5 in tangential
(Fig. 14). Two other models possess 60 and 240 cells, i.e, two and four times as
many cells in each direction as the first model.

To reduce the number of significant variables and by that to simplify the
problem of identifying the more precise types of elements, the elements are made
geometrically similar in all circumferential rows. Elements so proportioned have
the same parameters k and k;, and the same stiffness matrices in spite of difference
in sizes, as they grow larger away from the centre.

Geometry of the cells and the model may be easily determined by elementary
means. |

The parameter k, which is also the magnification factor between two radially
adjacent cells is k= \"/3, where n is the number of circumferential rows, ie., 3,
6 and 12 in the three models employed.
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The parameter k;, = —————, where ¢ is the central angle subtended by each

2tan Y%

cell and equal to 18°, 9° and 4°30°. The small base of the smallest trapezoid
a=2/3 Rsin %e.
The numerical values of these quantities are assembled in Table 4.

Table 4. Value of Significant Quantities of Cells in Models Used

Model
5 x 3 Cells 10 x 6 Cells 20 x 12 Cells
Quantity
a4y © 0.104290 0.052306 0.026173
k 1.44225 1.200936 1.09587
ky 1.39613 1.28052 1.22003

The shearing stress 1,4 (Eq. 18) on the edge 6 = 0° is non-uniform; this raises
question of how to assign proper fractions of the active load P to the nodes
on this edge. Fig. 15 shows three consecutive edge nodes A, B, C and their
distances from the centre of the sector. It is felt, that a load element dP, situated

dP

Ae— B c
y N

| iz T
a
-—-/ b

Fig. 15

ey

between the nodes A and B should contribute only to these two nodes, and
that its contribution at the node nearer it should be greater than at the more
distant one. From these considerations nodal concentrations at B have been
determined by “the Law of Proximity”, mathematically identical with the law of
the lever. This was done separately for the contributions coming from the inner
panel AB and the outer panel BC. The extreme nodes M and N have their
contributions coming only from one side.

The computed values of the nodal loads in the three models used, numbered
from the inside, are stated in Table 5.
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Table 5. Nodal Loads in Models Used. Numbered from Inside the Sector

Model
5 x 3 Cells

Model
10 x 6 Cells

Model 20 x 12 Cells

P, = 0086925 P
P, =0.398441 P
P,=0411183 P
P, =0.103452 P

P, =0.025530 P
P, =0.135140 P
P, =0215155 P
P, =0241144 P
P, =0.216664 P
P, =0.138483 P
P, =0.027883 P

Py = 0.006930 P
P, =0.039011 P
P, =0070124 P
P, =0.093426 P
P, =0.109595 P
P5=0.119015 P
P, =0.122073 P

P, =0.119020 P
Pg =0.109722 P
Py =0.093734 P
P,y = 0.070608 P
P11 = 0.039518 P
PIZ = 0.007220 P

Finite Element Solution

In view of circular shape of the model the x and y axes of the adjacent
cells at the common nodes do not coincide (Fig. 16). Convenience of computer
programming calls for the use of nodal displacements in the radial and tangential
directions r and ¢, common to the neighbouring cells.

Fig. 16

:
(e -a)

The stiffness matrix of the cell in model coordinates [ K,] is found from the
one in cell coordinates [ K| by the equation

[K.]=[1] [K][L]" (19)
in which [L] is the transformation matrix for the vectors of nodal displacements
or forces, from the cell to the model coordinates, and [L]" is its transpose.
Derivation of explicit expressions for the terms of [K,] is laborious and must be
left to computer.

To make nodal displacements in the model solution consistent with the
theoretical values, one of its nodes on the edge 6 = Jam must be given the exact
value of u in Eq. (16). This calls for an additional step in the solution of the
model. As the node in question, in this case the inner node on the edge 0= Yam,
is being moved radially to its intended location, the three adjacent nodes, one on
the same edge, and two on the neighbouring radial line, are kept at rest.
This requires application to these nodes of the load vector equal to the product
of proper terms of stiffness matrix and the displacement of the moved node.
Following this, the moved node is kept at rest, and the reverse of the load vector
at the three neighbouring nodes is added on to the active load system in solving
the model for the displacement of the nodes.
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Results

Calculation of displacements of the cell nodes in the sector plate is carried
out with both, the bar cells described in this work, and the no-bar cells of the same
trapezoidal shape [ 3], using the energy type stiffness matrix.

The action of the plate under consideration is substantially that of a sharply
curved short cantilever beam, fixed at one end. Most of movement occurs in
radial direction at the loaded free end, and it gets gradually smaller on recession
from it. There is also some tangential movement resulting from normal stresses in
lengthwise direction, tension on the outside and compression. on the inside of
the sector.

The bar cells of all three models are endowed with the values of the parameter ®
equal to 0.001, 0.02, 0.2, 0.4. No-bar cells are also used.

In Table 6 the nodal displacements, or rather their coefficients ¢ before £,
determined by the finite element method, are compared with the exact values, given
by Eqgs. (16} and (17). Quality of each solution is described by the greatest at all
nodes value of error in ¢, separately in radial and tangential displacements. In
the same table are also stated the percentages of the total number of nodes,
at which the percentage error is no more than 2% in the coarse model, and 1%
in the two other models.

To correlate the quality of the obtained displacement values with the total
energies T of the deformed models, the values of the latter are stated in the table
and also presented graphically in Fig. 17.

Since the true values of u given by Eq. (16) on the radial line § = 0°, over which

the load P is distributed, are all the same and are equal to 10.5206 %, the actual
2 3

P
total energy of the sector is T= — % (10.5206) — = — 5.2603 —-. This may be com-
pared with the values of Tin the models. £ B
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- 50
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Table 7. Models of 90° Sector Plate, p=0.2.

Comparative Precision of Displacements in Puirs of Models

% of More Precise Displacements in Pairs of Models.

83

#1. 15 Cell Model. #2. 60 Cell Model. 1 3. 240 Cell Model.
w= O= 0= 0= No-|o= o= o= o= No-|o= o= o= o= No-
0.001 002 02 04 Bar {0001 002 02 04 Bar (0.00! 002 02 04 Bar
Radial 65% 35% 83% 17% 74% 26%
26% 74% 37% 63% 24% 76%
Displace- 9% 91% 20% 80% 24% 76%
ments 91% 9% 87% 13% 84% 16%
9% 91% 8% 92% 18% 82%
80% 20% 67% 33% 94% 6%
Tangen- 25% 75% 23% 77% 8% 922%
tial 15% 85% 13% 87% 33% 67%
Displace- 95% 5% 87% 13% 93% 7%
ments 55% 45% 53% 47% 57% 43%

In Table 7 several pairs of solutions, such as the ones with the bar cells
involving ® =0.001 and ® =0.02, are compared on the basis of percentages of
nodes, at which the displacements in one solution are better than in the other,
and vice versa, irrespective of how great the differences are numerically.

Examination of results in Tables 6 and 7 leads to the following conclusions.

1. The total energies T in all models are quite close to the exact value in the

2
sector — 5.2603 7% In the models having cells with ® = 0.001 and 0.02, they are

numerically greater than the true T (i.c. algebraically smaller), and in the other
three types of cells — numericaily smaller. In the cells with ® = 0.2 the value
of T comes very close to the true one. As the 15 cells in the coarse models
are subdivided into 60 and 240 cells, their energies T change monotonically
towards the true value,

. Precision of nodal displacements in the bar cell models with © = 0.2, whose T
values are the closest to the exact, is by far the best, as judged by most of the
criteria in Tables 6 and 7. This applies equally well to the coarse and the fine
cell models.

. Displacement precision of all models in all ways of description improves
substantially, as the number of cells increases.

. Results with models of @ = 0.02 and the no-bar cells come next in precision to
those with ®w =0.2. In some ways of measurement the former are better, and
in the others — the latter. Farther behind them are the models with cells of
® =0.001 and ® = 0.4.

. The shape of convergence lines of the energies 7 on subdivision of cells (Fig. 17}
is very significant. Three of these lines descend, as the cells are subdivided
to %2 and ' sizes, and two ascend on the way to the exact value of T
Models with the best type of cells (@ = 0.2) have the flattest convergence line,
because their values of Tare the closest to the exact.
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6. Confirming the theoretical conclusion reached earlier, convergence lines of models
constructed of different types of cells, do not intersect on the way to the true

A. HRENNIKOFF - K.M, AGRAWAL

value of T, as the cells are subdivided.

7. The advantage of cells with a variable parameter o lies in availability of the
type of cell most suitable to the problem in question, having precision in mind.
If one kind of cell in the model results in an ascending convergence line, and
another — in descending, the cell, characterized by the best 7, must lie
somewhere in between. To obtain a comparable precision with models cons-
tructed of no-bar cells, their size must be made very fine, and the computer

solution lengthy.
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Notation

without and with subscripts and superscripts, — bar areas.
modulus of elasticity.

stiffness matrix of cell in x, y and r, t coordinates respectively.
transformation matrix.

acting load; with number subscripts, — fractions of it.
radius of plate.

total energy.

energy of deformation.

potential energy.

with and without subscripts, — corner forces in cell.
with subscripts and superscripts, — terms of stiffness matrix.
lengths of parallel bases of trapezoidal cell.

coefficient in expression for nodal displacement.
height of cell.

ratios describing the shape of cell.

number of circumferential rows of cells in model.
polar coordinate, radius.

structure coordinate axes.

plate thickness,

with and without subscripts, — nodal displacements.
remaining distances in Fig. 12.

cell coordinate axes.

base angle in the cell.

unit shear strain.

nodal displacement.

normal unit strains.

a parameter.

polar coordinate; angle of bar A5 with horizontal.
Poisson’s ratio.

parameters.

shear stress.

angle subtended by cell.
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Application with the view to safety and economy

With introduction of digital computer the method of Finite Element has brought
into engineering practice a reliable numerical procedure for solution of numerous,
hitherto insoluble, problems of practical importance, related to analyses of stresses,
vibrations and instability of structures composed of continuous elastic material.
Among the applications may be mentioned tall buildings depending for their
strength and stability on shear walls, coverings of large areas by shells of spherical,
cylindrical and other shapes and elements of modern aircraft.

In each case the structure under investigation is replaced by a model composed
of an assembly of polygonal units, called finite elements or cells, of repeated
pattern, planar in shape (usually rectangular, trapezoidal or triangular} or three
dimensional. Planar cells may be capable of resisting stresses lying in their planes
only, or flexural stresses, or both planar and flexural.

The displacements and stresses found by the computer are approximate, and
their precision depends on the fineness of subdivision and the type of cells.
Models made of fine cells in general give better results, but require longer computer
time, and their precision may suffer from too great a number of simultaneous
equations and the resultant unfavourable effect of rounding off errors by the
computer, requiring special procedures for counteracting them.

Some finite elements are better than others, and the unfavourable effects
mentioned here may be less pronounced, even with coarser cells. Cells may be of
bar or no-bar types.

As the model is repeatedly subdivided into smaller units of the same shape and
type, the solution, in all its aspects, i.e., in displacements, stresses and the energy
of the system, converges gradually to the true values. Better cells are the ones,
whose lines of such convergence are quite flat, i.e., whose energy, even in a coarse
model, is not far from the true one.

The advantage of the cell proposed in this work lies in provision of a variable
parameter, whose better value for the particular problem is found by trial to make
the energy convergence line fairly flat.

The cells used in the present study are of the bar type, in the shape of
equilateral trapezoid, and are suitable for solving plane stress or plane strain
problems in a body, whose geometry may be described conveniently in polar
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coordinates. Among suitable examples may be mentioned plane stress in a plate with
a circular hole and stress analysis in rock around a circular tunnel.

Rectangle is a special case of trapezoid, and so the theory proposed here
may be extended to rectangles.

The application of the theory is demonstrated on an example, whose exact
theoretical solution is available.

References

1. CHARANIA, H.G.: Plane Stress Analysis with Isosceles Trapezoidal Bar Cells. Thesis for the Pegree
of Master of Applied Science in Civil Engineering, the University of British Columbia, Canada, 1968,

2. HRENNIKOFF, A.: Framework Method and its Technique for Solving Plane Stress Problems.
Publications, International Association for Bridge and Structural Engineering, Vol. 9, 1949,

3. HRENNIKOFF, A.: The Finite Element Method in Application to Plane Stress. Publications, Interna-
tional Association for Bridge and Structural Engineering, Vol. 28-11, 1968.

4. HRENNIKOFF, A., and AGRAWAL, K.M.: Superior Rectangular Bar Cells in Plane Stress. Conference
on ““ Symmetry, Similarity and Group-Theoretic Methods in Mechanics™, the University of Calgary,
Alberta, Canada, August 1974.

5. TIMOSHENKO, S.: Theory of Elasticity. McGraw Hill Book Co. Inc., New York, 1934.

Summary

Finite elements in the shape of isosceles trapezoids, formed of several elastic
bars are proposed for analysis of plates in plane stress, when the plate geometry
can be conveniently described in polar coordinates, The elements used are endowed
with some distinctive features and possess a variable parameter contributing to
precision of results. Stiffness matrix of the cell is derived, and the application is
demonstrated on analysis of displacements of a plate in the shape of a circular
sector with central cut-out, whose theoretical solution is available.

Comparison with the theoretical results shows the superiority of the proposed
cell over the no-bar cell. A method for selection of a proper value for the
variable parameter is suggested.

Résumeé

On propose d’utiliser des €léments finis en forme de trapézes isoceles de plusieurs
barres élastiques, afin d’étudier des plaques chargées dans leur plan, lorsqu’il est
indiqué de décrire la géométrie de la plague par des coordonnées polaires. Les
éléments employés sont dotés de certaines propriétés caractéristiques pour améliorer
la précision. On obtient la matrice de rigidité de I'¢lément et on applique cette
théorie a I'étude des déplacements d’une plaque en forme de secteur circulaire
avec evidement central, dont la solution théorique est connue.

La comparaison entre les résultats théoriques et ceux obtenus par I'utilisation
d’éléments sans barres montre la supériorité de la cellule proposée par rapport & la
cellule sans barres. On propose une méthode de sélection d’une valeur propre pour
le paramétre variable.
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Zusammenfassung

Finite Elemente in Form isoceler Trapezoide, bestehend aus mehreren elas-
tischen Stidben, werden fiir die Berechnung in ihrer Ebene belasteter Platten vor-
geschlagen, wenn sich die Plattengeometrie in Polarkoordianten zweckdienlich
ausdriicken ldsst. Die verwendeten Elemente besitzen gewisse unterschiedliche
Merkmale und einen verdnderlichen Parameter, der zur Genauigkeit der Resultate
beitridgt. Fiir die Zelle wird die Steifigkeitsmatrix abgeleitet und ihre Anwendung
beim Berechnen der Verschiebung einer Platte in Form eines Kreissektors mit
zentrischem Ausschnitt gezeigt, dessen theoretische Losung verfiigbar ist.

Vergleiche mit den theoretischen Resultaten zeigen die Vorziige der vorgeschla-
gene Zelle gegeniiber der stablosen Zelle. Es wird eine Methode zur Auswahl eines
Eigenwertes fiir en verdnderlichen Parameter vorgeschlagen.
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Fatigue Strength of Form-Reinforced Composite Slabs for Bridge Decks
Résistance dla fatigue de plaques composites en béton armé pour tabliers de ponts

Ermiidungsfestigkeit von Stahlbeton-Verbundplatten fiir Briickenfahrbahnen

R.P. JOHNSON J.J. CLIMENHAGA
University of Warwick, Coventry, England. John Stephenson and Associates, Toronto,
Canada.
Introduction

There are several advantages in using corrugated steel permanent formwork for
the construction of concrete bridge decks and floor slabs, rather than conventional
timber or steel formwork. Erection is quicker, and no shoring or dismantling
are required. If adequate shear connection is provided, the formwork can also
act as reinforcement for the deck slab.

In North America, corrugated steel decking is widely used as formwork for
floors in buildings, and is designed to act compositely with the concrete. Design
is usually based upon safe-load tables supplied by the decking manufacturer, who
derives them empirically from his own tests. There is little published information
on fundamental research into this type of construction. In the only report on
fatigue behaviour known to the authors [1] results of six tests are presented,
but insufficient data are given to permit their analysis in terms of bond and
bearing stresses on dimples in the shear spans.

An experimental study of the stiffness and static and fatigue strength of com-
posite slabs reinforced with two types of corrugated steel decking is summarised
in this paper, and recommendations for design are given. A full report on the
work is available [2].

The primary aim of the tests was to find out if “form-reinforced” concrete
slabs are suitable for use in the decks of highway bridges. The design of the test
specimens was based on criteria laid down in 1970 by the Bridges Engineering
Division of the Department of the Environment. Those that influenced the design
of the test specimens are:

1. Range of spans, 1.8 to 3.6 m (6 ft to 12 ft).
2. Overall depth of slab not less than 0.18 m (7 in).
3. The metal decking alone must be capable of carrying its own weight, that of

the concrete slab, and in addition a load of 9 kN (2,000 Ib) applied over a

circular area 0.6 m (2 ft) in radius.
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4. The mature form-reinforced slab must be capable of carrying standard HA and
45 units of HB highway loading as specified in B.S. 153 [3], in accordance
with CP 117: Part 2 [4]. The HB loading is equivalent to a 16-wheel truck
of total weight 1.8 MN (400,000 1b), for which '25% overstress is allowed.
The standard HB (and HA) wheel load is thus 90 kN.

Test Specimens

Metal decking. Initially, the use of pressed steel trough sections with welded
. steel connectors was studied. If the ratio of connector diameter to sheet thickness
is kept below the recommended limit [4] of 1.5 a forest of very small connectors
is needed, and the design is not competitive. Where fatigue is a problem, a
cheaper alternative can be obtained by using pressed dimples to provide shear
connection, as shown in Figs. 1 and 2. Resistance to uplift forces is provided by
sloping the dimples on opposite sides of each trough in opposite directions.

In practice, the thickness of the metal decking used in bridges is likely to
exceed that determined from considerations of stiffness or strength, in order to
provide for some loss of cross-section due to corrosion. It was concluded that
the requirements for bridge decking would be met by a galvanised section 4 mm
thick and 75 mm deep, with a ‘wavelength” of 300 mm.

It was not found possible to have a few pieces of this decking fabricated at
an acceptable cost, since special tools would be required to produce the dimples,
and time was limited. It had been found so difficult to obtain dimpled sheeting
that other designs were studied. Calculations showed that under maximum loading
the range of longitudinal stress at’ the top of the corrugations of the prototype

400
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Fig. 1. Typical details of specimens DS1 to DS4.
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Fig. 2. Specimen DS3 before casting.

is quite small. This suggested that shear connectors could be welded to the tops
of the corrugations. Thus the first two profiles tested (Figs. I and 3) were determined
by the fabrication facilities readily available. All linear dimensions are two-thirds
full size, except the sheet thickness (1.6 mm). In the first group of four specimens
(DS1 to 4). the dimples (Fig. 2) were pressed individually. The second group of
specimens, MS1 to 4, were made to the same design as Group 1, except that
welded-bar shear connectors (Figs. 3 and 9) were used in place of dimples.

amm (leg) Fillet weld, both sides
= |25

ﬂ rz~5

L

ke

Dimensions 1IN mm.

Fig. 3. Typical cross section of specimens MSI to MS4.

The maximum length of plate that could be corrugated was 1.22 m. Longer
units were required for the tests, so 2.44-m lengths were made by butt welding the
shorter pieces together. This was not a preferred method of fabricating specimens
for fatigue tests, but only one test result, to be described later, was influenced by it.

A third group of specimens (DS5 to 14) using proprictary galvanised decking
made in North America was also tested. The corrugated sheets were similar to
those of Group 1. except that the dimples projected about 0.9 mm into the
concrete, instead of 4.0 mm.
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This projection was insufficient to transfer longitudinal shear after breakdown
of bond in the fatigue tests, and it was concluded that these sheets were unsuitable
for the loading specified. These results are given elsewhere [ 2].

Design of specimens. It was decided to test simply supported specimens repre-
senting a strip of bridge deck spanning transversely between longitudinal girders,
and to use symmetrical two-point loading (Fig. 1c).

In designing the specimens of Groups 1 and 2, it was found that the flexural
strength of the steel section was determined by the longest span and loading
condition [3] above. Maximum longitudinal shear in the composite section is that
due to a wheel load. It was assumed that the critical parameter of interaction
was the bearing stress, f,, on the projected area of the dimples or bar connectors.
The allowable bearing stress due to a 90-kN wheel load was taken as 0.6u, where u
is the design cube strength (i.e. two-thirds of the specified ‘works” cube strength).
This led to the dimple size and spacing shown in Fig. 1 and to the use of three
bar connectors 19 mm high in each shear span of specimen MSI.

Table 1. Properties of specimens

Specimen Cube Modular Calc. P for HB Calculated Observed

No. strength ratio, m loading E; P
N/mm? kN kN kN
Ds1 26.1 8.6 20.5 518 63.0
2 340 8.9 300 535 65.0
3 26.6 9.0 20.5 51.8 58.5

4 23.6 9.8 20.5 50.8 32.0%

MS1 254 9.0 33.0 514 33.0%

2 20.1 117 27.0 492 30.0*

3 _ 25.1 10.1 220 514 30.0*

4 24.5 9.1 18.0 51.2 33.0*

* Fatigue failure.

Information on the concrete used and on the strength of the specimens is
given in Table 1. In Group 1, the design longitudinal shear per unit length of
specimen was determined by the chosen dimple size and spacing and the assumed
bearing stress, since bond was neglected. Thus the design vertical shear was known
for each shear span, the length of which was then chosen from consideration
of the flexural strength of the specimen. In Table 1, the column ‘Calc. P for HB
loading’ gives the load on the specimen at which the calculated bearing stress on
the dimples in each shear span is 0.6 u, and ‘Calculated P, gives the load for
flexural failure, calculated using full-interaction theory. »

No attempt was made to reproduce in the steel the stresses due to “unpropped’
construction, for these are small near the supports, where the highest shear stresses
occur.

Details of specimens, and test variables. In Group 1, the only planned variables
were the overhang past the support points, which was 0.46 m except in DS4
(0.28 m), and the magnitude and number of the load applications, of which details
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Fig. 4. Repeated loading of specimens.

are given in Table 2. The loadings are compared with the standard HB spectrum
in Fig. 4. The values f,/u in Table 2 are based on measured cube strength, and
so do not correspond exactly to 0.6 at the maximum HB wheel load of 90 kN
(20,200 1b).

Table 2.
SpeCimen N1 j‘g/u N2 j;/u N3 fg/u N4 f;’/u
No. x 10° x 103 x 103 x 10%
DS1 - — 55 0.52 41 0.55 41 0.59
2 — — 55 0.46 41 0.50 41 0.53
3 240 0.32 55 0.51 41 0.55 141 0.58
4 240 0.36 35 0.57 41 0.62 141* 0.66

* Followed by 94,700 cycles at f,/u = 0.83.

In DS1 to 3, the fatigue testing was followed by static tests to failure. In DS4,
repeated loading at a mean bearing stress of 0.83 u was continued until failure.

The specimens of Group 2 differed from DS1 to 4 only in the method of shear
connection and in the end overhang (0.28 m). The main variable was the intensity
of loading on the bar connectors. In designing specimen MSI, it was assumed
that the connector would be effective for 130% of the welded length, that f, should
not exceed 0.6 u and that u =242 N/mm? The weld size was governed by the
plate thickness; the design of the welds is discussed later.
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These assumptions led to the provision of three connectors at 216 mm pitch
in each shear span of MS1 and one in each end overhang. The use of fewer and
smaller connectors was studied in the other three tests. In MS2 to 4, the bar in
each end overhang was omitted; in MS3 and 4 the height of the bars was
reduced from 19 mm to 13 mm, and in MS4, only two bars at 254 mm pitch
were provided in each shear span. An additional connector was provided in each
specimen at midspan, to prevent uplift.

Table 3. Properties and Results. Group 2.

Specimen Load B log N,
No. range Jolu Opa G N, N, Ny log N,
kN N/mm?® N/mm? 103 10° 10°
MS i 3-33 0.60 56.1 157 102 230 230 1.17
MS 2 3-30 0.67 43.4 138 175 300 306 1.10
MS 3 3-30 0.82 434 115 426 303 360 0.95
MS 4 3-33 1.10 255 151 120 197 296 1.10

All specimens in this Group were subjected to fluctuating loads over a single
load range (Table 3) until failure. The maximum load on MS1 was that correspond-
ing to 1.0 times HB loading (Table 1). That for MS2 gave a mean bearing
stress of 0.67 u, and so corresponded to 1.1 HB. Much higher bearing stresses
were used in the last two tests, where the maximum loads were chosen such that
the flexural stresses in steel and concrete did not exceed 0.85 f, and 0.65 u, respectively.
The columns headed f,/u and o,, in Table 3 give the calculated mean bearing
stress f, and the maximum longitudinal flexural stress in the decking at a weld
location, o,,, at these maximum loads.

Casting procedure. During casting, the metal decking was supported at its ends and
third points and was coated with mould oil to inhibit bond. About 14 concrete
control specimens of various types were cast and cured with each test slab.

Test Procedure

In the fatigue tests, the minimum load was about 10% of the maximum, so
the stress ratio was + 0.1. The rate of loading was 200 to 250 cycles/min. Before
and during each test, the behaviour of the specimen was monitored by stopping the
pulsator and taking sets of readings during a static “run” over the maximum
load range.

Static tests to failure were conducted in the same apparatus, and were com-
pleted in from 1 to 4 hours.

Curvature, deflection, and longitudinal strains were measured at midspan in all
tests. End slip was also measured in each test, and in some tests slip distribution
along the shear span was recorded.

Static tests to failure were carried out on five push-out specimens in which
the two types of shear connection were reproduced.
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Test Results

Typical results are now given; full details are available elsewhere [2]. Data from
the static test runs are labelled with the number (N) of cycles of repeated loading
completed at that stage. The maximum load per jack applied to each specimen,
P, is given in Table 1.

In auxiliary tests on materials, the yield strengths in tension of the decking

were found to be 257 N/mm? for Groups { and 2 and 277 N/mm? for Group 3;
that of the reinforcement was 381 N/mm? Table 1 gives results of compressive
strength and stiffness tests on the concrete at the mean age of testing of the
parent test specimen (29 to 31 days).
Group I. In Fig. 5, the ratio of the applied load (P) to the calculated load for
flexural failure (P,, Table 1) is plotted against the midspan deflexion, 8, for each of
the static-load tests on specimen DS3. The change from a cracked to an uncracked
section occurred during the first test (N =0). The crack spacing in the midspan
region was about 0.13 m. The curve for the final static test to failure has been
zero-corrected. The bands on Fig. 6 show the ranges, for two levels of load, within
which midspan strain readings during static tests fell for the whole duration of the
fatigue test on this specimen. Typical slip distributions are given in Fig. 7. Results
for specimens DS1, 2 and 4 are similar.

The testing of DS4 was designed to study its fatigue strength. The first
377,000 cycles of load (Table 2) simulated the upper part of the HB loading
spectrum (Fig. 4). Another 100,000 cycles of loading at f,/u = 0.66 were followed by
94,700 cycles at f/u=0.83, at which time fatigue failure occurred in the butt
weld in the decking.
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Fig. 6. Longitudinal strain distribution at midspan during fatigue tests on DS3.

In the ultimate-load tests, DS1 to 3 failed in flexure like reinforced concrete
beams (Fig. 8). Slip increased during the tests (e.g. Fig. 7), but no real distress of
the shear connection was observed in any of these specimens.
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Fig. 8. Specimens DSI to DS3 after test. Fig. 9. Concrete removed at failure location
in MS3.

Group 2. Load-deflexion curves and strain and slip distributions found in the
static tests were similar to those of Group I, and showed that repeated loading
caused little deterioration of stiffness. All four specimens failed by fracture of the
decking at a connector location (Fig. 9). Table 3 gives the number of cycles at
failure. N,, and at which cracks were first noticed, N.. In MS2, 3, and 4, these
occurred well in advance of failure, located at the corners of the tops of the
corrugations in the heat-affected zone of the connector welds. In all three tests. they
were observed at corresponding positions in both shear spans; but those in the spans
that failed then increased in length more rapidly than the others.

Push-out tests. The load-slip curves for the specimens of Group | and Group 2
[2] were similar in shape to those for stud connectors. Failure occurred by
crushing of the concrete against the dimples and distortion of the corrugations
(Group 1) and by tearing of the metal decking (Group 2).

Discussion of Results

Group 1. Most of the irrecoverable deflexion of these specimens occurred
during the first load cycle. The small increases in permanent set and the con-
sistent distribution of longitudinal strains and slip show that repeated loading
caused negligible deterioration at the dimple-concrete interfaces. The sets of P-6
curves show that additional cycles of load at low levels have very little effect, and
suggest that the behaviour would have benn much the same had the entire loading
spectrum been applied.

[t had been assumed in planning the tests that full HB loading should cor-
respond to a bearing stress of 0.6 u on the dimples, bond being neglected.
In considering this as a design value, it is helpful to compare (Fig. 4) the loading
imposed in the tests with the standard HB spectrum. The spectrum down to 0.61 HB
is effectively covered by the tests. Lower loads should cause bearing stresses not
exceeding about 0.3 u. which should not cause fatigue damage to the concrete.
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There is evidence from test DS4 that a bearing stress of 0.7 « or 0.8 u could
probably be used; but allowance must be made for the contribution to shear
strength from the end overhangs (neglected in the calculations). For example, if
the effective shear span was the actual span plus half the overhang length, the
mean values of f,/u in DSI to 3 were 70% of those reported, and 80% in DS4.
There should be no problem where forms are continuous over supports, but the
strength of a shear span without overhang may be less than found in these tests.
It is concluded that 0.6 u should be used in design for HB wheel loading until
more evidence becomes available.

The static tests to failure showed that previous fatigue testing at bearing
stresses up to 0.6 u causes little, if any, reduction in static strength. Both DS1
and DS2 had flexural strengths 1.21 times the value given by simple plastic theory,
and the ratio for DS3 was 1.13.

Group 2. Comparisons of the results from Groups 1 and 2 show that their
behaviour was similar, and that the slabs with bar connectors were slightly stiffer
than those with dimples. The similarity of the distributions of slip was remarkable
[2], bearing in mind that shear connection in the Group 2 specimens was provided
only at two or three points in each shear span and (in MS2 to 4) not in end
overhangs.

Examination of the connectors in MS3 after the test (Fig. 9) confirmed other
evidence that little distress or distortion occurred at the shear connectors during
fatigue testing.

It is evident from Table 3, Fig. 4, and the mode of failure that the nominal
bearing stress f,/u was not a critical parameter in these tests. In MS1 to MS3
increased bearing stress is accompanied by increased fatigue life. In MS4 no
increase in the flexibility of the specimen was observed until after cracking of the
decking, showing that the greatly increased bearing stress did not reduce the
effectiveness of the shear connection.

The range of mean bearing stress explored was from 0.6 u to 1.1 u. CP 117:
Part 2 [4] limits the load per connector for HB loading to 0.4 P, which cor-
responds to a mean bearing stress of 0.93 u for the bar connectors listed in Table 2
of CP 117. It is concluded that this same level of bearing stress could be
used for bar connectors attached to corrugated sheeting.

It does not follow that the weld sizes should be as specified in CP 117, for
in the present application each weld supports a greater length of bar, and attaches
it to a plate that may be thinner than the flange of a typical girder. It can be
shown [2] that the fatigue life was determined mainly by the stresses in the weld,
rather than by the longitudinal stress in the decking, given as o,, in Table 3.

The Table also gives the mean stress on the weld throat, &, and the fatigue
life N, for a Class F detail having this maximum stress, taken from B.S. 153 [3].
For the present purpose, failure is assumed to occur in the test when the first
crack is observed, given as N, cycles in the Table. The ratios (log N./log N,)
give the ‘safety factor’ of the weld in relation to design to B.S. 153.

When account is taken of the assumptions made above, and the inevitable
scatter of the results of fatigue tests, it can be seen that there is good agreement
between the test data and the predictions of B.S. 153.
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It is of interest that, as assumed in this analysis, all fractures occurred on the
side of a connector closer to midspan, and at the connector where the measured
slip was greater, not at the connector nearest to the load point.

The ratio of weld leg length to plate thickness was 1.9, far in excess of the
limit of 0.5 given in CP 117: Part 2. These results suggest that a higher limit,
perhaps 1.5, could be allowed for metal decking. It is concluded that with this
limitation, the method of B.S. 153 may be used for designing fillet welds to bar
connectors i corrugated composite plates.

Pushout tests. In the three pushout tests on Group 1 specimens the lowest
mean bearing stress at failure was 1.65 u. This gives a generous margin above
the proposed design stress of 0.6 u for repeated loading. These results and the
static tests of Group 1 show that the design ultimate bearing stress for static
loading could be increased to about 1.0 u.

The tests on bar connectors showed that the strength was governed by the
sheeting, not by bearing stress on the bars, which exceeded 1.5 u in both tests.

Conclusions and Recommendations for Design

The plate specimens tested were in essence two-thirds scale versions of a proto-
type designed to the requirements of the Department of the Environment
(Ministry of Transport) for use as permanent formwork in bridge decks subjected
to HA and HB loading. The purpose of the work was to develop design rules for
this formwork, using it if possible as the bottom reinforcement of the deck slab.

It was assumed that the design criterion was that the shear connection should
be capable of resisting the local effects of the fatigue spectrum of HB loading
without significant reduction in the flexural strength of the bridge deck under
static loading. Two of the three types of decking studied are believed to be
satisfactory for this purpose. Tentative design rules for these (Groups 1 and 2)
are now given.

1. The mean bearing stress on the projected area of dimple shear connectors as
used in specimens DS1 to 4 due to 1.0 times HB wheel loading should not
exceed 0.6 u, where u is the design cube strength of the concrete. The stress
should be calculated by the elastic theory, using a fully composite section
and neglecting the tensile strength of concrete.

2. The corresponding stress for bar connectors as used in specimens MS1 to 4 is
0.9 u. The effective length of each bar is the lesser of the actual length and
1.3 times the length welded to the corrugated decking.

3. The fillet welds by which bar connectors are attached to decking may be
designed for fatigue in accordance with B.S. 153: Part 3B, provided that the leg
length of the weld does not exceed 1.5 times the thickness of the decking, and
that the coexisting longitudinal tensile stress in the decking at the weld does not
exceed 50 N/mm? (3.2 ton/in?).

4. The limiting value of static bearing stress on dimples at the Collapse Limit
State was not determined, but is not less than 1.0 u. When this condition is
satisfied, the static flexural strength of the composite section may be taken as that
given by the well-established rectangular-stress-block theory.
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5. The strengthening effect of overhang of the composite plate beyong a simple sup-
port was not studied. Overhangs not less than 0.28 m were used in the tests.

6. Pushout tests for corrugated decking were devised. They are thought to give a
reliable indication of the static strength of the connectors used.

Information about possible variations in the design of the sheeting used for
Groups 1 and 2 may be useful. The ratio of dimple projection to sheet thickness
was 2.5. That in the proprietary decking, 0.55, was found to be too small for
complete interaction after repeated loading [ 2]. Obviously other factors, such as the
shape of the dimple, are relevant: but it is thought that a successful design will
have a ratio of at least 2.0. If a scaled-up version of the Group 2 sheets were
made, it might be better to use relatively smaller bars and welds, for fatigue
behaviour should be improved, and failure of connectors before shuttering would
provide warning of deterioration.

The effects of corrosion and fire have not been studied.

The choice between dimpled and undimpled-with-bars formwork will depend
mainly on relative cost. Both types are believed to be suitable for use in bridge
decks.

Consequences of this work

The cost of corrugated steel decking depends on the demand for it, to a far
greater extent than for many other materials, because of the large capital invest-
ment needed for its manufacture. It is evident that its use in bridge decks can reduce
construction costs. The safety and economy of such structures can only be ensured
through an understanding of the fatigue behaviour of possible types of shear
connection between the steel decking and the concrete slab. The research reported
above provides guidelines for the development of commercially viable profiles and
methods of shear connection for use in structures subjected to repeated loading.
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Summary

Results are given of static and fatigue tests on eight composite plates, each
consisting of a sheet of corrugated steel decking attached by dimple or bar shear-
connectors to an in situ concrete slab. The local effects of repeated wheel loads up
to 90 kN (20,200 1b) were simulated in the tests. Rules for designing two types
of shear connection for composite plates in bridge decks are deduced from the
results.

Résumé

On donne des résultats d’essais statiques et de fatigue opérés sur huit plaques
composites dont chacune est composée d’une tdle d’acier ondulé attachée par
encastrement ou par connecteurs de cisaillement sur une plaque en béton armé
installée sur place. Les effets locaux dus aux charges de roue répétées jusqu’a
90 kN (20000 Ib.) ont été simulés aux essais. Par les résultats obtenus on a
dérivé des regles en vue de projeter deux types de connexions de cisaillement
pour plagues composites de plates-formes de tabliers.

Zusammenfassung

Es werden die Ergebnisse von statischen und Ermiidungsversuchen an acht
Verbundplatten mitgeteilt, wobei jede aus gewelltem Stahlblech besteht, die mittels
einer Verbindung oder eines Schubverbinders an einer an Ort und Stelle vorhandenen
Betondecke befestigt ist. Die 6rtlichen Einfliisse wiederholter Radlasten bis zu 90 kN
(20000 Ib) wurden bei den Versuchen simuliert. Aus den gewonnenen Resultaten
wurden Regeln zum Entwurf zweier Typen von Schubverbindern fiir Verbund-
platten an Briickenfahrbahnen abgeleitet.
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Introduction
Généralités

Le probléme du comportement dynamique des structures soumises & des charges
mobiles a toujours incité un intérét spécial tant dans le domaine du génie civil [1]
et mécanique que dans le domaine du génie naval et aéronautique. Dans tous
ces domaines, les études théoriques, en laboratoire, et sur chantier se sont intensifiées
ce dernier quart de siécle. Ces études visaient une meilleure connaissance des
parametres et du comportement de ces systémes et une élaboration de méthodes
de calcul pour estimer la valeur de leurs réponses dynamiques. Les sujets principaux
de ces études ¢taient le pourcentage d’amplification dynamique, les effets de fatigue
et la limitation des fréquences nuisibles tant aux structures quaux humains qui les
utilisent.

La méthode proposée dans cette publication présente un outil maléable et
efficace pour traiter les problemes parfois complexes des réponses dynamiques des
structures soumises a des charges mobiles. Une réponse déterministe dynamique
peut étre calculée en premier lien en réduisant le systéme a une force mobile
constante. L’écart type de cette réponse peut &tre aussi estimé si I'excitation
mobile est due a plusieurs facteurs ou si le systéme mobile est complexe.

Dans la pratique courante du génie civil, il n’est pas d’usage de compléter
I'analyse statique des structures par une analyse dynamique. Les différents codes
fournissent plusieurs critéres et facteurs pour tenir compte de ’effet dynamique.
Les ponts sont peut-&tre 'exemple le plus important de ces genres de structures,
Mais I’évolution et la diversit¢ des modes et matériaux de construction des ponts
et la tendance vers une utilisation de véhicules plus rapides et plus lourds incitent
a une revision des différents codes et méthodes de calcul et a une sélection de
nouveaux critéres limitant les effets nocifs pouvant étre causés 4 ces structures et
aux voyageurs qui les utilisent. Les codes et méthodes de calcul utilisés actuellement
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sont basés sur une conception statique de 'application de la charge et du compor-
tement du pont. Or ni la charge ni le pont ne représentent 'aspect d’un systéme
statique. Le véhicule se rapproche plutét d’une force perturbatrice mobile et le pont
posséde des caractéristiques vibratoires propres. Les spécifications d’impact actuelles,
quoique encore valables puisqu’elles représentent un pourcentage tolérable d’aug-
mentation de la charge statique, n’ont aucune justification théorique ou expéri-
mentale acceptable pour étre appliquées a la grande diversité des ponts, présents
et futurs.

Il est inutile pour des spécifications futures et générales de proposer une
méthode de calcul dynamique. Une équivalence statique de leffet dynamique et
certains critéres appropriés peuvent &tre €laborés dans le but de conserver 'aspect
statique du probléme et la simplification des calculs. Mais pour que de telles
solutions s’avérent justifiables, une connaissance du comportement vibratoire du
systéme pont-véhicule, une évaluation de la grandeur des réponses dynamiques
et une estimation des effets de la charge vive sur la vie de service de la structure,
doivent étre a la base de cette équivalence statique. La méthode proposée, a part
sa contribution au domaine de la recherche se rapportant a I'’é¢tude des ponts
soumis a la circulation, peut s’appliquer facilement dans le bureau d’ingénieurs
pour I’étude des cas spéciaux de structures soumises a des charges mobiles.

Apercu de la méthode

La formulation du probléme dynamique des structures soumises a des charges
mobiles différe en complexité suivant que la structure est supposée de dimension
finie ou infinie, ou qu’elle est représentée par un espace ou un semi-espace
élastique traversé par une force a vitesses subsonique, transonique ou supersonique.
L’attribution & la charge mobile des forces d’inertie et des caractéristiques

- dynamiques propres rend le probléme plus complexe. |

La méthode développée dans cette publication s’applique a une structure de
forme quelconque et de dimension finie. L’amplitude, la répartition, la fonction
du mouvement et le trajet de la charge sont arbitraires. La méthode est basée
sur la technique des éléments finis pour calculer les valeurs et modes propres et sur
I’analyse modale pour calculer la réponse. L’originalité et le fond de la méthode
consistent & ne pas discrétiser les forces aux nceuds comme I’exige la technique
de I'élément fini. La discrétisation des forces aux nceuds n’est nécessaire que dans
le cas d’'une charge mobile possédant une force d’inertie [2] ou des caractéristiques
dynamiques propres et dans le cas d'un changement des caractéristiques élastiques [ 3]
de la structure en fonction du temps. Dans ces cas, les coefficients des matrices
formant ’équation dynamique du systéme ne sont plus constants, I’analyse modale
n’est plus applicable que par étapes de petits intervalles et une solution par les
méthodes de résolution numérique pas a pas est souhaitable.

Meéthode classique

L’équation dynamique du systeme utilisant la technique des éléments finis
s’écrit [4] sous la forme matricielle suivante:

MU+ CU+KU=P (1)
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La matrice colonne U représente les déplacements nodaux. Les matrices M, C et K
sont les matrices de masses, d’amortissement et de rigidité de la structure assemblée.
La matrice colonne P représente les charges nodales équivalentes. En appliquant
I’analyse modale et en supposant que la matrice d’amortissement est proportionnelle
soit a la matrice des masses, soit a'la matrice de rigidité, ou soit 4 'amortissement
critique, I'équation (1) du systéme devient non couplée et prend la forme suivante:

MO +CQ+KQ=P (2)
Les matrices M, C et K sont diagonales et égales respectivement & FTMF, FTCF
et FTKF. La matrice colonne Q représente les amplitudes modales (coordonnées
généralisées) et est égale 4 F~'U. P est la matrice colonne des forces en coordonnées
généralisées et est égale & FTP. F est la matrice des modes propres et FT sa trans-
posée. Le retour aux coordonnées de la structure s’effectue par une prémultipli-
cation des coordonnées généralisées par la matrice des modes propres F.

La solution de I’équation (2}, quoiqu'elle différe peu, suivant 'hypothése faite
au sujet de l'amortissement, s’exprime toujours sous la forme d’une intégrale
de Duhamel [4]. Dans le cas d’une charge mobile concentrée ou d’une charge
mobile répartie sur une surface limitée, la réponse de la structure est souvent
calculée par I'une des deux procédures suivantes, Dans la premiére procédure, la
matrice colonne P est formée en premier lieu par assemblage, combinaison et
superposition des forces nodales dues au déplacement de la charge sur la structure,
puis I'équation (2) est résolue. Dans la seconde procédure, la réponse de la structure
en coordonnées généralisées est une superposition des réponses dues au parcours
de la charge sur chaque €élément a part. Dans cette derniére procédure, les conditions
finales de déplacement et de vélocité sont a noter au moment du départ de Ila
charge de chaque élément traversé pour étre prises en considération dans la
superposition.

Meéthode proposée

La modification proposée a la méthode de calcul basée sur la technique des
¢léments finis se situe au niveau du calcul des forces en coordonnées généralisées,
soit la matrice colonne P. Cette matrice est calculée a I'aide de la notion de
«modes-trajet» et d’'une maniére équivalente a celle utilisée pour une structure
a milieu continu. L’équation (2) prend & ce moment la forme suivante:

MO +CQ+KQ=P (3)

La matrice colonne P représente les forces en coordonnées généralisées et est
calculée par une intégration s’étendant sur la structure:

P(r)= _”jA p(x, vz, t) F(x, y,z)dx dy dz (4)

p{x, y, z, t) est une fonction représentant le chargement. & (x, y, z) est une matrice
colonne dont chaque €lément représente la forme d’un mode propre.



106 A. KHOUDAY - J, PROULX

Charge concentrée

Considérons le cas d’'une charge concentrée se déplagant suivant une fonction
de mouvement s = g(t) sur un trajet déterminé s. Soit p(t) la fonction représentant
lamplitude de cette charge. La fonction représentant le chargement peut s’écrire
sous la forme suivante:

plx vy 2t)=38[x—g:(t)]] 8 [y — g,(t)] 8 [z — g:(t)] [P« (1),
Py(t), P(2), Pxsx(t), Pyy(t), poc(t)] (5)

ou & est la fonction Dyrac et g,, g, et g, sont des fonctions représentant les
composantes du mouvement par rapport aux coordonnées de la structure. Les
fonctions p, et p,,, par exemple, représentent respectivement I'amplitude d’une
force et d’'un moment par rapport a4 z. Les fonctions p,, p, .. p,, peuvent étre
distinctes et ne résultent pas nécessairement d’une simple projection d’une force
maitresse sur ces composantes.

En remplagant dans I’équation (4) p (x, y, z, t) par sa valeur en (5) et en effectuant
I'intégrale, on obtient:

P(t) = F.(t)p,(t) + F,()p, (t) + .. + Foo(t)p.. (1) (6)
L’équation (6) peut se mettre sous la forme condensée suivante:
P(t)=Y%; F:(t) p: (t) (7)
i=Xx,y 2z XX, Yy, Zz.
Fi(t) = F, [4(1)] (8)

ou F;(t) sont des matrices colonnes qui s’obtiennent de F;(s) par une transformation
d’échelle décrite plus loin; les matrices colonnes F.(s) F,(s) et F.(s) représentent
respectivement les composantes x, y et z de la déformation modale de la structure
le long du trajet de la charge; F,.(s), F,,(s) et F_.(s) sont les dérivés de F,(s),
F,(s) et F,(s) par rapport & x, y et z respectivement.

L’équation (7) est facile & calculer. Les composantes F;(s) des modes propres
le long du trajet sont déterminées & 1’aide des coordonnées du trajet, des déplacements
nodaux en chaque mode des éléments traversés, de la matrice des polyndmes
d’interpolation définissant les déplacements a I'intérieur des ¢léments et des matrices
de transformation des coordonnées locales en coordonnées globales. Les valeurs de
ces composantes sont généralement calculées 4 des intervalles égaux ds du trajet.
Chaque élément des matrices colonnes F(s) est au fond un vecteur représentant
la discrétisation d’un mode le long du trajet. Les matrices colonnes F(t) sont
obtenues de F;(s) par une transformation de Péchelle des abscisses s = g(t). Les
éléments de F;(t) sont aussi des vecteurs. Leurs valeurs correspondent généralement
a des intervalles de temps égaux dr. Il est trés probable que les points de discre-
tisation des modes le long du trajet & des intervalles égaux de distance ds ne
correspondent pas avec les mémes points de discrétisation a des intervalles égaux
de temps dt. Dans ces cas, une simple interpolation entre les points discrétisés
peut bien se faire sans apporter une différence significative au niveau des réponses.
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Charge répartie

Dans le cas d’une charge ayant une dimension negligeable dans le sens du
mouvement et une dimension définie dans le sens perpendiculaire (fig. 1), une solution
par discrétisation de cette charge sur un faible nombre de trajets est a suggerer.

Le cas d’une charge d’une dimension non négligeable dans la direction du mouve-
ment (fig. 2) peut aussi étre traité sans difficulté et s’effectue de la maniére suivante:
soit k;(g) la fonction définissant la répartition de la charge suivant la composante i
olu g appartient & un systéme d’axe mobile propre a la charge.

q=s—g(t) (9)

Soit h;(g) l'image de h;(q) par rapport a I'axe des ordonnées du systeme d’axe
mobile, et soit h;(g)}]a translation de cette image dans la partie positive des abscisses.
L’équation (8) prendra la forme générale suivante:

Fi(t)=F; [g(t)] (10)
ou pour une charge concentrée:
Fi(s)=Fi(s) (10a)
et pour une charge répartie:
Fy(s) :j Fi(€) Fi(S —~£)dg (10b)

L’équation (10b) se calcule facilement par une convolution numérique entre vecteurs.
Le premier vecteur représente la discrétisation de Iimage de la charge aprés
translation. Le deuxiéme vecteur est & tour de réle un des éléments de la matrice
colonne F;(s).
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Fig. 1. Charge discrétisée sur trois trajets. Fig. 2. Charge répartie dans la direction du
mouvement.

Charge d’amplitude aléatoire

Le cas d’une charge mobile d’amplitude al¢atoire peut se traiter en utilisant les
mémes notions. Supposant que la charge posséde une seule composante dans la
direction z et que la covariance de 'amplitude de cette composante soit C,,(ty, t,).
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L’¢lément j, k de la matrice C37 des covariances des forces en coordonnées géné-
ralisées s’écrira sous la forme suivante:

i kGt Ba) = jfz(tl) WFo(t2) Cpplts, t) (11)

ou ,;F, représente I'é1ément j de la matrice colonne F,.

Conclusion

L’avantage de la méthode exposée réside dans la notion des «modes-trajet»
F;(s). Une fois ces «modes-trajet» déterminés et bien discrétisés, des cas de charges
de fonctions différentes de répartition et de mouvement parcourant le méme trajet
peuvent &tre traités sans revenir a toutes les caractéristiques de la structure
(éléments traversés, calcul des forces nodales équivalentes, assemblage...). L’analyse
des cas de charges mobiles réparties sur une surface limitée ne présente aucune
difficulté. Tandis que dans la technique des éléments finis le calcul des forces
équivalentes aux nceuds pour des cas pareils demande une intégration spéciale
s’étendant sur la partie chargée de chaque élément traversé. Ce genre de calcul
demande différentes opérations et est parfois compliqué, vu que la partie chargée
de chaque élément varie en fonction du temps et la répartition de la charge
mobile se fait sur plusieurs éléments. Dans le cas de I'analyse aléatoire, aucune
notion supplémentaire n’est requise. Tandis que la méthode de charges équivalentes
aux nceuds présente un handicap pour ’analyse aléatoire des charges mobiles.

Exemples numériques

Des cas trés simples mais représentatifs ont été fournis comme exemples. Le
choix de ces cas a été restreint par la pénurie des solutions exactes. Des éléments
trés simples comme 1'élément poutre & quatre degrés de liberté [4] (un déplacement
et une rotation & chaque nceud) et I’élément plaque a seize degrés de liberté de
Bogner [5] ont été utilisés. Le «mode-trajet» de chaque exemple a ete discrétise
en cinquante points. La formulation des solutions exactes des cas traités se trouve
dans I’excellent ouvrage de FryBa [6]. Des exemples supplémentaires sont traités
ailleurs [ 7]. L’exactitude des réponses est yraiment satisfaisante malgré la simplicité
des éléments et le trés faible nombre de découpages.

Notations pour les exemples numérigues

accélération.

alfv®.

rigidité en flexion de la plaque.
1 rigidité en flexion de la poutre.

oW
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EXEMPLE I
Poutre simplement appuiée qux bords
Force mobile concentrée
g{t) = vt +012/2

Arcét de fa force ou ¥y de Ig portée b« ¢ —-l
a,=0.5, Bz-% 2 =2PY g | 2 3
| - | I 1
b ﬁ;
P
%,
L
0.25 0.5 Q.75
© | T pr=ny
/ \
/ \
0,5 \
/ / \
/ /
/
%, -10 \ / !
Zg N / AY
\ . \
\ ~7 ~-
-1.5
p—g exacte
— — éléments finis
-2.0
[¢] a.5 1.0 . 1.5 2.0 25

T
L

3.0

Fig. 3. Déflexion du point A (x= 0.45 1) (contribution des premiers quatre modes).

)
EXEMPLE IT A l
Poutre simpiement appuiée continue . - - — |
sur deux travées X ﬁ m
Force mobile concentrée e | g -l
| 3 4 6
gi{t)= vt 3 ;#l)n T % | - T T i |
- - pé | | e | | e
@,=05 ,25=005 "/ l‘__% p/s % 1 e/ﬁ ‘g/s ?/6"“
X/L
2 | 2 _ 3
[ \
A~ -~
Z/Z o \ t, \\_ I, < J/\
o N_“" sV "~ N
-1
~—— exocte
=~ ¢éléments finis
-2
0 0.5 1.0 1.5 2.0 2.5 3.0 35
V.T/
L

4.0

Fig. 4. Déflexion du Point A (x=0.48 ]) (contribution des premiers cinq modes).
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EXEMPLE IIT 4 {a) {b)
Plaque rectangulaire appuiée sim- P STt T T TIT T o)
plement sur les quatre cotés T A ‘ %{E 2 ; 4 jf’f 12 4! 8 :
Force mobile concentrée,trajet en bidis e IR & ; ";_' 1 ’/l . "
2 |
glt) = vt L‘]’Z 7!2 et ¥
@,=05, b=2.75, 93 = /6 , b ld——bé’——l- x l-b‘}z-lJMz—»‘ ™ T
n = /e,z,,-oomzz;P /D X, /3 s s
L
2 0.5 1.0 1.5 2.0
."r\"'.
1 N
£ *
/1 %
77 \L‘
Lol
ol P AP A \
PR \
ol 3
/4 N
'._\\ ]
DR
\ //.' — Giatte
- == découpage (a}
e | B e découpage (b)
_2 -
(8] Q.25 05 075 1.0 125 1.5 175 2.0 225
VT.cos B/L

Fig. 5. Déflexion du point A (x=1.251, y=0.60 1) {contribution des premiers cinq modes).

EXEMPLE TW
Poutre simplement appuiee aux bords mm A

{amortissement y compris)

Force mobile uniformément répartie I-—l—
{étendue 2¢) 2{'——;—;1-—— g———>]
gfit) = vt 04
@205, 809, 2,=5% | l
' ’ 384 EI ](_,7 ) g/
3 3 3™
X
1L
| 2 5

0.5

A
0 N .

\ \\hl/
4

4 7
\ 7 s — exacte
b —=— gléments finis

|
0 05 1.0 1.5 20 25 3.0 35 40
v.T,
L

Fig. 6. Déflexion du point A (x =0.45 1) (contribution des premiers guatre modes).
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0.5

%)

EXEMPLE ¥ )
Poutre simplement appuiée aux bords A
Force mobile gniformement répatie (eienduel ) .y ﬁ
gl =vi+ Oy, %

2 , é — @ ————-,'
Arrét de la force juste apres ovoir dépasse i 2 3
completement la poutre 4 wilb» 3 T ;:

- -1 -5q I
@ =05, B=-4:20% " f3g4¢] L-—‘fs-L-‘}s b5+

X
/L
0.5 1.0 1.5 2.0
| i
—_ ~~ ~
7 SN AN
7 7 7 ~ f
/
/
_/
—
/
/
7
— exacte
\/ —~= ¢gléments finis
t 2 3 4 85 <]
vT
‘L

Fig. 7. Déflexion du point A (x =0.45 [} (contributicn des premiers quatre modes).

fonction du mouvement de la force.

valeur de la force concentrée.

valeur de Ia force uniformément répartie par unité de longueur.
masse par unité de longueur.

masse par unité de surface.

vitesse.

déflexion due au passage de la force.

deflexion de référence.

décrément logarithmique de I"amortissement,

ol fuy
n\ EI
bcostl\/u_;
1+b*n\D

l,x,b,B,m parametres désignés sur les figures.
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Résumé

Une méthode de calcul est exposée en vue de la détermination des réactions
dynamiques et probabilistes d’une structure d’une forme quelconque soumise a des
charges mobiles arbitraires. La méthode est basée sur la technique des éléments
finis et de I'analyse modale. Les forces appliquées sur la structure ne sont pas
remplacces par des forces équivalentes aux nceuds. Des exemples numeériques
sont fournis. Ces exemples comprennent les cas de poutres, de plaques, de forces
concentrées ou réparties, de mouvements avec accélération et de matériau ayant de
I’amortissement.

Zusammenfassung

Ziel des behandelten Verfahrens ist die Untersuchung des dynamischen und
probabilistischen Verhaltens eines Bauwerks unter beliebiger beweglicher Belastung.
Die Losung des Problems erfolgt mittels der Methode finiter Elemente und der
Modalanalyse. Die Untersuchung des Bauwerkes wird durchgefithrt, ohne die
gegebenen Lasten auf Knotenlasten zu reduzieren. Es werden Zahlenbeispiele mit
Anwendung auf Balken und Platten unter verteilter und Punktbelastung angefiihrt,
sowie die Dampfung des Materials und die Lastbeschleunigung beriicksichtigt.

Summary

This paper describes a method to evaluate the dynamic and probabilistic res-
ponse of a structure to an arbitrary moving load. To solve the problem, finite
element techniques combined with nodal analysis are used. In the analysis of the



REACTION DYNAMIQUE DES STRUCTURES SOUMISES AUX CHARGES MOBILES 113

structure, the applied loads are not transformed into equivalent nodal loads.
Numerical examples such as beams and plates subjected to uniform -and concen-
trated loads, damping of the structure and acceleration of the load are included
mn the study.
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Structures en poutres-caissons reliées par des dalles *
Structures of Box-Girders Joint Together by Slabs
Kastentréger-Briicken mit untereinander verbundenen Platten

S. KLIMINSKI

Docteur-Ingénieur
(Entreprises SPIE-BATIGNOLLES France)

Préface

La détermination des contraintes et des déformations dans les profils minces
fermés que constituent les poutres-caissons ne reléve pas de théories élémentaires;
a vouloir simplifier le probléme & coups d’hypothéses, difficiles a justifier, on court
le risque d’ignorer dans quelle mesure on ne s’écarte pas trop de la réalité.
A une époque ou les ponts courbes deviennent de plus en plus nombreux, ou
les parois des poutres-caissons sont de plus en plus minces, il importait que le
comportement de telles poutres soit étudié en prenant essentiellement en compte:

— la flexion transversale des parois,
-— la contrainte normale longitudinale engendrée par la torsion non uniforme,

Cest le travail qu'a entrepris d’effectuer M. Kliminski, et pour avoir suivi pas
a pas son élaboration, j’ai pu me rendre compte de Ieffort continu et passionné
qu’a di fournir Pauteur pour arriver a la volumineuse thése soutenue récemment.

C’est un résumé de ce travail que je suis heureux de présenter ici, convaincu
que tous ceux qui sont intéressés par le calcul de telles structures sauront y trouver
a la fois des renseignements directement utilisables et matiére & réflexion.

P .M. Géry

Professeur a I’Ecole nationale Supérieure des mines
et au Conservatoire national des arts et métiers.

* Extraits d’une thése de doctorat soutenue le 22 septembre 1971, & la Faculté des sciences de Paris,
devant le jury composé de MM. les professeurs: R. Siestrunck (Président), R. Vichnievsky, P. Géry,
D. Ceylon.
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Introduction

Utilisées fréequemment comme structures d’ouvrages d’art, en métal ou béton
précontraint, les poutres-caissons sont une source de calculs parfois complexes.

Lorsqu’il s’agit d’ouvrages en béton précontraint, ces poutres-caissons sont’
maintenant trés souvent reliées transversalement par le seul intermédiaire de dalles
souples. Actuellement, la résolution de telles structures ainsi définies est conduite,
compte tenu de:
— la rigidité a la torsion des poutres-caissons, la torsion étant supposée uniforme;
— la rigidité a la flexion des dalles de liaison.

Pour des systémes composes de deux poutres-caissons, ces hypotheses de calculs

semblent fournir des résultats satisfaisants. Cependant, appliquées a plusieurs
poutres-caissons, celles-ci deviennent caduques.

Deux sollicitations importantes sont en effet négligées:

1° La flexion transversale des parois de caissons.

2° La torsion qui engendre une contrainte normale longitudinale.

L’objet de cette recherche est d’analyser le comportement de structures en
plusieurs poutres-caissons, qui peuvent étre classées, de par leurs dimensions, dans
la catégorie des piéces longues en voile mince, en considérant les deux sollicitations
précitées comme fondamentales.

Définition du probléme

Les sections transversales des structures comprennent n caissons (7 = 2). Chaque
caisson est symétrique au moins par rapport a son axe vertical. Les caissons sont
liés entre eux par des dalles pouvant étre de longueur différente. Ainsi, la section
transversale a la forme ci-dessous:

Fig. 1
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Les axes longitudinaux des structures d’inertie constante sont rectilignes. Aux
deux extrémités de la travée étudiée, les sections transversales sont unies par
des diaphragmes. Ceux-ci sont, le plus souvent, inextensibles dans le plan vertical
et normal a I'axe longitudinal des structures. Ils sont, par contre, souples a la
torsion. Ainsi les sections extrémes des structures sont parfaitement encastrées
a la torsion et chaque poutre-caisson est encastrée €lastiquement 4 la flexion.

La charge appliquée est une charge verticale p, uniformément répartie dans le
sens longitudinal, et ponctuelle transversalement (fig. 1).

La position de la charge étant variable transversalement.

Sous une telle charge, la structure est soumise a la flexion et a la torsion.

Si la flexion ne pose pas de probléme majeur, la torsion apparait, en revanche,
complexe. En effet, nous avons le phénoméne de torsion non uniforme. Les sections
transversales sont encastrées a leurs extrémités (gauchissement empéché), et cet
encastrement engendre des réactions longitudinales qui sont €quilibrées par des
contraintes normales.

Nous décomposons la structure, par des coupures effectuées au milieu de
chaque dalle de liaison, parallelement a I’axe longitudinal.

D’une maniere générale, nous obtenons ainsi des profils dissymétriques d’un
caisson a deux porte-d-faux. La dissymétrie est créée par la longueur différente
des porte-a-faux.

Etat des contraintes et déformations — Convention de signes

Soit une tranche de poutre-caisson a deux porte-a-faux, soumise a la compression,
flexion et torsion non uniformes.

Les axes Ox et Oy se trouvent dans le plan d’une section transversale, et ce
sont ses axes principaux d’inertie (fig. 2).

Fig. 2
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Suivant les hypothéses de Viassov, nous pouvons exprimer 'allongement lon-
gitudinal relatif &, compté positivement suivant la direction de I'axe Oz:
1—v? c

o, €= —
E E,

E =

et la déformation de distorsion, comptée positivement, contrairement au sens
trigonométrique, par:

T

=%

Il faut maintenant déterminer les contraintes o et 1.
Pour les profils ouverts, cette détermination se fait & l'aide des formules
suivantes développées par VLASSOV:

N M. M, B "
o= — - =G _ X .
A LT LT L®

(T;-Sx L5, M,S,
T=— + EE

16 1,6 1,0

X @

(2)

Le sens des symboles est expliqué en notations.

L’effort normal N est compté positif quand il est dirigé le long de I'axe O,.

Les moments (M,) et (M,) sont positifs quand leurs vecteurs ont les directions
des axes O, et O,

On donne au moment de torsion C le signe positif comme sur la fig. 3.

Fig. 3

On voit qu'avec la torsion non uniforme une nouvelle force généralisée apparait
dans les formules: ¢’est le bimoment B. Contrairement a un moment, le bimoment
represente une force statiquement équivalente 4 zéro.

Le moment de torsion fléchie (M) est 1ié avec le bimoment par la relation:
M,=4£

(0]
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Pour les profils fermés, on peut déterminer ces contraintes par les formules
semblables, développées par Oumansky, OUurBaN [26], [27], [30] et [33]:

N M. M, B "
= — — —_— _-x '__-(D
°CAT LT LT
C T,'S, TS, M;Ss
= - 4o .. 4
T oo (Ix-éi 1,5 1,:,-6) @

La différence entre ces formules et celles des profils ouverts porte sur les carac-
téristiques géométriques. En outre, dans la formule de contraintes tangentielles, on
rencontre un terme supplémentaire, qui exprime la torsion uniforme. Il apparait
cependant que, dans le cas du profil étudié pour le calcul des contraintes, on ne
peut utiliser aucune de ces formules, parce que:

1° Le profil en question est découpé dans une section transversale continue.

2° Le profil est composé, car il est constitué¢ en méme temps par un profil

fermé et deux profils ouverts.

Nous déterminons les contraintes pour un tel profil, compte tenu de la res-
semblance des formules (1), (2) avec (3) et (4).

Il est a remarquer que, dans les nouvelles formules, certains termes vont dispa-
raitre. Soit une poutre-caisson a deux porte-a-faux, dont la section transversale est
découpée dans une section continue. L’effet des coupures est remplacé par (g) et
(m), comme sur la fig. 4. {Nous négligeons les glissements longitudinaux au droit
des coupures.)

dg dd ‘

Cr
0 N

Ma Dc+ / G,

<Y

Ty

Fig. 4

Considérons les axes O xy comme les axes principaux d’inertie. En effet, nous
pouvons admettre, avec une bonne approximation, que ces axes sont verticaux et
horizontaux. La dissymétrie de la section est provoquée seulement par la longueur
différente des porte-a-faux. Or, application numérique montre que dans ce cas les
axes principaux d’inertie sont quasiment verticaux et longitudinaux. Ceci confirme
I'étude de M. Renarp [20], dans laquelle la différence de longueur des porte-a-
faux atteint 3 m, ce qui est d’ailleurs difficilement réalisable en pratique.
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Les formules relatives aux contraintes du profil étudié, avec les nouvelles
notations sectorielles, prennent la forme suivante:

M B
= = S 5
a=y+ i [0] (5)

C TS, MggT
T = — i
Q-3 Ix8 I[w]S

(6)

Dans ces formules [®], I S, et dépendent de la section transversale.
B et My, par contre, dépendent de la longueur, et se déterminent de I’équation
de torsion non uniforme.

Avant de définir ces grandeurs, nous analysons I'hyperstaticité des structures.

Inconnues hyperstatiques

Soit un systéme plan a (n) caissons reliés par des dalles, soumis aux forces
extérieures quelconques.

Un tel systtme est a la fois hyperstatique intérieur et extérieur. En effet,
chaque caisson représente un portique fermé, trois fois hyperstatique — I’hyper-
staticité intérieure.

Pour lever totalement 'hyperstaticité du systéme, il faut pratiquer des coupures
dans chaque dalle de liaison. On crée, ainsi, trois inconnues hyperstatiques par
coupure — l'hyperstaticité extérieure. Chaque coupure implique I'introduction de
trois inconnues hyperstatiques, qui sont:

— effort tranchant ¢, — g;

— effort normal N, — N;
— moment fléchissant m, — m.

% I \/
® "~ O ® [\ 8/

Fig. 5

Le systéme de la fig. 5 aura les inconnues hyperstatiques représentées sur la
fig. 6.
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Fig. 6

Le degré d’hyperstaticité total du systéme peut étre exprimé par la formule:
3n+ 3 (n— 1), n étant le nombre des caissons.

Pour quatre caissons, par exemple (fig. 5 et fig. 6), le degré d’hyperstaticité
est: 3x4+3x(4—-1)=12+9=21,car n=4. Il y a 12 inconnues hyperstatiques
mntéricures et 9 inconnues hyperstatiques extérieures.

Pour un seul caisson (z = 1), nous avons:
3x 14+3x(1—1)=23. En effet, le systéme ne posséde que trois inconnues hyper-
statiques intérieures.

Dans les cas courants, les structures en question sont soumises aux charges
verticales seules. Ceci réduit le nombre total des inconnues hyperstatiques. A chaque
coupure de la dalle de liaison, I'effort normal N devient nul.

Le degré d’hyperstaticité du systéme s’exprime par la formule suivante:
3n+2(n—1), ot (n) est également le nombre de caissons.

i |
® ®

Fig. 7

T S T
L—.é@)(%s—— P& qn jd\é 7

ar i

NI NE qm NN

My mg Nm my
my

Fig. 8
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Pour le systéme de la fig. 7, le nombre d’inconnues hyperstatiques est:
3x4+42(4—1)=18, car n=4. Il y a toujours 12 inconnues hyperstatiques inte-
rieures et 6 inconnues hyperstatiques extérieures.

Les structures le plus souvent rencontrées ont les sections transversales syme-
triques, et de cette symétrie découle une simplification importante:

* !

Fig. 9

En effet, nous pouvons décomposer la charge extérieure selon le procédé de la
symétric et de lantisymétrie. Ceci réduit le nombre d’inconnues hyperstatiques

(fig. 10 et 11).
')k CI2'0 q

A £ \fﬁc v et

ar a1
Nz Nn Nm Ng
my g mp mp

Fig. 10. Chargement symétrique.

X q,
p l 2o ‘p
T

Fig. 11. Chargement antisymétrique.

Jusqu’a présent, nous avons analysé 'hyperstaticité des systemes plans (sections
transversales des structures). Il apparait cependant que les structures étudiées forment
des systémes spatiaux. En conséquence, toutes les inconnues hyperstatiques ne sont



STRUCTURES EN POUTRES-CAISSONS RELIEES PAR DES DALLES 123

pas des nombres mais des fonctions de la longueur (z). Pour simplifier le probléme
nous séparons les inconnues intérieures et extérieures.
Résumons la marche & suivre en nous reportant au caisson @ de la fig. 10.

b

On détermine d’abord les inconnues hyperstatigues intérieures (g;), (N;) et (m;),
dues aux charges extérieures; les inconnues (g;) et (m,) étant considérées aussi
comme les charges extérieures.

Afin de pouvoir considérer le caisson comme un systéme plan, il faut déter-
miner les forces axiales qui apparaissent dans les parois. Ces forces proviennent
de la différence des cisaillements sur deux faces d’une tranche élémentaire (dz)
(fig. 13), et la tranche unitaire se comporte comme un portique élastique.

= i

Fig. 13.

Les cisaillements en question sont définis par la formule (6), dans laquelle le
dernier terme exprime les cisaillements provenant de la torsion non uniforme.
Nous négligeons ce terme dans le calcul des inconnues hyperstatiques.

Si 'on voulait tenir compte de ces cisaillements, il faudrait définir le moment
de torsion fléchie. Celui-ci ne peut pas étre déterminé autrement que par la
résolution de I'équation de torsion non uniforme. Comme le moment extérieur de
torsion (¢) dépend de valeurs (g), et (m),, il se trouve que I'on aurait pour une
équation trois inconnues:

(©), (q); et (m),
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Il est donc impossible de déterminer par cette équation le moment de torsion
fléchie, indispensable a la définition de telles contraintes.

Ensuite nous rendons le systéme isostatique. Nous avons donc trois états unitaires
dus aux charges extérieures (fig. 14).

m|=1

[0 2 © [

Tig. 14

A chacun de ces trois €tats sont associés trois états unitaires relatifs aux
inconnues gq;, N; et m; (fig. 15).

® © | ©

4| N
ly v/ o+
qr=1 Nr=1 my=1
Fig. 15

Les inconnues recherchées (q;), {N;) et (m;) se déterminent & partir d’un systéme
de trois équations linéaires, dont la forme matricielle est:

d11 4y dizy dr Ayp
A1a Gpy 32| X | Ny |+ |Aap | =

e v B

(13 daz3z dsj my Azp

La matrice (g;;) est indépendante du systéme des forces extéricures, et elle est
symétrique (a; ; = a; ;). Les coefficients (g; ;) et (4 ;») se calculent habituellement par
les intégrales de MoHRr.

Les moments fléchissants réels dans les parois sont & multiplier par les valeurs
réelles de (p), (m,) et (g,). Ces deux derniers étant les inconnues hyperstatiques
extérieures & déterminer.

Déterminons d’abord les inconnues hyperstatiques extérieures pour une travée
isostatique.

La poutre est soumise & la charge extérieure (p), d’excentricité constante (d)
(fig. 16). '

Puisque la poutre est isolée, il faut rétablir la continuité transversale de la
structure en appliquant, le long de la coupure, des inconnues hyperstatiques
9(z) €L M.
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P

Fig. 16

Nous développons la charge extérieure (p) et les fonctions g, et my,, en séries
de FOURIER:

(2n—1)rz 4 1
Z Pu’ Sln L ——avec p, = 7{ (m

R (2n—1)nz )
= 3 g,sin ——L—avec g, = inconnue

n=1

e C(2n—1)nz )
my= Y, m, sin —————avec m, = inconnue
L

n=1

Pour écrire que les déplacements sont nuls, au droit de la coupure, il faut
considérer une force et un couple auxiliaire qui correspondent a g, et m,.

La somme des travaux de la force ou du couple auxiliaire unités, dans les
déplacements dus aux inconnues ¢, et my,, et & la charge extérieure, doit étre
nulle. Ceci se traduit par un systéme d’équations linéaires (autant d’équations
que d’inconnues) que nous pouvons exprimer sous forme matricielle:

[a]-[*] +[4]=[0]

La matrice [a] se compose de quantités (g; ;) qui représentent le travail de la
force auxiliaire ) dans les déplacements dus a une force unitaire (), relative a
I'inconnue hyperstatique ). Cette matrice ne dépend pas du systeme des forces exte-
rieures. Elle est symétrique (a;;) = (a;;).

La matrice [x] est une matrice colonne des inconnues (q,); (m;); (q,); (m,), etc.

La matrice [ A] est une matrice colonne des quantités (4 ;p), qui représentent
le travail de la force auxiliaire () dans les déplacements dus aux forces exté-
rieures (p).
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Les quantités (a;;) sont des sommes de trois termes:

ay = (agh + ()2 + (a;)s

(a; ;); provient de la flexion longitudinale verticale.

0 0

z ;
L L
- Mi |y -4 Mj Ty
diagramme des Mi diagramme des Mj
Fig. 17
L
(aij)l = M:E?/IJ dz (7)

o

(a;;), représente le travail de torsion uniforme.

diagramme des 0; diagramme des Cj

Fig. 18

C;-C; '
(aij)z = j GI, L dz _ (8)

(a; ;); représente le travail de flexion transversale qui provient de la déformation
des dalles de liaison et des parois des caissons. Nous avons dans ce cas Iintégrale
double étendue au contour » de la section, et a la longueur ;) de la travée.
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force cuxiligire force unitaire

Fig. 19

L
m; mi;
(a,); = JJ EI(S: ds dz (9)

dans laquelle I(s) concerne I'inertie des parois.
De méme chaque {A;p) est la somme de trois termes:

Aip = (Aip)1 + (Aip)z + (4ip)s

Le calcul de chaque terme se fait de la méme fagon que celui des (a;;). Les dia-
grammes de moments relatifs & la force auxiliaire sont les mémes; les diagrammes
de moments dus & la force unitaire sont remplacés par les diagrammes des
moments dus aux forces extérieures.

Les intégrales (7), (8), (9) concernent toute la section de la structure.

Un ou plusieurs (a;;), ou (4;p), peuvent étre nuls, en raison de la symétrie de
la section transversale et de la symétrie des charges.

Pour une travée encastrée ¢€lastiquement a la flexion a ses deux extrémités,
le probléme consiste & rechercher les fonctions g, et m correspondant a des
moments d’encastrement. »

On procede de la méme facon que dans le cas de la travée isostatique. La
charge extérieure étant le moment d’encastrement appliqué aux abouts de la travée.

On détermine enfin les inconnues (g) et (m) comme la somme de deux effets:
celui de la charge (p) et celui des moments d’encastrement.

Un tel calcul permet de déterminer les valeurs des inconnues g et m, au milieu
de la travée (les coefficients inconnus g, et m, se¢ déduisent du coefficient p, qui
caractérise la charge extérieure).

Par contre, nous ne connaissons pas ’équation de la courbe suivant laquelle
sont réparties les inconnues g et my, le long de la travée. Nous savons que les
courbes sont symétriques par rapport au milieu de la travée (p = C,.), et obtiennent
zéro aux extrémités (fig. 20).
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Gz) OU M) inconnu

g, Ou Mg connu

Fig. 20

Nous supposons que les fonctions inconnues sont réparties, soit suivant une loi

sinusoidale, soit suivant une parabole du deuxiéme degré. Seules l'application
numérique et la vérification expérimentale peuvent démontrer quelle est la fonction

qui

répond le mieux & ce probléme.

Hypothéses de la torsion

Pour la détermination des inconnues hyperstatiques, nous avons été obligés de

simplifier le probléme en considérant la torsion comme uniforme, mais & partir

de

maintenant nous adoptons les hypothéses de Oumansky et BenscoTer. Ces

auteurs ont défini une «fonction de gauchissement».

10

20

30

Les hypothéses se définissent ainsi:

Le contour de la section transversale est considéré comme indéformable. Pour
les constructions en métal, cette indéformabilité est assurée par les raidisseurs
transversaux. On adopte cette hypothése également méme pour les pieces sans
raidisseur qui ont des parois plus épaisses: les profilés laminés, par exemple
[16],[26] et [33].

Dans les constructions en béton précontraint, la section est constituée de voiles
relativement épais. Les intersections des ames et des hourdis sont renforcées
par des goussets dans lesquels on loge des c@bles. Ceci assure 'indéformabilite
du contour méme en cas de constructions peu entretoisées.

Les contraintes normales longitudinales dues 4 la torsion non uniforme sont
réparties dans la section de la méme fagon que le gauchissement dans le cas
de torsion uniforme.

Les contraintes de cisaillement sont uniformément distribuées sur toute I’épais-
seur de la paroi. Cette hypothése concerne les piéces longues a parois minces,
dont les dimensions sont telles que:

201, £<0,1

0: épaisseur de la paroi
a: hauteur de la paroi
L: longueur de la barre.
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Pour les constructions précontraintes, on néglige ’effet des cables sur la rigidité
a la torsion. Selon Vviassov [32], pour les picces précontraintes au lieu de Gl
relative aux sections non précontraintes, il faudrait prendre:

GId = R'E

I, =1e moment d’inertie relatif a la torsion uniforme,

R = la résultante des forces de précontrainte,

E =Tlexpression qui dépend de la géométrie de la section et de la position

du point d’application de R.

Ce probleme, a notre connaissance, n’a €té traité que par VLASSOV pour une
barre de section ouverte dans laquelle le tracé du cable est rectiligne. Il faut
cependant remarquer que, lorsque la section est composée d’éléments fermés et
ouverts, I'effet de cibles est moindre.

Rappel des caracteristiques géométriques sectorielles

Comme nous I'avons déja remarqué, les caractéristiques sectorielles définissent
le gauchissement des sections. Nous rappelons la définition de ces caractéristiques.
Elles correspondent, dans leur appellation, a celles qui sont données par les princi-
paux auteurs ayant pris part a 1’élaboration de la thérie classique des barres a
parois minces. Parmi ces auteurs, on peut citer particuliérement Viassov et
WAGNER.

Profils ouverts
— Surface sectorielle [ L]?, appelée aussi coordonnée sectorielle.

£ .

hgne moyenne

i du profil

Soit: P =un pdle arbitraire,
PF, =rayon initial,
Fig. 21 PF = rayon mobile.
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Conformément a la fig. 21, la surface sectorielle est définie par I'intégrale:
o=/ rds

La surface sectorielle est comptée comme positive, si le rayon mobile PF qui
I'engendre tourne dans le sens trigonométrique vu selon Oz.

— Moment statique sectoriel [L]*; il est donné par: S, = [, 0dA.

— Moments linéaires sectoriels [L]°; ils sont donnés par les intégrales:
Sey =faxwdA, S,.=[sy0dA.

— Moment d’inertie sectoriel [L]°; il s'exprime par lintégrale: I, = {,0*dA

Profils fermés

Les caractéristiques sectorielles des profils fermés ont été établies par les auteurs
russes [26], [27], [30] et [33] et ont pour but d¢largir la théorie de Viassov
concernant les profils ouverts.

— Surface sectorielle des profils fermés : appelée aussi surface de gauchissement.

Elle s’établit par I'analyse d’un profil fermé soumis a la torsion uniforme (le gau-
chissement est libre) et s’exprime par ’expression:

§ ds
Go

Les autres caractéristiques ont la méme forme que celles des profils ouverts.

Centre de flexion

La surface sectorielle des profils ouverts et fermés que 'on trouve dans les
formules (1) et (3) est calculée par rapport au centre de flexion, également appelé
centre de cisaillement.

La position du centre de flexion dépend uniquement des caractéristiques
géométriques de la section transversale, et sa détermination, pour les profils ouverts
ou fermés, se fait aisément a partir d’un podle arbitraire P (fig. 22).

1
b, —a,=— — | ywpdA
IxA
1 (10)
by—ay=j—jx0\)PdA

y A
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0
-.lr _—

Fig. 22

Caractéristiques sectorielles des profils composés d’¢léments fermés et ouverts

Pour définir les caractéristiques sectorielles des profils composés d’éléments
fermes et ouverts, il faut définir la surface sectorielle qui se compose dans ce
cas de trois parametres:

— de la surface sectorielle du profil fermé @, et

— des surfaces sectorielles de profils ouverts .

Considérons le profil étudié comme indépendant (les extrémités des porte-a-faux
sont définies par les coupures).

Nous prenons en compte I'égalité de gauchissement suivant les arétes I — I
et II — II' (fig. 23) pour le caisson et les porte-a-faux.

iy '
/ //"
il

Fig. 23

Notons qu’un raisonnement semblable est fait pour ’étude de la torsion d’une
coque de navire ayant une structure composée. La coque est soumise a la torsion
par une vague biaise rencontrée par le navire [22], [27].

La torsion étant non uniforme, conformément aux hypothéses, le gauchissement
doit étre exprimé par la fonction de gauchissement:

d3
= —[w] — 11
o=~ 0] (1)
On voit que le gauchissement de la section est proportionnel & la surface

sectorielle. Pour qu’il y ait ’égalité de gauchissement & la naissance des porte-a-
faux, il faut que les surfaces sectorielles calculées pour les parties fermées et
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ouvertes soient égales aux points I et IT (fig. 23). Cette condition nous conduit
a exprimer la surface sectorielle des parties ouvertes par:

S
lo| = | rds + D,
[]

Les autres caractéristiques sectorielles qui concernent les profils composés se
calculent a partir de la surface sectorielle. Celle-ci se compose de & et de la nouvelle
valeur pour la partie ouverte déterminée ci-dessus |w|. Nous avons donné leurs
symboles en notations.

Déterminons maintenant la position du point sectoriel nul, et celle du centre de
flexion.

Connaissant le gauchissement, on peut écrire pour la contrainte normale:

d
o= El * —c
dz
et, compte tenu de (11), nous avons:
a9

La barre est soumise uniquement 4 un moment de torsion, la contrainte o doit
donc satisfaire aux équations d’équilibre:

N=|odAd=0
A

M,= [oxdA=0 (13)
A

M, = jcysA%O
A

En introduisant (12) dans les équations (13), on trouve:

[[]dd=0
[[0]xdA =0 (14)
£[m]ydA=0

Le probléme est ramené a celui des profils ouverts. Les équations (14) per-
mettent de trouver le point ou le gauchissement est nul, et les coordonnées du
centre de flexion s’expriment par les formules [ 10].

Cisaillements d’«effort tranchant» et de «forsion»

On détermine les caractéristiques S, et I', indispensables pour la définition
des contraintes tangentielles, par ’'analyse des contraintes dues & I'effort tranchant
et 4 la torsion.
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Soit une tranche de poutre-caisson a deux porte-a-faux, flechie dans un plan
paralléle au plan (0,, 0,) par un moment (M) (fig. 24). Déterminons les cisaillements
d’«effort tranchant» (T) provenant de cette flexion.

> d
0 T
/c u/d [& X
/
| 4}
Fig. 24

Soit abcd 1élément découpé dans la paroi en deux endroits différents (fig. 25).
1° Le cdté ac est confondu avec le bord de I'un des porte-a-faux.
2° L’¢lément est situé dans un des plans de la poutre-caisson (ac restant // &

P'axe Oz).

Partant du point a, nous déterminons les flux de cisaillements pour un point
couvrant b.

Fig. 25

L’équilibre de I’élément abcd implique que:
ON oN
A TP — @ = I
0z P oz ¢
D’autre part, en prenant 'équation due a NAvIER, nous obtenons pour le flux
de cisaillement:

o="—2+¢, (15)

Le long des bords libres des porte-a-faux, les tensions tangentielles sont nulles
(@, = 0), nous avons: : :

o= (16)




134 : S. KLIMINSKI

Le caisson, par contre, est un profil fermé et il faut déterminer le flux supplé-
mentaire constant @,. Pour calculer ce flux, on pratique une coupure passant par le
cOté ac de I’élément abcd.

Considérons le point (P) de position quelconque comme le centre de flexion
d’un profil fermé (fig. 26). -

Fig. 26

Le moment de torsion autour de I’axe paralléle a Oz, et passant par P, est tel que:
C=4§Drds (17)

Compte tenu de la relation (15), la relation (17) devient:

T8
szﬁ - “rds + $@,rds

x

d’ou:

T
C E§erd3

_ — 18
° ®rds $rds (18)

Puisque le plan de sollicitation passe par P, C =0, et 'expression (18) devient:
1T,
O, = — B jchSx rds
et ’équation (15) s’écrit:

T 1
® = I-(Sx - §§Sx rds)

X

Celle-ci peut €tre exprimée sous la forme suivante:

_ TS,
i

P

X

dans laquelle le moment statique pour les profils fermés est:

-~

1 ,
S, = Sx~§'§erds (20)




STRUCTURES EN POUTRES-CAISSONS RELIEES PAR DES DALLES 135

A T'aide des formules (16), (19) et (20), nous pouvons déterminer les cisaillements
dus a leffort tranchant en tout point de la paroi du profil étudié.

Remarque: Pour la détermination des cisaillements d’«effort tranchant», dans
un profil compose, les principes de la résistance des matériaux classiques, sont
encore applicables. En effet, dans la partie fermée du profil, dans laquelle on a
pratiqué une coupure, les cisaillements sont entierement déterminés par la statique.
Cela signifie que le systéme est isostatique du point de vue de ses liaisons
internes, et il est strictement complet.

D’autre part, le profil ainsi composé est hyperstatique, car a I’aide d’une coupure
nous avons déterminé le profil d’abord ouvert, et ensuite fermé.

Cette hyperstaticité est du premier degré.

L’examen d’une tranche de poutre-caisson & deux porte-d-faux encastrée a une
extrémité, et soumise & un moment de torsion a l'autre extrémité, conduit a la
définition de cisaillements de «torsion» et de la valeur sectorielle T,

Ecrivant I'équation d’équilibre de I’¢lément abed découpé en deux endroits,
comme dans le cas précédent, et compte tenu de I'expression (12), nous avons:

Pour les porte-a-faux:

' 1
T= SIH'El * g’S[m]

Pour le caisson:

C E
_ SIII,_l,r
oty s

ou:

1
I'= S[m] —_ §'§S[m] rds

Remarque: Pour la partie fermée du profil, les contraintes de cisaillement se
composent de celles de la torsion uniforme et de celles provenant de la torsion
non uniforme. Ces derniéres dépendent de la dérivée troisiéme de la fonction de
gauchissement § et sont réparties de la méme fagon que la caractéristique sec-
torielle T'.

La valeur I" concerne le contour entier du profil (parties fermées et ouvertes),
bien qu’elle provienne de I'intégration des déplacements le long de la partie fermée
seulement. Ceci provient de la valeur [w], dont l'intégrale est étendue sur le
contour entier.

Equation différentielle de torsion non uniforme

Pour connaitre ’état de contraintes et de déformations dans une piéce soumise
a la torsion non uniforme, il est indispensable de dé&finir le bimoment et le moment
de torsion fléchie. Ces deux grandeurs liées a4 I’angle de torsion et 4 la fonction
de gauchissement se déterminent & partir de ’équation différentielle de torsion
non uniforme.
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Pour la premiére fois, le probléme de torsion non uniforme a été mis en €équation
par TiMosHENKO (1905), dans le cas particulier d’une poutre en «I». Plus tard (1926),
WEBER a complété cette équation pour la méme section, mais asymétrique. Ce
sont WaGNER (1929) et Viassov qui ont généralisé I’équation. Ils I'ont rendue
valable pour toutes les sections ouvertes, en lui donnant la forme:

@IV_kZ @II_—‘T]'C
avec: (21)

Pour les sections fermées, ce sont les problémes d’aviation qui ont principale-
ment développé la théorie de torsion. Dans une premiere théorie technique de
torsion des profils fermés, on a appliqué I’équation (21). Les modifications ont
porté seulement sur les caractéristiques sectorielles (voir exemple: 1étude de
BORNSCHEUR [4]). '

Les études de Oumansky [30], et BeEnscorteEr [10] sont plus exactes. Ces
auteurs introduisent dans 1’équation une deuxi¢éme fonction — fonction de gau-
chissement 3. La nouvelle équation a la forme:

@IV_k2®II=n.c

avec:
Gld 1 22
- ‘u

K=y n=—
E 1 o E I

on voit que les termes k? et n sont multipliés par le coefficient de gauchissement p.

En ce qui concerne les profils composés d’éléments fermeés et ouverts, on
connait 'équation établie par rapport & la fonction de gauchissement [10]. II est
sans doute préférable d’étudier ces profils de la méme fagon que les profils ouverts
et fermés, c’est-a-dire & 'aide d’une équation semblable a celle (21) ou (22).

Nous établissons maintenant une telle équation, ou plus précisément nous
transformons les termes k et m, en analysant la répartition des contraintes dans
toutes les parties du profil composé. '

Conformément aux hypotheses, nous introduisons en plus de ® une nouvelle
fonction: 3.

Pour deux inconnues, deux équations sont indispensables.

— La premiére se déduit de la condition de continuité des déplacements longi-
tudinaux, le long du contour de la partie fermée:

Bud 0
as
et elle s’exprime:
E, |T 1 |d
9 L Pds— @1 Q = —c —— P (23)
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— La deuxié¢me équation provient de I’équilibre du moment de torsion C par les
contraintes [7-8-rds: 7
A & e B 9!

- T (24)

: I . ;
Dans cette équation p = (1 — I—d) étant le coefficient de gauchissement, avec:

o

QZ

f‘f@
3

I,= [r*8ds quiconcerne toute la section du profil composé (parties fermées et

I, = qui caractérise la torsion uniforme des profils fermés, et

A ouvertes).
En dérivant trois fois (24), nous avons la relation entre les deux fonctions:
@IV
W= (25)
’ H

Introduisons (25) dans (23); nous avons ainsi I’équation différentielle recherchée
par rapport a Pangle de torsion:

®IV_k2®II=n_C

ds

‘G Q )
ot ok Jo (26)

£y jgrd_s"n_ Elg cis_
' 5 8

Pour vérifier I'équation établie, nous I'avons appliquée au profil fermé, en
remarquant que, pour un tel profil I' = S5 — 4§ S rds. Ainsi nous avons obtenu
I’équation (22). L’équation (26} avec ses termes k et 1| est donc correcte.

dans laquelle':

Résolution de I’équation de torsion non uniforme

Pour Ia résolution de I’équation (26), nous utilisons fa méthode des paramétres
initiaux, appliquée par VLassov au calcul des voiles & profils ouverts [32].

d

Qe AT™ 4T -
g X
L
plz)
» se"btiz:‘ csplz)d
) . e y

Fig. 27
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La matrice définissant les quatre facteurs fondamentaux pour une charge continue
a répartition quelconque et d’excentricité constante (fig. 27) s’écrit:

o.| e | -p = _c, b
GQ Iy GI, GI,
o || 1 8 hkkz Chkz — 1 S hkkz R j c(kz — Shkz)dz
@y || 0 | Chkz kShkz Chkz — 1 jz ¢(1 — Chkz)dz
ol || 0 | kShkz k2 Chkz kShkz —k jz c-Shkzdz
Ol | 0 | K*Chkz | K3Shkz kK*Chkz | —k? jz ¢ Chkzdz

Les parameétres initiaux @,, ®2, B, et C, s’expriment par les constantes d’inté-
gration de I’équation différentielle, et doivent donc étre déterminés par les conditions
aux limites, imposées aux extrémités de la piéce (z =0et z = L).

Les sections extrémes sont encastrées 4 la torsion (© = 0), et elles restent planes
(B#£0),doncpourz=0etz=LO=0"=0.

Nous obtenons dans une section z = C¥, pour les cas de charge étudiés, les
formules suivantes:

a) Moment de torsion uniformément réparti, c = p.d (fig. 27):

k(L_Z)-ShIE
O = de.[kz(L~z)‘2Sh 2 2]
2%GI, L kL
2
ol — pdL [L— 2z Shk(z- z)]
LAY 3 ShEE
@I_pdkL_l:Chk(%—z)_ 2}
Y761, sk kL
o= pdk® L Shk(z — %)
2GI, Sh%

b) Moment de torsion réparti suivant une sinusoide, avec l'origine du systéme
d’axes [].x yz en milieu de la travée ¢ = ¢, cos (%), ¢, = q()-d, ou c,=m(%) (§5):
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¢, 2L|1 kL nz kL nz T kL nz
Ou=—2 I rsin T s sk S Shkzsin ™
AT [n(z Sl L) k2L2+n2( 2 ST
kL i kL\ Shk(322) Shk (X322
s | — 2 - z_IE—E'Ch——' (2% Shk(23*)
n L T kKI*+n 2 Shk:

i kL nz 1 . &z
el = G 2L{im——(Chkz sin —E+ ¥Shkz cos L) - ;-sm 7
_ T Ch kL _Sh kz
k2 I? + 2 2 n) Sh%

Ca n kL nz kL
= GId.sz-[kJZ—LZ_—_ (Shkz sin E+ Chkz:cos S A _n_)

i kL. 1\ Chkz
=" 7 " ShA

T nz kL %4
i _ o kAL ————| Chkz-sin —+ — Shkz- — =
& GI, [k2L2+n2( S Shkeees L)

e KL 1) Shiz
B2+ 2 n) Sh%

¢) Moment de torsion réparti suivant une parabole, avec l'origine du systéme

2
d’axes [, x y z en milieu de la travée,c=co-(1—7), co=q%)d, ou - c,=m(%)
§5):
¢, 2 #2 1% BPE 8 8 472 8z
Opy=——-| k22?3 S — = - — =1} —— Shkz—
& szkz{ ? <L2 2)+ 6 D <k2L2+L2 1) Chlz + paShiz

4 kL kL 8 kL kL kL\ Chkz —1
— —4+ — ) Th—+| —Sh — —H—Ch—~-—
( ) +(k2L2 2 + 3 kL 2) Shik }

2 (472 8 4z 8
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Application numérique et vérification expérimentale

Nous appliquons la théorie exposée dans les paragraphes précédents a un pont
a quatre caissons, récemment construit: le Pont de Courbevoie, sur la Seine. dont la
coupe transversale est donnée sur la fig. 28% C’est un portique ouvert a trois
travées (40 4+ 60 + 40 m). La travée étudiée est celle de 60 m.

Fig. 28

La section d'un caisson est définie sur la fig. 29. La disymétrie est créée par
la difference de longueur des porte-a-faux (e, # €,)

0,784 0,60 028 124 1,82

T 7T

L L2 026 0,80 1,322

X1 1,06

X2

0425023 295 ]

|

€2

Fig. 29

Les mesures de déformations effectuées au cours des ¢preuves de cet ouvrage ont
mis en doute les hypothéses habituelles de calcul

“Pont construit par I'entreprise Campenon Bernard. Au moment de I'étude, I'auteur était ingénieur
au Service regional de 'Equipement de la Région parisienne.
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Au cours des épreuves, nous avons utilisé des camions de 35 t en mesurant les
fleches et rotations au milieu de chaque poutre-caisson, pour les trois cas de charge
suivants:

1° 8 files de 4 camions (toute la largeur de 26 m chargée).

2° 4 files de 4 camions (deux poutres-caissons latérales chargées).

3% 2 files de 4 camions (une seule poutre-caisson latérale chargée).

Ces trois cas de charge sont considérés dans 'application numérique.

Afin de ne pas prolonger I'exposé, nous nous bornons a4 donner les résultats
essentiels:

— de la répartition des charges entre les poutres-caissons,

— de la torsion considérée comme non uniforme.

Les lignes d’influence pour les inconnues hyperstatiques 4 mi-travée isostatique
sont données sur les fig. 30, 31, 32 et 33.

L B
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Fig. 31
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Sur les fig. 34 et 35 sont donnés les diagrammes des bimoment et moment de
torsion fléchie pour une poutre-caisson latérale. Ces diagrammes correspondent &
la surcharge réglementaire A (1) répandue sur toute la longueur (60 m), et toute
la largeur de chaussée (26 m); les inconnues hyperstatiques étant réparties suivant
la loi sinusoidale.

Les contraintes ¢ et T dues au gauchissement empéché sont représentées sur les
fig. 36 et 37. Les valeurs entre les parenthéses correspondent au troisiéme cas de
charge d’épreuves — la charge la plus excentrée.

Les contraintes en question sont réparties suivant le contour de la section de la
méme fagon que les valeurs sectorielles [o] et T

La section considérée est celle du voisinage des appuis (z = 1,5 m ou z = 58,5 m).
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Fig. 34. Diagramme du bimoment B (en Tm?). Fig. 35. Diagramme du moment
de torsion fléchie M, (en Tm).

Dans la section a mi-portée M, =0, donc 1= 0.
La valeur du bimoment B est faible. Les contraintes 6 ne dépassent pas en

valeur absolue 2 kg/cm”.
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Conclusions

D’une fagon générale, les résultats de cette recherche sont trés satisfaisants.

La flexion transversale des parois de caissons, prise en compte dans le calcul
des inconnues hyperstatiques, modifie sensiblement le comportement des structures,

En ce qui concerne la répartition des inconnues hyperstatiques, le long de la
travée, on peut admettre, avec une bonne approximation, que ces inconnues sont
réparties suivant une sinusoide.

C’est du point de vue de la torsion que I’étude est la plus intéressante.

Les mesures des rotations au milieu de chaque poutre-caisson donnent des
valeurs supéricures de 30% environ, comparativement a celles trouvées par la
méthode classique de calcul, et ces mesures confirment nos résultats de calcul.

La torsion est en effet non uniforme, et les principes de la théorie des barres a parois
minces sont parfaitement applicables au calcul des structures en béton précontraint
composées de poutres-caissons.

Les contraintes supplémentaires dues 4 la torsion non uniforme, ignorées dans
la méthode de calcul classique, peuvent avoir de graves conséquences sur le
comportement de ce genre de structures, et surtout-dans les ponts courbes, ot la
sollicitation a la torsion est plus accentuée.

L’importance de ce probléme devient a I'heure actuelle plus grande, du fait de
I’évolution de la préfabrication, qui conduit a la production d’é¢léments de cons-
truction ayant des parois de plus en plus minces.

Notations

section transversale.

bimoment.

moment de torsion.

moment de torsion par unité de longueur.

constanterelative aux caractéristiques sectorielles des profils composés.
module d’élasticité longitudinale.

coefficient de Poisson. : E
module d’élasticité réduit de la traction longitudinale (E, =
module d’élasticité transversale.

moment d’inertie par rapport aux axes Ox et Oy.

moment d’inertie a la torsion uniforme d’un profil: ouvert, fermé.
moment d’inertie polaire.

coefficient de gauchissement.

, &, [0] surface sectorielle d’un profil: ouvert, fermé, composé.

double de l'aire comprise & l'intérieur de la ligne moyenne d’un
profil fermé.

moment d’inertie sectoriel d’un profil: ouvert, fermé, composé.
longueur de la portée étudiée.

moment fléchissant agissant dans le plan paralléle au plan Oy, Oz.
moment de torsion fléchie.
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N effort normal.

0 centre de gravite.

O, centre de flexion.

r longueur de la perpendiculaire abaissée du centre de flexion sur la

tangente au contour.
S, S, moments statiques par rapport aux axes Ox et Oy d’un profil: ouvert,
ferme.
moment statique sectoriel d’un profil: ouvert, fermé.
abscisse curviligne d’un point de I'arc.
périmétre suivant la ligne moyenne d’un profil fermé.
effort tranchant agissant dans le plan paralléle au plan Oy, Oz.
déplacement dans la direction z.
déplacement dans la direction de la tangente au contour.
¢épaisseur de la paroi.
flux de cisaillement.
angle de torsion.
contrainte normale.
gauchissement.
fonction de gauchissement (caractérisant la torsion non uniforme).
contrainte de cisaillement.
intégrale étendue sur tout le contour d’un profil ferme.

5]
g
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Considérations pratiques

Nous donnons ici quelques remarques pratiques concernant les conséquences
de la torsion non uniforme vis-a-vis du dimensionnement des armatures des ponts
a poutres-caissons en béton précontraint.

Il convient de constater que les contraintes maximales dues a la torsion non
uniforme se situent au voisinage des appuis.

Dans le cas des ponts droits, les calculs classiques ignorent ces contraintes —
de l'ordre de quelques bars — et il n’est pas prévu d’armatures passives pour les
reprendre.

Le diagramme (fig. 36) des contraintes normales conduit a renforcer les arma-
tures longitudinales dans les zones de goussets et de porte-a-faux et le diagramme
(fig. 37) des contraintes tangenticlles a renforcer les armatures transversales au
milieu des hourdis et des ames.

Pour les ponts courbes, on ne peut pas séparer les termes de flexion et de
torsion qui sont liés par la méme équation; il en résulte que les conséquences
de la torsion non uniforme sont plus importantes, puisqu’elle influe sur I’état général
des contraintes et des déformations. Ainsi les fléches mesurées en travées sont en
réalité plus importantes que celles trouvées par un calcul classique.

D’autre part, dans une poutre-caisson large a plusieurs cellules, ou I'effet de
gauchissement est important, les contraintes supplémentaires normales et tangen-
ticlles peuvent atteindre quelques dizaines de bars. Un calcul automatique tridimen-
sionnel permet de mettre en évidence I'existence de ces contraintes. Un tel tablier



146 S. KLIMINSKI

dimensionné suivant les formules habituelles manquera non seulement d’armatures
passives, mais aussi de précontrainte, d’ou risque de fissures.

Il semble que I'effet nuisible de la torsion non uniforme aussi bien dans le cas
des ponts droits que courbes pourrait étre considérablement diminué par une
différente conception des entretoises d’appui.

Une simple diminution de I’épaisseur des entretoises, voire leur suppression
dans certains cas, pourrait améliorer le comportement des ponts en béton pré-
contraint et, en plus, apporter de ’économie au projet.

Nous nous proposons de traiter ce probléme prochainement dans une étude
étendue sur plusieurs types de ponts.
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Résumé

L’¢tude concerne les systemes spatiaux élastiques rencontrés dans la construction

actuelle des ponts.

Le probléme porte principalement sur une section transversale, composée de

caissons liés entre eux par des dalles de différentes longueurs. Les structures ne
sont entretoisées que sur appuis.
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Pour la définition des inconnues hyperstatiques, on tient compte de la flexion
transversale des parois de caissons et, pour la torsion, de la fonction de gau-
chissement.

Zusammenfassung

Die Untersuchung behandelt rdumliche elastische Systeme wie sie im heutigen
Briickenbau auftreten. Das Problem bezieht sich hauptsidchlich auf einen aus Kasten
zusammengesetzten transversalen Querschnitt, die untereinander durch verschieden
lange Betonplatten verbunden sind. Das Bauwerk ist nur an den Auflagestellen
ausgesteift.

Zwecks Definition der statisch unbestimmten Unbekannten werden die trans-
versale Biegung der Kastenwiinde, sowie die Kriimmungsfunktion fiir die Torsion
beriicksichtigt. :

Summary

The study deals with spatial elastic systems in actual bridge construction.
The problem relates mainly on a transversal section composed by boxes joint
together by concrete slabs of different lengths. The structure is only stiffened on
the supports.

With a view of defining the statically undetermined unknowns the transversal
flexion of the box wall and the function of the curvature for the torsion are taken
into consideration.
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Introduction

The theoretical solution of the problem of finding the critical load of orthogonal
building structures within the elastic range is already known. In practice, however,
the determination of that load — excepting very simple cases — is difficult, for it
involves the solution of a great number of transcendental equations. It is sufficient
for the Structural Engineer the knowledge of the approximate value of that load,
if it leads to an acceptable safety factor. Therefore, if a simple method is known
that yields a sufficiently approximate answer, the exact solution may be waved.
The conventional simplistic procedure consisted in finding the buckling load of the
columns of the building, one by one, and assuming that the effect of the link with
the remainder of the structure could be represented by a single buckling length.
In this article a method of solution! is suggested which lies between the simplistic
and the theoretically exact solution. “Theoretically” exact since even the most com-
plicated solution mentioned above, with the transcendental equations, does not avoid
certain facts that lead to discrepancies in relation to the actual structure, due to
the lack of knowledge of certain values and the way of considering certain factors,
such as: the value of the modulus of elasticity E, the effects of the beam-column
connections and of the rigidity of the slabs, the uncertainty of the load distribution,
the heterogeneity of the material, in particular if it is reinforced concrete.

Hypothesis

Consider a plane structure with several vertical columns fixed at the same level
at the lower end, and m stories with horizontal uninterrupted beams?. The cross
section of the columns remains constant within each story, but it may vary from one

1 The method originated from another more elementar one which considers only one of the various
systems of stacked columns of the building, with only one parameter to be determined; it has been
suggested by the Author several years ago [1].
2 If it happens that some of the columns, and attached girders, do not extend all the way to the top
of the structure, the method may still be applied if we assume that they do exist, but with I = 0.
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story to another; there are no restrictions to the beam sizes, and the loads —
assumed vertical — are applied at the joints of the structure without any intensity
relations among them®,

214

Fig. 1.

The simplifying hypothesis consists in assuming for the elastic curves of the
deformed columns, which remain within elastic range until buckling, a combination
of two curves (Fig. 1a): one corresponding to the deformation resulting by dis-
regarding the floor girders (Fig. 1b), the other by assuming girders of infinite rigidity
(Fig. 1¢). The relative magnitude of the respective displacements is evaluated in
such a manner as to result minimum buckling load.

Since the method is based on the assumption of a certain shape of the
deflection curve of the structure, with a few parameters to be determined by com-
paring energies — it will yield a larger value than the correct one. In order to
stay on the safe side a reduction coefficient for the deformation energy is used,
thus resulting, for the majority of the less favorable cases, a strength which is
nearly the correct one, but in other cases might yield safety factors in excess of
20% when the assumed curve resembles the correct one (as in the case of the
buckliing of isolated columns in two adjacent floors, mentioned ahead, where Euler’s
formula would be applicable).

! The loads applied on the girders are transferred to the columns, without significant influence
on the structural instability. A closer look will be taken regarding this aspect in a later publication,
including the action of horizontal loads as well as the deformability at the supports.
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Deflection Curve

The deflection curve of the column shall be the one defined along each portion
between floors by

Yi=ei—1+ci|:2+3xlal—(xlal):llo‘i‘x (4)

the three terms of the second member representing, respectively:

— the displacement of the starting joint in the portion of the structure with rigid
girders (e;_,),

— the complement of this displacement along that portion (the equation of the cubic
parabola was used because — as it is known — it adjusts itself very well to
the corresponding sine wave) including the factor c;, to be determined,

— the displacement (Y) of the column (without girders) assumed fixed at the lower
end and free at the top.

For the latter, any curve that satisfies the boundary conditions can be used;
however, for simplicity, a cubic parabola will again be used:

x2
Y= I (Kl — x) (5)

This equation assumes fixity at the bottom ; the condition at the top is caracterized
by the parameter K, which varies from K = 1,5 (infinitely rigid beam at the top)
to K =3 (rigidity zero of the beam at the top). A better value of K could be
obtained assuming it being a new parameter to be determined along with ¢;;
however, in the case of buildings, as long as the beams at the top are not
stronger than the ones below, which is usual, one may take K = 3, as has been done
in the present article. For any other value of K it is sufficient to substitute
A by KA/3 in the formulas (9}1.

Since the assumed line is not the real one, which is the most unfavorable,
the proposed equation wili lead to a larger critical load; in order to compensate
for this error it is suitable to multiply the coefficient ¢, which appears in the
expression of the deformation energy of the column, by ~ 0,9. This explains, in
the equations for B; and C; presented further, the coefficient 1,8 (instead of 2),
and 0,8 (~ 0,92), respectively.

Buckling Load

It is a known fact that the buckling load of a member may be obtained by
establishing the equivalence between the developed energy and the summation of
energies from the reaction forces and the deformation of the member; ie. (the
summations extend between i =1 and i = m):

%ZPiI*ingIiI*i*"F%ZMiei _ (6)

! Only X; the A, remain the same.
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If the assumed deflection curve is correct, this equation would yield the buckling
load (by substituting P; by p;P,, I; by jil,, M; by 6,3 k;, 6, by ¥, .,.):

_ 2B + Y (BY kJ/EL) Y.}y, EL,

e Y pd* I )
or:
A+B+C EI El
= — TG _° 8
 A+B+C B 2 (8)

with 4, B, C, A’, B’ and C' as defined in (1) and (2), and also:

A= Mg [3(h — o)* + 23] + 3 ko + ) Ch — h — o)

. Ji
B;=18j, C;=08 3

A= p [3 (04 4 20% A3 + 0,24%) — 30 (af + A%) + A% Bod + A3)] 9)
Bi=pi (2hoy — o — 02K, Ci=04 2"

The problem will have been solved when the expression (8) reaches its minimum
value, which can be accomplished by assigning adequate values to the coefficients
¢;, obtained from the following equations:

Bi + 2C§Ci

s bt i (10)
B, + 2Cic;

For the solution of this system of equations, assign values G, for G (neither
larger than A/A’ nor larger than the smaller of the quotients C,/C;) and determine
the corresponding c; values:

. BG, — B,
By

T ol i 1
’ ¢ - CG, ()

the substitution of these ¢; values in (3) will lead to the corresponding G values.
If they do not match with the assumed G, values, the process should be repeated
by assigning another value to G, (equal, for instance, to the preceding value of G,
but never greater than any of the mentioned limiting values 4/4’ and C;/C;), until
G, = G. Usually a few trials will suffice (the plotting of curves G =f(G,) and their
intersection with the line G = G, will aid in reducing the number of trials).

! The timit A/A’" results from all ¢; values equal to zero, which would be the solution of the
probiem if the beams had no effect on the buckling load. The limit C;/Ci, which is a minimum for a
certain value i =i,, corresponds to ¢;, = oo meaning isolated buckling of the columns of the floor i,. In
this case the buckling load should be given by Euler’s formula; however the value will be smaller,
since the idea is to remain on the safe side by using the reduction coefficient 0,9 while calculating
the deformation energy (refer to the last observation of item Deflection Curve).
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The problem will have been solved when the value of G has been found,
since the critical load is equal to:

EJ,
P.,=G

(1] lzo

The precision will be shown by comparing results already known with the
ones obtained using the method being presented.

(12)

1st Example

The extreme case of a structure with beams with zero rigidity will be presented
in this example. Therefore the column is isolated and subjected to a concentrated
load at the top end of each of the two portions, each with its own cross section.
Three cases with different dimensions will be considered (Fig. 2).

a) b} c)

4P, 6P, 0,45,
—Ir _LO4P B {OGP . _'T

(o] -
—
Ho n—? - © ((;L
o~ 3, @ = ? "
B O @] N o o
O N " " — —
T Y & N
? ‘ 016% 014PO 7_
o -
4 _l -—
= N
- — - - - *
"o« " —_ n o
=S " _ ™ - "
™ - = T
"
_.‘O
- 7 e T 77
Ki =Ky = 0 0 0
A=4 4 10/3
7\1=@1=P1=;{1=§ 1 /1/
2= 1 2/3
Ay = 3 3 8/3
Pz= 094 036 0,4
jl = 0’4 0,8 0,6

In the first case, 4/4"=02757, C,/C} =1, C,/C, = 1. Assigning the smaller
of these values (0,275) to G,, from (11), ¢; = 0,0507 and ¢, = 1,645, resulting G = 0,269
if we replace these values in (3). Repeating the process, starting with G, = 0,269, will

lead to ¢; = 0,081, ¢, = 1,575, G = 0,269. This value replaced in (11) yields the final

answer:
EJ,
a) P,=0269
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The exact answer [5] is G =0,253, i.e, 6% smaller. For the other two cases
the discrepancy is much smaller, the results being obtained in a similar manner:

b} G=0,222 (instead of [5]:0,221)

c) G=0367 (instead of [5]: 0,366).

2nd Example

Three different story heights and two columns, as shown in Fig. 3. A/4" = 46,13
and the smallest value C,/C}, for i = 1, equals 18,75. Assuming G, equal to 18 and
then 17, G = G, for the latter, thus the answer is G = 17. Other authors found, for
the same problems, the values 16,84 [3] and 16,93 [4]. The latter one shows also
the buckling mode, i.e., the relative floor displacements under the buckling load:
1, 0,924 and 0,621, respectively at the top, 3rd and 2nd floor level.

The buckling mode can also be determined by using formulas presented herein.
With G =17, ¢; = 45,43, ¢, = 6,45 and ¢; = 3,65; correspondingly:

el_1= de, = 181,7. ‘fli= eli+ dc, = 207,5

o

%2 e, =222
L L
and also the respective Y values (5):
4 2402(3 570 — 240) = 25,1
— X
I, 150° ’
Y, 420°
—=—-3 x 570 — 42 67,4
L1508 " 0) =87,
L _ s’ ——_(3 x 570 — 570) = 109,7
S, X —_—
L, 1508

with (Y, + e3)/l, = y%/I, = 331,8, and the relative values:

* * %
By 2 _ 0,829 Y0623
Y3 Y3 Y3
3rd Example

Fivestories equally high, i = 21, each, one single load applied at the top, girders on
both sides, and (I,1,)/(l,I,)} = 3:

}\‘i=17 061=2i—1, 7\,=10, pizl, . ]121
&, = 13,7 c, = 40,3 c3 = 60,2 cq =735 cs = 80,1.
Therefore:

P,=0,80 EJ,/I2, since G =0,798 (exact value [2]: 0,77).
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Example

A = 38
W= 08
?\.2 = 0,6
7\.3 = 0,5
0y = 0,8
oy = 2,2
Az = 3,3
pi= 1
p2= 4/7
ps= 27
=6
=4
ja= 2
Ky = 24
Ky = 18
K3 = 18
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Five stories and three different columns, see Fig. 4. Proceeding as in the previous

examples:

¢, =186,7,

Cy = 39,6,
G = 30,5 (as compared to 28,7 in [6], 30,3 in [3] and 31,4 in [4]).

Ca = 29,1,

P 2P P
o 1=492 1=492
) " E
; v j2v |V
1 & I-1226 _ I:1226 @
o o
| o 3
[
1\ B [av (v
_F~ I-i226 [ 1-1226
- -
=g > g
s "
v =ljav "V
j o TiEs gl e g
[ " < 1]
s ._"' n L
v H |2V - iV
c__,'; 1=1226 1=1226
" ﬁ 8 &l
Sl m © "
@ " e !
Lol "
| 279 | 279
m |

g L
:[; N

cq = 36,6,

A =35,033
Ay = 0,500
A, = 0,492
;\,3 = 0,492
Ay = 0,525
xs = 0,508

oy = 0,500
Ay = 1,492
oy = 2,475
o, = 3,492
os = 4,525

Cs = 11,0,

V/IP = 1962
pl = 1,000
P2 = 0,778
ps = 0,557
P4 = 0,335
Ps=0,113

j, = 3,870
iy = 3,429
i3 = 2857
ja=1978
is = 1,071

Ki =K, =Kz= Kqg =1474 x 4
Ks= 5915x4
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5th Example

This example considers the less common case of the upper beam being more
rigid than the others; therefore, assume K =1,5 in (5), which corresponds to
substituting A by KA/3 =0,5) in (9). Using again the example shown in Fig. 3,
and changing the value of I, of the upper beam from 3], to 20I,, among the values
shown on Fig. 3 only x; changes from 18 to 120 (besides the substitution of
A = 3,8 by 0,51 = 1,9 in the formulas).

The result thus obtained G = 15,1 is 10,3% smaller than the exact one.

Notations

The stories are numbered 1 through m, starting from below; therefore the pro-
perties related to the portion of the column between the foundation and the first
floor shall be identified by the subscript 1, and so forth. The properties related
to the joints (column-girder intersection) shall have the same subscript of the adjacent
column below. The notation is as follows (Fig. 1):

A = ZAi’ B = ZB,'C,', C = Zciczi (1)

A =Y A, B =) Bic, C =Y Cic? (2)
A;, B, C;, A}, B, C, = values defined in (9).

a;  distance from the lower end to the center of segment i of the column.

¢;  coefficient, to be determined, representing the relative sidesway magnitude at
the various floors.

E  modulus of elasticity of the material.

e displacement of joint i in the structure with rigid girders.

G (A+B+QO)/A4+B+C) (3)
a; T li a; + li ‘
= J y2dx, *= f yi* dx.
a; — li a; — li
i subscript referring to the generic column portion between two floors.
I, moment of inertia of beam cross section.
I; summation of the moments of inertia of the cross sections of the portions i

of the columns.
I, moment of inertia of a section used as reference.
j i I i/ 1 o
K  parameter.
k;  coefficient characterizing the rigidity of the joints i(k; = M,/6;)".
Yk; summation of all k; with the same subscript i.

1 For instance, at a joint with only one girder (end columns) of length I, and constant cross section
with moment of inertia I,, k;=6E[l,/I,; should two girders be present, the summation of the cor-
responding 6EI /I, yields the value of k,.
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total column length.

length of the portion i of the column, divided by 2.

reference length.

length of girder.

moments at the supports of the girders, at the joints i.

summation of the loads applied above the joints i (including the ones applied
at these joints).

total buckling load (= P,), to be determined.

P,/P.

distance of a section from the lower end of a column.

portion of the horizontal displacement of the column (function of x), for the
case of total absence of girders (Fig. 1b).

value of Y at the joint i. ,

y;  horizontal displacement of the column at x, in the segment i(a;— [, <x <a;+1,).
y%  horizontal displacement of joint i.

Ty T
o

B RET

S

oE Iy

o afls

8, Y+ = angular displacement at joint i.
K; (Zki)lo/EIO'

A UL

A W

The derivatives in respect to x are indicated by an accent (y’, y”, Y’, Y”). The
values of these derivatives for particular values of x are identified by using these
as subscripts (for instance, ¥’ for x = a, will be represented by Y3, ).

Remark concerning Economy

The method proposed in the present article for calculating the buckling load
of the structure permits to obtain it with a sufficient approximation and in a
much simplier and economical manner than by the general method.

Therefore, without spending a great deal of his time and of the computer,
the proposed method will yield the Structural Engineer a fairly accurate solution
of the problem.
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Summary

The Author proposes a simplified method for the determination of the critical
load of orthogonal building structures, assuming plane buckling. The method pre-
sented, although much easier to apply than most of the exacting ones — which
require the use of large computers — is sufficiently accurate.

Résumé

L’auteur propose une méthode simplifiée pour la détermination de la charge
critique aux structures orthogonales, en assumant le voilement en plaine. La
méthode présentée, bien que plus facilement applicable que la plupart des méthodes
exactes qui demandent I'application de grands ordinateurs, s’avére suffisamment
exacte.

Zusammenfassung

Der Verfasser schligt eine vereinfachte Methode zur Bestimmung der kritischen
Last an rechteckigen Tragwerken unter Annahme der Beulung in einer Ebene vor.
Die vorgelegte Methode, obschon weit leichter anwendbar als die meisten genauen
Verfahren, welche die Verwendung grosser Computer erfordern, erweist sich als
hinreichend genau.



The Analysis of Thin, Thick and Sandwich plates by the Finite Strip Method
Analyse de plagues minces, épaisses et sandwich par la méthode des bandes finies

Berechnung diinner, dicker und Sandwichplatten mittels der finiten
Streifenmethode

A.S. MAWENYA
University of Dar-es-Salaam, P.O. Box 35131, Dar-es-Salaam, Tanzania.

Introduction

The use of the finite strip method for analysing elastic plates is well established
[1-3]. The method, which is similar in principle to the finite element technique,
assumes the plate to be an assemblage of narrow longitudinal strips and defines
the displacement field in terms of one-way slab functions across the width of the
strip and basic series function in the longitudinal direction.

Previous formulations of the finite strip method for the analysis of plate
bending have invariably used slab functions which constrain the plate to obey the
Kirchoff’s normality hypothesis. Consequently, no allowance is made for the effects
of transverse shear deformations. In thick and andwich plate situations the influence
of transverse shear on the deformations and stresses is quite significant and
cannot be neglected in the analysis.

In this paper finite strip formulations are presented for the elastic analysis of
rectangular and curved plates with opposite simply supported ends. The formu-
lations involve transverse shear deformation which is included in the analysis
by discarding the Kirchoff’s normality hypothesis and specifying independently the
transverse displacement and normal rotations of the plate.

Finite Strip Formulation of Rectangular Plates

A detailed description of the ingredients required for the implementation of
the finite strip method in the analysis of plate bending has been given by
Cheung [ 1]. The essential steps involved in deriving the stiffness and load matrices
of a rectangular finite strip in which the effects of transverse shear deformation
are considered, are now given.
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Fig. 1. Rectangular finite strip.

Figure 1 shows a typical finite strip with three nodal lines. The deformation of the
plate is defined in terms of the transverse displacement w, and the rotations 0,
and 0, of the normal to the reference xy-plane. The variables w, 8, and 6, are
independently specified so that plate normals are not constrained to remain normal
during deformation as in the classical thin plate theory. This permits the plate to
experience transverse shear deformations although the transverse cross-sections
of the plate do not warp out of their plane during deformation.

The displacement vector at any point (x, y, z) of a simply supported strip can
then be written in series form as [4]

20 n l
U=-—zy 2 ;0L sin >
15145 b
o0 n l
v==z3 3N 0 cos - (1)
0 n l
= Z Z sm%y

where n denotes the number of nodal lines per strip; and the vector of the nodal-
line displacement amplitudes is prescribed for the [** harmonic as

o 1 ! T
{61} _"{Wi’ exi’ e)?l} (2)

The shape functions N; are simple Lagrangian interpolation functions cor-
responding to those of an n-noded beam element. In this paper only parabolic
shape functions will be considered for which

n=3 N, =—3s5(1—s),N,=1—sand Ny =13s(1 +5) (3)
At y =0 or y = b we shall always have
ov 0
W=Hl=—=
oy

which corresponds to simply supported boundary conditions.
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For orthotropic situations the constitutive relation is given by

50,
er _Dx Dl 0 0 0—| (_g
00,
, Dy D, 00 0 |-
50 58,
M,»=|0 0 D, 0 01| —-[—=+2=
’ ’ (Sy SX)
ow
Q. 0 0 O S, 0O ——0,
Ox
ow
0 J 0 0 0 0 S, S—y_ey )
or (M}y=[D] ¥ ¥ [B]{8=[P] ¥ [B]1[8']=[DP][B] {3} (5b)
I=11i=1 I=1

where the strain submatrix [ B] is given by

] _ !
[B] = [B!] sin %y+ [B] cos %y (62)
_ [ N. 0
with [Bi] = | 0 _ %
Ox
It
0 0 °N
b 13
0 0 0 (6b)
SN, N 0
o0x f
0 0 0 |
and [B]=[0 0 0 ]
0 0 0
] :
0o Ty o _ON (6¢)
b ox
0 0 0
N0 N
i b i i J

With the strain and property matrices known, the stiffness matrix of the strip can
be calculated from the well known relationship [ 5]

[k]={[B]" [D][B] dxdy (7a)
in which a typical submatrix of [k] linking harmonics I and m is given by
[k’"’] =_[ [B’]T [D][B™] dxdy (7b)
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The integration 1s carried out over the area of the strip. It is done explicitly
in the longitudinal direction but it might be necessary to perform it numerically
across the width of the strip. In the examples presented a 2-point Gaussian
integration rule has been used for this purpose. It will be noted, however, that
for the exact integration of equations (7) a 3-point Gaussian rule is needed; but in
accordance with the recommendations of reference [ 4], a lower 2-point rule has been
adopted in order to improve the strip performance and to eliminate the spurious
shear effects inherent in this type of formulation. Numerical integration also
facilitates the treatment of variable thickness [4].

The loading on the plate must be resolved into basic series function in the
longitudinal direction. For instance, a distributed transverse loading of intensity ¢
can be expressed in a series form as

g= Y q'sin - (8)

The consistent load vector corresponding to this loading can be obtained from
the virtual work principle [ 5] as

[
{F'} = —§[N,,0,0,N,,0,0,..]" ¢ sin 2 %’dxdy 9)

for the I** harmonic.

Extension to Curved Plate Situations

The formulation can easily be extended to deal with curved strips generated
by sweeping the section along a circular arc as shown in Figure 2.

Fig. 2. Curved finite strip.
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The variable co-ordinate y is replaced by an angle A and the span b by an
angle o, and the displacements are described by equation (1} now interpreted in
polar co-ordinates as follows:

ool n l 7\‘
u=-z 3y ZNiG,’isinjc——
I=1i=1 o
v=—z ) ZN,-B,’icosln—)L (10)
i=1, p= o
o] R l ?\’
w= Y % N;wisin gl
I=1d=1 o

The constitutive relationship has also to be changed into polar co-ordinates,
and for orthotropic situations it becomes

(M, "D, D, 0 0 07 L
or
1 80
M, D, D, 0 0 O —;(er—gk—t
1760, &8
Mn ;=10 0 Dx 0 O ——( +r J—Gt (11)
F\ L or
8
0, 0o 0 0 s o0&y,
or
1 6w
o J Lo o o o s]l -6 )

The strain submatrices [ B!] and [ B!] therefore become

_ N SN,
Bl =70 - 0
[ ] or
o M
r ro.
0 0 0 (12a)
sl N, 0
or .
0 0 o |
and
[Izif] =0 0 0 T
0 0 0
In ON: Ni
0 ——N, ——+ —
ro or I3 (12b)
0 0 0
In
| —N; 0 — N; i



164 A.S. MAWENYA

Numerical Examples

In order to verify the accuracy of the formulation, a uniformly loaded simply
supported square sandwich plate having flexural and shear rigidities of D and
100D

3
a2

respectively, is first considered. Because of symmetry only a half of the

plate divided into one, two and three strips is analysed, with the strips running
parallel to the y-axis. Results of the maximum deflections, shearing forces, bending
and twisting moments are given in Table 1, for various numbers of strips at
different harmonic terms. It can be seen that the results converge rapidly as both
the number of strips and the harmonic terms increase. The solution obtained using
3 strips with 4 harmonics agrees closely with that given by PLANTEMA [6].

Table 2 shows a convergence study involving a thin, isotropic, simply supported
square plate also analysed using one, two and three longitudinal strips.

Table 3 shows a study of a uniformly loaded, orthotropic, simply supported
square plate analysed using two strips in a symmetric half of the plate with four
harmonic terms. Two cases of orthotropy were considered with the stiffness rigidities
given in Table 3.

Table 1, Maximum deflection, moments and shearing forces for a square simply supported sandwich plate
under uniform loading.

No. No. Central Central ber;ding Twisting Shfariillg fc(l)rces
of of deflection MOmEN1s moment at mid-cdges
strips | harmonics |y | (M) | Meae | Mo | ©@mas | (@
1 1 0.00495 0.0577 0.0549 0.0319 0.487 0.242
27 00486 0562 0503 0336 460 278
3 .00487 03564 0512 .0339 468 287
4 00487 03563 .0509 .0341 464 291
2 1 0.00489 0.0502 0.0520 0.0309 0425 0.244
2 00479 0487 0475 0326 387 288
3 .00481 0491 0485 .0329 398 304
4 .00480 0489 0481 .0331 393 312
3 1 0.00489 0.0496 0.0518 0.0305 0.401 0.244
2 00479 0481 0473 .0322 359 288
3 00480 0484 .0483 0326 373 304
4 00480 0483 0479 - .0327 367 312
Exact solution [6] 0.00480 0.0479 0.0325 0.338
. qa*
Multiplier o ga’ ga® qa




Table 2. Central deflection, moments and edge shears for an isotropic, square, simply supported thin plate

under uniform loading

THE ANALYSIS OF THIN PLATES BY THE FINITE STRIP METHOD

(n=03, £=0.01, total number of harmonics terms = 4)
No Central Central bending Shearing forces at
of denactiog moments mid-edges
tri "
s rlps max (MX)I'IIBX (My)max (Qx)maxl (Qy)max
1 0.00415 0.0563 0.0509 0.315 0.291
2 0.00407 0.0489 0.0481 0.328 0.312
3 0.00407 0.0482 0.0479 0.332 0.312
Thin plate
solution [ 1] 0.00406 0.0479 0.338
qa*
Multiplier - qa® qa

! Values interpolated from those obtained at the integration points.

Table 3. Central deflection and moments for an orthotropic, square, simply supported plate under
uniform loading. '

Central deflection wy,,, (M Jmax (M) nax
Source
4 B A B A B

Present '
solution 0.00153 0.000633 0.0178 0.00812 0.0774 0.0991
Ref.[1] 0.00153 0.000633 0.177 0.00833 0.0777 0.0995
Exact
solution [7] 0.00152 0.000633 0.178 0.00838 0.774 0.0993

. qa*
Multiplier E A qa’® ga’®

D,

Elastic properties
Case A: D, =5.0625D,,D, = 0.375D, D,, =09375D,, S, = §, = c0.
Case B: D,=16D,,D; =3D, D,,=3D,, S, =5,= .

Conclusion

Finite strip formulations which involve transverse shear deformation have been
presented for the elastic analysis of rectangular and curved plates. The examples
presented demonstrate the accuracy and versatility of the formulation.
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Nomenclature
a,b width and length of rectangular plate.
D flexural rigidity of isotropic plate.
D D,. D, late rigidities in flexure and torsion
D,, D, D,, RS '
h plate thickness.
M, ,M, M
X » xy & 5 "

M, M, M, } bending and twisting moments.
q distributed transverse loading.
g"’ g’y } transverse shearing forces.

¥ t
1t radial and tangential directions, respectively, of curved strip.
s local natural dimensionless co-ordinate.
S S e .
S" S” } transverse shear rigidities of an orthotropic plate.

P D ,
u, v, w components of displacement parallel to the x-, y- and z- axes

respectively.

X, ¥z rectangular co-ordinates.
o angle subtended by curved plate.
9,, 0 : :
Gx e” } normal rotations of plate cross-section.

ry >t
A angular co-ordinate.
\Y Poisson’s ratio of isotropic material.
{F} nodal force vector.
{M} stress resultants vector.
{8} displacement vector.
[B] matrix connecting strains and displacements of a strip.
[D] property matrix.
[£] stiffness matrix of strip.
[N] [Ny, N3, Nj,...] shape function matrix.

Practical Application and Scope

The formulations presented in this paper extend the finite strip method to the
analysis of plate structures which undergo considerable transverse shear deformation
and cannot therefore be treated by the conventional finite strip approach [1, 2] which
is based on customary thin plate theory. Examples of such structures occur
frequently in bridge construction. They include sandwich plates and slabs bridges
with relatively high depth to span ratio, as well as voided slabs and multicell
bridge decks that can be idealized by an equivalent homogeneous material. These
structures are being used in increasing numbers in modern highway systems
and the application of the finite strip technique to their analysis is of particular
interest.
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The formulations presented are such that their accuracy is superior to the con-
ventional finite strip and are likely to be adopted as standard in the analysis of
straight and curved bridge decks. However, in order to derive their full benefits,
care must be taken in programming so as to utilize all possible short cuts and
reduce computing time. Reference 4 discusses some useful short cuts that can be
achieved in the practical implementation of simply supported finite strips.

Although the present formulation is restricted to simply supported end conditions,
Fourier transforms corresponding to a variety of other boundary conditions could
be adopted. Also the treatment of intermediate supports follows well established
procedures which could be readily incorporated into the formulation.
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Summary

Finite strip formulations are developed for the elastic analysis of transversely
loaded rectangular and curved plates with opposite simply supported ends. The
formulations involve transverse shear deformation which is included in the analysis
by discarding the Kirchoff’s normality law used in classical thin plate theory.
Numerical examples are presented which demonstrate the applicability of the
formulation to thin, thick and sandwich plates.

Résumeé

Des formulations par bandes finies sont développées pour 'analyse élastique
de plaques rectangulaires et courbes chargées transversalement et supportées aux
extrémités. Les formulations comprennent le cisaillement transversal qui est compris
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dans le calcul en laissant la loi de Kirchhoff de c6té telle qu’elle est appliquee
dans la théorie classique des plaques minces. Des exemples numériques sont pre-
sentés, montrant le champ d’application de la formulation sur des plaques minces,
épaisses et sandwich.

Zusammenfassung

Fir die elastische Berechnung transversal belasteter rechteckiger und ge-
kriimmter Platten mit entgegengesetzten einfach aufgelagerten Enden werden finite
Streifenformulierungen entwickelt. Die Formulierungen schliessen transversale
Schubdeformation ein, die in der Berechnung unter Ausserachtlassung des Kirch-
hoff’schen Normalititsgesetzes inbegriffen ist, wie dies in der klassischen Theorie
diinner Platten verwendet wird. Es werden numerische Beispiele angefiihrt, welche
die Verwendbarkeit der Formulierung fiir diinne, dicke und Sandwichplatten
belegen.



Hybrid Yield-Line Finite Element Analysis

Une analyse hybride des lignes de rupture moyennant la méthode des éléments

finis
Eine hybride Bruchlinien-Analyse mittels der finiten Elementenmethode

A.T. RACTLIFFE
Department of Naval Architecture and Shipbuilding, University of Newcastle Upon Tyne

Introduction

Plastic yield-line analysis has proved a powerful tool in the limit design of concrete
slabs under lateral loading. However it is of less value in the design of steel plates
because their generally more slender proportions induce membrane stresses. These
increase the load necessary to cause a given deflection and in many cases the limiting
load may be considerably greater than that estimated from plastic bending alone.
Thus yield-line design would be wasteful of material.

Rigorous large deflection elasto-plastic analysis is time-consuming and incon-
venient. CLarksoN [ 1]and later Youna [ 2] described simplified approaches but these
only consider infinitely long plates. Empirical formulae have been proposed [3]
for plates of finite aspect ratio. These usually employ the concept of a limiting
lateral load associated with a maximum allowable permanent set. JAEGER [4]
developed an approximate method of analysis which involves estimating the strength
of an equivalent infinitely long plate whose thickness is given by a conversion
factor. Hookk [ 5] presented the first genuinely two-dimensional approximate analysis
and published charts from which load-deflection curves may be obtained. A rigid-
plastic method has been developed by Jones [8] but in this as in all previous
theoretical work except Young’s the plate edges are considered to be completely
restrained from in-plane mouvement or pull-in. Moreover, the effect of in-plane
loading has not been considered.

These deficiencies are remedied by the present paper which describes a completely
new method. In this, the lateral load is estimated as the sum of a first component
due to plastic bending action alone calculated by orthodox yield-line analysis, plus
a second component due to the membrane stresses in each of the elements bounded
by the yield-lines. These clements are assumed to remain flat so that all bending
is confined to the hinges. The plane stress is assumed to be uniform in each
element and virtual work or strain energy principles used to analyse the plate.
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Beam with End Restraint

The principle of the method is most easily explained in terms of a simple example
which is relatively trivial, a rectangular beam of unit width, depth ¢, length b, whose
ends are clamped and restrained from inward movement. Under a uniform lateral
load of p; per unit area, simple plastic theory shows that

_16M,
-—

P1

where M, is the full plastic moment, which may be modified by the presence
of axial stress. Assuming that the two halves of the beam remain straight, the
extension in each is 82/b, (see Fig. 1). This causes a tension of 2tE8?/b2. By virtual work

B> b

_ 16Et8®
l.e. p2 = b4

1 2tES* | 28
Epzb = 2

The essence of the author’s proposal is that the limiting load is given by the
sum of p, and p, where & is some arbitrary standard of acceptable defiection.
Clearly & doesn’t represent the actual deflection since elastic bending is ignored
in the analysis. It does however give some indication of the amount of plastic bending.
Its principal virtue, whatever value is actually used as a design limit, is that it
provides a consistent criterion of performance for the gamut of design parameters.
(The Perry-Robertson method of strut design adopts a similar heuristic approach in
its treatment of initial imperfections). When we consider the limiting deflection in
a plate, representation at one point is inadequate owing to the variety possible in the
shape of the failure mechanism. A more significant parameter is the root of the
mean square deflection denoted by 8. Using this parameter, p, for a beam becomes

Et3° -
Py = 83b ‘ since 0 = 8/\/5

4

A reasonable value for 3 might be b/100.
Now the plastic moment is affected by the presence of any axial stress and is
given by standard plastic theory as

F,\? 6 E5*
Mp=%:6yt2|:1—(?y) :Iwhere F,= X

y

When the axial stress reaches the yield point, M, vanishes. At the same time the
membrane action becomes plastic, and assuming no work-hardening, further
deflection causes a reduction in the effective modulus of elasticity so that

E'=cyE/[F,
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Replacing this reduced modulus in the expression for p, we have
ps = 13-8 6, 0t/b?
which represents the post-yield load curve when
oy <6 E(5/b)?

The deflected shape may not be very realistic for such an extreme condition, but
the use of an RMS instead of mid-span deflection ought to improve correlation
with measured data since RMS values are not so shape sensitive.

{o be
AN TY
@ 7 4 N @
2 ® N
s Yy N
\ ©) 7 N©
® '~ 7 ®
N/
N g
—o— -
a

Fig. 1. Basic geometry.

The Rectangular Plate

The principle of analysis is exactly the same as for the beam but the calculation
becomes more complex because membrane stresses are generated even when there
is no external restraint on inward movement at the boundaries. The yield-line
analysis giving p; uses the square Johansen yield envelope rather than the more
realistic yield criteria of Tresca or von Mises. However it is considered that the loss
of accuracy involved in this assumption is not sufficient to justify complicating a
method, one of whose virtues is simplicity. The reader should see Ref. 6. for further
discussion of the yield-line method.
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The analysis of the membrane action starts by considering the finite elements
formed by the pattern of hinge-lines. The full lines in Fig. 1 show a typical
pitched roof mechanism. The discontinuous lines show a further division so that
all elements are triangular. The in-plane displacements 4, B, C and D represent
the maximum number of degrees of freedom with free edges, bearing symmetry in
mind. Assuming uniform strains in each element and taking into account the
foreshortening due to deflection 6 at the ridge line, the strains are

. 82 +B—A A
* e ¢
=27C in element 1
nyz J
2B
g, =—
' a
4¢cD 4CEa— 282
& = Cb + C(ZZ C)+ 2 in element 2
a a
4Ba—c) 24 2(C-D)
yxyz—_——‘—_——i_—
ab b a J
— A )
% la—c
= 2D + 26 ( in element 3
Sy— b b2
Yay =0 J

These three equations enable the stresses to be calculated. The displacements
A, B, C and D are evaluated by solving the simultaneous equations of virtual work
associated with each degree of freedom. A fuller analysis is given in Appendix A.
The virtual work associated with A4 is always zero since this point is always free.
However, if there are in-plane stresses externally applied at the edges, these will
contribute to the virtual work associated with B, C and D. Thus for each state
of in-plane [oading there will be a different solution to the four unknown dis-
placements. In addition there are also various combinations of restraint on edge
displacement. Thus if C=D, all edges are free to move but remain straight,
reducing the number of simultaneous equations to three. If all edges are restrained
against inward movement, B, C and D are all zero, a situation which might arise
if the plate were heavily framed. The applied lateral load for a given value of §
can also be calculated by virtual work in terms of the displacements.

Solution for these displacements is straightforward and results have been com-
puted for a large number of combinations of aspect ratios, boundary conditions,
in-plane loading and proportions of finite elements (as defined by the parameter ¢
in Fig. 1). These results were checked by hand calculation of some simple cases.
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Yielding occurs in the membrane according to the von Mises criterion when

the strain energy of distortion reaches a limit:

02 — 6,0, + oF + 3¢, = 0y?

The three elements may not yield simultaneously, and for the sake of simplicity
the mean strain energy of distortion is calculated for the whole plate in terms of
A, B, C, D and §. This provides a single parameter G, the so-called effective
stress which can be compared with oy. If G > &, then general yielding is established
and E must be reduced by a factor oy/G in exactly the same way as already shown
in the beam example.

Now the pattern of elements which gives rise to the lowest lateral load with
respect to membrane action may not correspond with the pattern of plastic hinge-
lines giving rise to the lowest load associated with the yield line mechanism. Thus in
order to estimate the limit load, strictly we should find the value of ¢ for which the
sum (p; + p,) is a minimum. This is quite feasible, but tedious to the designer who
wants rapid results. Fortunately, p; is not very sensitive to the value of ¢ (see Fig. 2)
and for the sake of simplicity, we can estimate the limit load as the sum of the
minimum loads associated with plasticity and membrane action separately, i.e.

(P min + (02 )min

Even though the corresponding values of ¢ may differ, the error in load will
not be large and the strength will in any case be underestimated. The yield-line
load (py)mia 18 obtained from Fig. 3. High in-plane stresses will modify the effective
plastic moment in each direction and it may be desirable to evaluate p, for an
appropriately affine isotropic plate as follows. If the plastic moment per unit length

T 4 I
8
P, 30+
)
mi——
Py 204
L 4
Py P2
1{b\2 b\ (B\3
o (%) (%) )
10
-2
4 6 % .8
1 1 i

Fig.2. Variation of p, and p, with ¢/b. b/a=0.3, edges
clamped and straight.
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Fig. 3. p; given by yield-line analysis:
(a) All edges restrained.

Fig. 4. p, (full line) and & (discontinuous) due
to membrane action. No in-plane loading.

(b) Long edges restrained, short edges straight. (a) All edges restrained. )
(¢) All edges straight. (b) Long edges restrained, short edges straight.
(d) Long edges unrestrained, short edges straight. (c) All edges straight. )

(d) Long edges unrestrained, short edges straight.

of plate (i.e. across the width) is M, and that per unit width pM,, then the
socalled affine isotropic plate with M, in both directions has a length a/\/ﬁ.
According to Johansen’s Theorem, p, is the same for this plate as for the original
one. It is shown in Appendix B that under the influence of in-plane loading and

membrane action the plastic moment across the width is obtained by replacing

Gyz - 62

,\/ FyZ oo GyZ _ 62
At the same time the aspect ratio b/a is factored by \/a i
i/I'Ty2 + G'Yz = 62
sz + (5y2 - 62
Figs 4 to 7 summarise the values of (p,),;, for membrane action. These have
been non-dimensionalised and Poisson’s ratio taken as 0.3. It is clear that for
a given value of &/b, the limiting lateral load increases under the influence of
tensile in-plane forces (negative sign convention). Conversely the lateral strength is
reduced by the application of compressive in-plane loading. A negative total lateral
load implies instability and in such cases the in-plane loading is excessive and
either it must be reduced, or the limiting value of 8/b allowed to increase. General
yielding is determined by the value of G given in Figs. 4, 5 and 8. These curves were
found to depend only on the type of boundary restraint and consequently it is

possible to use the family of curves in Fig. 8 for any general in-plane loading.
Examples of the use of these diagrams are presented in Appendix C.

oy by oy’ =
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Fig. 5. p, (full line) and ' {discontinuous) with Fig. 6. (a) p, with all edges straight, F,=0.
in-plane loading. Long edges restrained and short
edges straight.
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Fig. 6. (b) p, with all edges straight, F,,=0. Fig. 6.(c) p, with all edges straight, F,=F,.
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Fig. 6. (d) p, with all edges straighit, F,— F,.
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Fig. 7. (b} p, with short edges straight, long edges

unrestrained, F,=0.
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Fig.7.(a) p, with short edges straight, long edges
unrestrained, F,=0.
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Fig.8. oforany combination of in-plane ioading,

short edges straight.

F?=F2+F?—F.F,+ 3F2,

(a) Long edges straight.

(b) Long edges unrestrained.
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Effect of Initial Imperfections

The two principal mmperfections in welded steel plating are initial bowing
(“hungry horse” phenomenon) and residual stresses. The latter can be estimated
approximately [ 7] and can be idealised as uniform compression. A corresponding
adjustment to F, or F, allows for their effect on p,.

Initial deflections are rather more difficult to quantify but if some nominal figure
can be placed on the initial value of &, p, should be reduced by the load
associated with §,. In other words, the reduced value of p, is

P2=D2 [1 - (60/3)3]

Initial imperfections do not of course affect p;.

Conclusion

The method outlined in this paper enables the designer of steel plating to
exploit the merits of yield-line analysis without sacrificing the reserve of strength
resulting from the membrane stresses. The limiting lateral load is the sum of
(P1)min and (p2)mn associated with plastic bending and membrane action in
relation to a nominal limiting lateral RMS deflection 5. Non-dimensional curves
enable the limiting load to be rapidly estimated for rectangular plates with any
symmetrical boundary conditions. The effect of membrane stress on the plastic
moments, and the behaviour after the onset of general plasticity are both considered.
Asymmetric boundary conditions and more complex shapes and loading can be
analysed in exactly the same way, and while the computation may take slightly
longer as the number of degrees of freedom increases, the method preserves ifs
essential simplicity.

Although the effect of in-plane loading is allowed for, it is important to
appreciate that this is not a buckling analysis but merely a means of estimating
lateral strength, on the basis of a limiting lateral deflection. If this limiting lateral
load is positive and increases with increasing deflection then buckling analysis is
unnecessary since the maximum load is reached after the allowable deflection is
exceeded. If the lateral load is found to decrease with increasing deflection, then
design is impossible on the basis of a limiting deflection, but a more conventional
buckling analysis is necessary. In-plane strength is then defined on the basis not
of deflection but maximum load.

Appendix A: Finite Element Analysis of Membrane Action

The stresses in each of the three elements are calculated by Hooke’s Law in
terms of 4, B, C, D and & from the expressions for strain given in the main part
of the paper. The virtual work associated with 4 is obtained by integrating the
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product of each stress, and corresponding unit strain obtained by putting 4=1
and B=C=D=0.

bc[ -3 (B-4) 2VCJ—(1(1—V)[M—%+ c-p}

2¢e3 c? bc ab a
A 2vD  2vé?
b =0
T [,}a-ﬁ & * b2:|

In the case of B, C and D there is also work done by the stresses F, and F
(compressive positive) applied at the boundaries. For B, C and D respectively:

2 _ B Low 2
bc|i5 +(B A)+2VC}+2b|: 2ch+2vC(7a c)+v6:|

y

23 2 be " "o ab b2

2B(fa—c) A C—-D| —2Fb(1—V*)
+2(1—v) (%a-c)[_zb —3t :|= -

4 2 2v(B- " ta— 2 2yB
bc|: C v3 2v( A):|_{_2(1 _c)[4cD+4C(-za c)+28 v]

T T b =N ab T
2Bla—c) A C-D| - F(1—v?)a
b(1—v)| 22 _4 -5
+H V)[ ab b+ a E
4¢D  4C(la—c) 28> 2vB 2B(la—~¢c) A C-D
2 2 _p(l—y)| 222242
C[ab+ g Tt |

2D 28* vA —F,(1—=v*)a
+2(%a—c)[7+ pr T } z B

Fd—C

The net work done-by any shear F,, applied at the boundaries is zero, assuming
the displacements remain symmetrical. This is certainly so for b/a=1 and 0, and
there is no reason to expect a significant effect for intermediate aspect ratios.

Putting b/a=a, c¢/b=y, v=0.3 and collecting terms together we obtain the
four simultaneous equations:

(Bt i Ol ) ) )

5[ 1
~ 22-06] "
(‘; [};+ ———1'4(0'2* W)] - (‘g) E—(Jr 20+ ~——2'8(0'i_ W)Z} = (% )[1.9 —2.6ocy:| _
- (% )[2.6w/ _ o.7j| _ i_z[o.e + %§ N ;(88%} )

o3 a2
3

D 5*[03 4(05—ay)  09F,
- (5 )[8y(0.5~0w) - 0.7cx] = B—Z[T + . + ocE(S/b)z] (3)
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(2o s

D , 4(05-ay)]_#[2  O9F,
_(‘5 )[W T _T—] ] bz[& ' aE(S/b)Z} &

These may be solved for 4, B, C and D for each given value of F_ and F,
The lateral load p, may then be calculated by virtual work:

p,b(1—v*)(za—3¢) [ & 8a 8¢ 4v b b 4y
gt 2 P OE o 2yl 24
Etd 0 203 T 4 p |7 c2+b
2v 8(Ra—c)| 4aD

cl == 2
* ‘:c TR ]+ b2

Substitution of the solutions to the simultaneous equations yields an expression
for p, proportional to §3. Now the RMS deflection § is given by

abd? = §*[2bct + b(a—2c)3]

Hence:

P, 17.32 18 4 L7 B\t
EQEP (15 - ay)(1 —oq ) {w am *‘( b)[” «ﬂ] *(z))[yz ¥ 12}

e

Appendix B: Effect of Membrane Stresses on Plastic Moments

Consider a hinge-line parallel to the longer side. The plastic moment per unit

length is
c
Li2gh| 1= 2
¢ Gy[ (@)]

where G is the stress at which the material yields in the y-direction. If there are no
other stresses apart from o, then oy is the uniaxial yield siress oy. Otherwise, from
von Mises

oy’ =0y’ — 6, + 0,0, — 312 =0y*+ 0, — (6 —6,0,+ 0,7 +312)
Clearly, this expression will take a different value for each element, but for the sake
of simplicity we consider mean values. Thus the term in parentheses becomes
o7, while the mean of o, is F,. Hence

o'y =./0oy* +F,? -5

and M sltz[ ol ]
b3 2 2 _ —2
\/Gy +Fy -0

Similar expressions for the x-direction can be obtained by replacing F, by F,.
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Appendix C: Examples of Plate Analysis

1. What load can be carried by a 4 mm thick mild steel plate 1 mx 0.8 m, near
themiddle ofalightly framed grillage? Take oy =24 kgf/mm? and E = 20,000 kgf/mm?.
Aspect ratio is 0.8 and all edges are straight so that from Fig. 4¢ '

5\2
o=60E| -
o-oef3)

With a limit of 0.01 on §/b, 5 =12 kgf/mm?
Since ¢ < 6y the membrane remains elastic.

=80E ! 83—*8t nes/m?
P2= s hp) = on m

The effective yield stress for the plastic moment

oy=./0y’ == 12\/5 kgf/mm?

Since all edges are clamped the yield—line load is given by Fig. 3a.

t 2
p1 =98 G’Y(E) = 5.1 tonnes/m?

.p=13.1 tonnes/m?

If a higher limit of 0.02 were placed on /b, G becomes 48 kgf/mm?. The plastic
moment vanishes and the membrane action becomes plastic. The modulus is reduced
to 2§ E and hence p = p, =32 tonnes/m>.

2. The flange of a box girder is 1 m wide, 10 mm thick and framed transversely at
2.5 m intervals along its length. It is subjected to an in-plane compressive stress
F,=20 kgf/mm? due to bending and a shear stress F,, =15 kgf/mm? due to torsion.
What lateral load can be sustained if the permanent RMS deflection is not to
exceed 10 mm? Take oy =45 kgf/mm? and E =20,000 kgf/mm?2.

The boundary conditions are taken as unrestrained and simply supported
along the sides and straight and clamped across the width.

F.,* + 3F2
v E(S/b)2 ~ = 16.4 kgf/mm?

From Fig. 8b and for b/a = 0.4, =233 kgf/mm?. Thus the membrane action remains
elastic.

Fs =10
E(®/b7
. ATEAS 2
From Fig. 7a p,= 23E .\ = —4.6 tonnes/m

For yield-line action &y= \/ oy> — G2 =30.6 kgf/mm?
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2 _—2
o 0836

Coefficient of orthotro =
. oy # \/sz—l—GYz__G

Affine aspect ratio= b\/;/a =0.365
From Fig. 3¢ p; = 11.1 tonnes/m?

Thus the net lateral limiting load is p= 6.5 tonnes/m?

Since p, is negative it is pertinent to ask whether this condition is stable. Repeating
the calculation for 3/b=0.011 instead of 0.01 shows that the lateral load increases to
7.0 tonnes/m?. Thus the strength is limited by deflection, not by buckling. However, if
there were no lateral load a reduced buckling strength would probably result from
a different mode of deflection.

Notation
a plate length in x-direction.
b beam length, or plate width in y-direction, b<a.
¢ plate thickness.
0 central deflection.
S RMS deflection.
Py UDL per unit area due to bending action.
Pa UDL per unit area due to membrane action.
F.F, mean effective stress applied to respectively short and long sides, compressive
positive.
G effective von Mises stress.
Oy yield stress. o252
oy reduced yield stress in y-direction = r

}'7},2 +0-y2_62

) ) F 2 2_ =2
coefficient of plastic orthotropy = 5 t GYZ S .
F.2+ 0642 —52

E Young’s modulus.

E reduced modulus = 215 if 6 > oy.
o

Definition of boundary conditions:

a) Bending action.
(i) simply-supported.
. {ii)  clamped (i.e. moments developed).
b) Membrane action.
(i) restrained (in-plane movement suppressed).
(i)  straight (pull-in allowed, but edges kept straight).
(iii)  unrestrained (edges warp under uniform edge stress).
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Practical Relevance

The practical value of the proposed method is that it provides a means of
analysing the strength of steel plating which is almost as simple as conventional
plastic yield line analysis, but by allowing for membrane stresses is not so wasteful
of material. At the same time the complexities of general loading and boundary
conditions are simplified so that a more rational and hence reliable design can be
made. Appendix C considers two examples.
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Summary

The principal objection to Johansen yield-line analysis of steel plating is that
significant membrane action is neglected. A simple technique of analysing this effect
in isolation is described. Curves are obtained which can be used directly in the design
of rectangular plates under uniform lateral load with various combinations of in-plane
loading and boundary conditions, on the basis of a limiting lateral deflection.

Résumé

L’objection principale contre 'analyse de la ligne de rupture pour plaques en
acier est due au fait que I'effet caractéristique de membrane y est négligé. Ici on
présente une méthode simple pour calculer cet effet comme facteur isolé. On obtient
des courbes pouvant étre utilisées & projeter des plaques rectangulaires sous charge
uniforme latérale, avec différentes combinaisons de charges dans le plan et conditions
limites, sur la base d’une déflexion limite latérale.
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Zusammenfassung

Der hauptsichliche Einwand gegen die Bruchlinien-Analyse fiir Stahlplatten
besteht darin, dass die charakteristische Membranwirkung vernachlédssigt wird. Hier
wird ein einfaches Verfahren sur Berechnung dieser isoliert auftretenden Wirkung
beschrieben. Man erhilt Kurven, die sich direkt zum Entwurf rechteckiger Platten
unter gleichformiger seitlicher Belastung mit verschiedenen Kombinationen von
Randlast und Grenzbedingungen auf Basis einer begrenzenden seitlichen Kriimmung
verwerten lassen.
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The Nodal Section Method for the Analysis of Box Girders
La méthode de section nodale pour I'analyse de poutres en caisson

Die nodale Querschnitts-Methode zur Berechnung von Kastentrégern.

K.C. ROCKEY H.R. EVANS
Professor and Head of Department, Department Lecturer, Department of Civil and Structural
of Civil and Structural Engineering, University Engineering, University College, Cardiff.

College, Cardiff.

1. Introduction

The Nodal Section Method has been developed to provide a relatively simple
method of analysis for both single-span and continuous box girders in which the
geometry of the cross-section varies along the length of the girder. Although
the method assumes a simplified structural behaviour in order to reduce the
amount of computation required, it does in fact provide results of a high degree
of accuracy. It is anticipated that, since the amount of computation involved is
relatively small, the method will prove to be useful during the design of a box
girder, when several analyses may be necessary in order to investigate the effect
of changing various dimensions. In such a situation, the use of the Finite Element
Method which involves extensive calculations proves to be prohibitively expensive.

The Nodal Section Method is based on a method of analysis previously
applied to folded plate structures. Indeed, a box girder is only a particular type
of folded plate structure, in which the plates have been arranged so as to form
a closed section, as shown in Fig. 1. In recent years much research has been
devoted to the analysis of folded plates and two main methods have been
established, these being the “Elasticity Method” [ 1, 2] and the “Ordinary Method”
[3, 4]

Of these two methods, the Flasticity Method is the more accurate and this
method has, in fact, already been adapted to box girder analysis by ScoORDELIs
[5, 6], this method being termed the “Folded Plate Method”. In this method,
each component plate of the box girder is considered as an individual element
and a stiffness matrix derived for it, the individual stiffness matrices for the plates
then being assembled together as in a matrix stiffness method of analysis. The
bending of each plate element normal to its plane is analysed by plate flexure
theory, and its in-plane bending is analysed by plane stress theory.
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Fig.1. Typical folded plate and box girder
cross-sections.

These classical theories necessitate the representation of the applied loading
by a Fourier Series, with the result that the computational effort required is still
considerable, although very much less than that required in a full Finite Element
solution. The Folded Plate Method is, however, very much more restricted in
its range of application than the Finite Element Method and can only be applied
to box girders in which the geometry of the cross-section remains constant all along
the length. Also, in its basic form, the method can only deal with simply supported
girders, but it has been extended by Scordelis to deal with girders spanning over
intermediate supports, provided that the extreme ends of such girders still remain
simply supported. However, since this extension of the method is based on a
superposition technique this significantly increases the solution time required.

The Ordinary Method of folded plate analysis is an approximate method in
which a simplified structural behaviour is assumed in order to reduce the amount
of computation required in obtaining a solution. The present authors have
previously shown [7], that, provided no concentrated loads are applied perpen-
dicular to the planes of any of the plates, the errors introduced by these simplifying
assumptions become very small provided that the length/width ratio of each com-
ponent plate in the structure exceeds 3. Now, for the majority of box girder
bridges, the dimensions of the component plates will be in accordance with
this requirement.

ScorpeLis [ 6], has already proposed a method, known as the *Finite Segment
Method ”, based on the assumptions of the Ordinary Method. In the Finite Segment
Method, a process basically similar to that of the Finite Element Method is
followed, each plate being divided initially into a number of rectangular elements
which are subsequently assembled together. However, the simplifying assumptions
of the Ordinary Method lead to much simpler element stiffness matrices and to
many fewer nodal degrees of freedom and consequently to a much more economical
solution process than the Finite Element Method. The solution time required by
ScorpeLis’ Finite Segment Method is of the same order as that required by his
Folded Plate Method, but has the advantage of being able to deal with any support
conditions. However, in the formulation as presented by ScorbpeLis, the Finite
Segment Method is restricted to the analysis of box girders in which the geometry
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of the girder cross-section remains constant all along its span, the girders being
loaded by longitudinal line loads only. Furthermore, no provision is made in the
method for dealing with concentrated loads applied normal to the planes of the
plates.

The Nodal Section Method is similar to the Finite Segment Method in that
it is based on the Ordinary Method of folded plate analysis but its formulation
is completely different and leads to further substantial savings of computer storage
and time. The Nodal Section Method is not based on a conventional matrix
stiffness approach but, instead, involves analysing the girder in a number of simple
steps, similar to the steps that would be followed if the analysis was being carried
out by hand. In fact, a hand analysis by the Nodal Section Method is a feasible
proposition for many simple girders [8]. The advantages of the Nodal Section
Method are that it can deal with various support conditions, makes use of a
Finite Element plate bending solution to enable concentrated loads normal to the
planes of the plates to be considered and, by employing an adaptation of a
procedure suggested by Jounson and Lee [9] for folded plates, can be applied to
the analysis of girders in which the geometry of the cross-section varies along the
span. It thus combines a simple solution procedure with a wide field of application.

In the present paper, the basic theory of the Nodal Section Method is presented
and results calculated by the method compared to theoretical solutions obtained
using the Finite Element Method and other existing methods of analysis.

2. Basic Theory

The Nodal Section theory is based on the Ordinary Folded Plate Theory in
which the only assumptions additional to those employed in a conventional elastic
analysis are the following:

1. The bending action of an individual plate normal to its plane may be represented
by considering a transverse one-way slab strip.

2. The in-plane longitudinal bending action of an individual plate is similar to that
of a beam spanning between the end diaphragms.

On the basis of these assumptions, the behaviour of a box girder may be
considered to consist of the action of a series of transverse one-way frames elastically
supported by a system of interconnected plate beams spanning longitudinally
between the supporting diaphragms. These frames only transmit shears and moments
in the transverse direction, this action being termed the “transverse frame action”,
while the plate “beams” only transmit forces in their planes, this action being
termed the “longitudinal plate action™ of the structure. This idealised behaviour
is illustrated in Fig. 2.

2.1. General Outline of Method

The transverse frame action is analysed by assuming each transverse frame to be
supported at its joints, as shown in Fig. 2. By applying the slope-deflection
equations it is possible to obtain the transverse moments acting within the frame,
together with the joint reactions Rg..Rp. The longitudinal plate action is then
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analysed by considering each plate to act as a beam spanning between the sup-
porting diaphragms, the analysis ensuring that the longitudinal strain developed at
the edge of each plate is compatible with the edge strain developed in adjacent
plates and that the corresponding longitudinal edge forces in adjacent plates are in
equilibrium as shown in Fig. 2. Furthermore, since the frame and plate systems
are considered to be interconnected at the joints, as shown in Fig. 2, then the
reactions of the frame system and the joint loads of the plate system must be
equal and opposite, and the joint deflections of the two systems must be identical.

Since the Nodal Section Method is to be applied to box girders in which the
geometry of the cross-section varies along the span, a transverse frame analysis is
carried out at a number of sections taken on the structure, as shown in Fig. 2 the
transverse frames being assigned a unit width in the longitudinal direction for
convenience. The transverse sections are termed “nodal sections” and for a tapered
girder, the frame taken at each nodal section will be of different dimensions and
each frame is analysed under the action of the external loading pertaining to that
particular nodal section. The reactions thus determined at each nodal section are
then applied in the negative direction as joint loads on to the plate system and the
longitudinal edge shear forces and strains set up in the plates at each nodal section
are calculated and made to satisfy equilibrium and compatibility.
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From the Nodal Section analysis, values of transverse bending moments,
longitudinal stresses and vertical and horizontal joint displacements are determined
at each nodal section. The basic method gives the values of these quantities at the
joints only, but values at positions across the width of the various plates can also
be determined by carrying out some additional simple steps.

Because equilibrium and compatibility conditions at the joints are only satisfied
explicitly at the centre line of each of the nodal sections, the accuracy of the
solution will vary with the number of nodal sections employed. It will be shown in
Section 5 that the rate of convergence to an exact solution is rapid and that
accurate results can be obtained with only a few nodal sections.

2.2. Special Consideration for Concentrated Loads

Further consideration must be given to the analysis of the transverse frame
system under the action of the external loading. A one-way slab strip is only a good
representation of the actual behaviour of a plate when the plate bends into an
approximately cylindrical surface so that the proportion of the external load
carried by longitudinal bending and twisting is negligible. This is so when the plate
has a length/width ratio greater than 3, provided that the lateral loading has a
reasonably uniform distribution in the longitudinal direction [7].

To deal with localised loading effects such as a wheel load on a top flange, the
out-of-plane bending of each plate subjected to concentrated loading must first be
analysed by the Finite Element Method. In this Finite Element analysis, the
longitudinal edges of the plate are assumed to be fully clamped and the edge
holding forces and moments are calculated. These fictitious holding forces are then
applied in the negative direction to the box girder as joint “loads” and the box
girder analysed by the Nodal Section Method.

Once the Nodal Section analysis has been completed, the results are then super-
imposed on to the initial Finite Element solution so that the fictitious edge holding
forces and moments are eliminated.

In bridge design, it is often necessary to calculate the bending moments set up
in the top flange in the locality. of the applied concentrated loading. The initial
Finite Element solution gives these moments, on the assumption that the longitudinal
edges of the flange plate are clamped. To obtain the true values of these moments,
another Finite Element plate bending solution of the loaded plate must be carried
out after the Nodal Section analysis has been completed. In this final step, the
deflections of the longitudinal edges of the plate, as predicted by the Nodal Section
Method, are imposed on the plate, which is otherwise unloaded. By superimposing
the results of the two Finite Element analyses, a complete picture of the moments
set up in the loaded flange is obtained. The steps in a complete solution of this
type are illustrated in Fig. 3.

The introduction of the Finite Element solution of the deck plates does, of
course, increase the overall solution time. However, it must be appreciated that in the
proposed procedure, a Finite Element solution is only required for those plates
that are subjected to localised loading, and the number of plates loaded in this
way is usually small compared to the total number of plates in the cross-section.
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Furthermore, these plates are only analysed for bending normal to their planes so
that only 3 degrees of freedom have to be considered at each nodal point instead
of the 6 degrees of freedom that would have to be considered at each node in a
full Finite Element analysis of the complete girder.

As an alternative to using the Finite Element Method, the edge holding forces
of the plates subjected to concentrated loads may also be obtained from design
tables [ 10]. The fictitious joint loads to be considered in the Nodal Section analysis
may thus be determined directly without any additional solution time being required.

2.3 Sway Correction

Since, as discussed earlier, it is assumed that the frame system is elastically
supported at the joints by the plate system, a situation is created in which the
displacements of the plate system are produced by the frame reactions, whilst these
reactions themselves depend partly on the plate displacements.

To overcome this problem, the Nodal Section analysis is divided into two parts.
In the first part, which will be called the “No-Sway Solution”, the box girder is
analysed assuming the joints of the frame system to be rigidly supported by the plate
system, whilst, at the same time, allowing the joints of the plate system to deflect.
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The resulting incompatibilities between the deflections of the slab and plate systems
are then removed by a subsequent “Sway Correction”.

2.4. Continuous Box Girders

During the longitudinal plate analysis, each plate is analysed as a beam of
variable cross-section spanning between the supporting diaphragms. If these beams
are statically indeterminate, as in the case of a continuous girder, then a matrix
approach is employed.

3. No-Sway Analysis

In this Section, the matrix formulation of the No-Sway analysis will be described.
The analysis will be presented in general terms, but in some cases the equations will
be written for the specific case of the typical structure shown in Fig. 4 to clarify
their form. Only an outline of the various stages in the analysis can be given in the
present paper, but greater detail of some of the steps has been included in earlier
reports by the authors [11].

Typical externally

apphed joint
suppori ——— moment
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Fig.4. Typicalstructureconsidered in the analysis.

3.1. Idealisation of Structure

Before the analysis can be started, the structural idealisation has to be carried
out. First a number of nodal sections must be taken across the structure. These
need not be equally spaced and should be distributed efficiently, i.e. more should
be positioned in regions of anticipated high stress gradients as in a graded Finite
Element mesh. In the general case, the nodal sections are numbered sequentially
from 1 to n,, a typical nodal section being denoted by n.
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The next step is to define the cross-section of the structure. The plates are
numbered from 1 to p, a typical plate being denoted by p and the joints are
numbered from 1 to j, a typical joint being denoted by j. In addition, each
longitudinal edge of each plate must be identified by the letter 4 or B, to assist
the assembly procedure employed in the solution.

The following rules must be observed in carrying out the structural idealisation:
1. As will be discussed in Section 3.3, the method is only capable of dealing with

structures in which no more than 3 plates meet at any joint, and 2 of these

3 plates must be co-planar. Consequently, a structure containing a joint such

as that shown in Fig. 5 cannot be analysed, unless the joint is idealised as shown.

AVARRNAN

P d\sfc_mce
Actual Joint  Idealized Joint

Fig. 5. Idealization of a typical 3 plate joint.

2. When a joint connects two plates only, then edge A of one plate and edge B
of the other plate must be located at the joint, as at joints 1, 3, 4 and 6 of
the structure illustrated in Fig. 4.

3. When a joint connects three plates, then edge 4 of one of the co-planar plates
and edge B of the other co-planar plate must intersect at the joint. Either
edge A or edge B of the third plate can be located at the joint, see joints 2
and 5 in Fig. 4.

4. In a structure containing adjacent co-planar plates, these plates must be
numbered sequentially, see plates 1 and 2, and 4 and 5 in Fig. 4.

Having numbered and labelled the cross-section, a “connectivity” matrix [ AD]
is set up, which specifies which edges of which plates meet at each joint. Each
column of the matrix corresponds to a plate edge and each row corresponds to
a joint, the plate edges meeting at a particular joint being indicated by inserting
the figure “1” in the appropriate place in the matrix. The construction of the
[ AD] matrix for the cross-section shown in Fig. 4 is as follows:

Plate  Plate Plate Plate Plate Plate Plate

1 2 3 4 5 6 7

Edge A B A B A B A B A B A B A B
1 0 0 0 0 O O O 0 O O 1 0 07 Jointl
6o *r 1 0 0 0 0 0 0 0 0 O0 1 O » 2
[AD]=f{0 O 0 1 1 0 O O O O 0 0 0 O » 3
o 0 60 0 0t 1 0 O O O O O O » 4
6o o 6 0o 0 0 0 1 1 0 O 0 0 1 » 5
0o 6 6 0 0 0 0 0 0 1 1 O 0 0] » o

3.2 Transverse Frame Analysis

As discussed in Section 2.1, a transverse frame, such as that shown in Fig. 2,
is analysed for transverse bending at each nodal section during the transverse
frame analysis. This analysis is the same for each nodal section unless the nodal
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section coincides with a diaphragm, which, by preserving the cross-sectional shape,
prevents transverse bending occurring. Thus, for the typical structure shown in Fig. 4,
nodal sections 1, 8 and 11 are supported by diaphragms, and a transverse frame
analysis is not required at these sections.

The transverse frame analysis at a typical nodal section #n will now be considered.
It should be remembered that, in the No-Sway Solution now being discussed,
those joints of the frame system which are not located at free edges are assumed
to be rigidly supported by the plate system, so that no vertical or horizontal
movements of these joints can occur, only transverse joint rotations being permitted.
Joints located at cantilever free edges are considered to be unsupported.

Consider a typical plate p at a typical nodal section n, as shown in Fig. 6.
The transverse span of the plate at this section is termed s,,, the thickness is
termed ¢,,, the inclination to the horizontal (f,, and the modulus of elasticity
E, . The notation and the positive directions for the moments and rotations at the
edges of the plate are as illustrated in Fig. 6, anticlockwise moments and rotations
being considered positive.

In order to reduce the number of subscripts, the subscript n will be deleted
whenever possible, because all expressions relate to the general nodal section n.

'¢P-"‘

Fig. 6. Section through a typical plate p
at nodal section n.

The Slope Deflection Equations for the typical plate p, see Fig. 6, may be
written as:
M, ,=2%,8,4,+%,0p,+MF,,
Mp,=h,0,4,+ 2N, 05,+ MFg,

3E (1)
where A, = e
p

An equation similar to (1) may be written for each plate in the cross-section from
1 to p,, provided that the plate does not have a free edge. In the case of a plate,
such as an edge cantilever, which does have a free edge, then, in equation (1)
BA,p — 93,1, = 0

When equations similar to (1) have been written for all plates from p=1 to p,
at the given nodal section they may be summarised as:

(M)} =[40] {0} + {MF) )

In this equation the vector {M} represents all the plate edge moments, {0}
represents the vector for the plate edge rotations and {MF} represents the vector
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for the fixed end moments, thus for the typical structure shown in Fig. 4, each of
these vectors contains 14 terms.
Clearly, the plate edge moments at any joint must be in equilibrium with any

moment applied externally to that joint. For the particular case of the structure
shown in Fig. 4, the equilibrium equation for joint 3 for example is:

Mg, +M,3:=Mg;

Similar equilibrium equations may be written for each joint in the cross-section and

the equations for the complete cross-section may be written in a general matrix
form as:

{(ZM] = {Mgj (3)

It will be seen that the required addition of the plate edge moments may be

accomplished directly by using the [ AD] matrix defined in Section 3.1, as follows:

{(ZM|=[AD] {M] (4)
Then, from equations (2), (3) and (4)
[AD] [A40] {8} + [AD] {MF) = [M;) (5)

Having satisfied equilibrium, the compatibility of the rotations at the joints must
next be considered. This compatibility condition simply requires that the edge rota-
tions of each plate meeting at a joint are identical.

For example, for the particular case of the structure shown in Fig. 4, using §;
to denote the joint rotation, the compatibility equation for joint 3 is:

93,2 = 8A,3 = Bs

It will be seen that the compatibility equations for the complete cross-section
may again be established by using the [ 4D ] matrix as follows:

(0} =[4D]" (B} (6)
Substituting in equation (5)
[AD][A6]{ADT" {B} + [AD]{MF} = {My}
Defining, for convenience, a new matrix [AB] =[A4AD][A6][AD]", then:
[AB] (B} +[AD] (MF} = (M)

The only unknown in this equation is the vector {$} representing the joint
rotations and this may now be determined as:

(B} = —[AB]™ ([AD] {MF} — {M;}) (7)

Knowing the joint rotations {B], the plate edge rotations {6} may then be
determined from equation (6) and a further substitution back into the matrix form
of the slope deflection equations, i.e. equation (2), yields the required values of
the Transverse Moments {M |} acting at the plate edges at the typical nodal section n.
From a consideration of these edge moments and the external load acting per-
pendicular to the plane of each plate, the transverse moments and the lateral
displacements at positions across the width of each plate can be determined.
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Once the transverse moments at the plate edges are known, the edge support
reactions normal to the plane of each plate may be found. These are shown as
R4 ,and Ry ,in Fig. 6 and for the typical plate they are given by:

M,+M
Rop="0E e,
8)
(M, 4+ M (
R, = (”—S"—)p | RF,,

Where the terms RF, , and RFj , represent the reactions due to the external
loading acting on the span.

An equation similar to (8) may be written for all plates in the cross-section,
other than edge cantilever plates, from 1 to p,. These equations may be sum-
marised as:

(R} = [AH] {M] + {RF] ©

so that the vector representing the edge reactions normal to the plane of each
plate {R} at the typical nodal section #» may be determined. The vertical and
horizontal components of these normal reactions may then be obtained by simple
resolutions, and a vector {R{} containing the vertical components of the plate
edge reactions and another vector {R{} containing the horizontal components of
these reactions may be established. By using the [AD] matrix once again, the
total vertical and horizontal reactions at each joint may be obtained as:

vertical joint reactions  {RZ} =[AD] {Rg}
horizontal joint reactions {RY ]| =[AD] {R} (10)

The transverse frame analysis is now complete for the typical nodal section n.
The analysis is repeated for every nodal section, giving the transverse bending
moments {M,| at each of these sections, together with the intensities of the vertical
and horizontal reactions at the joints {Rz,} and {Ry,}.

3.3. Linking Analysis

In this stage of the analysis, the joint reactions obtained from the transverse
slab analysis are reversed in direction and then applied as joint loads on to the
plate system. Since it is assumed that the plate system can only transmit forces
in the planes of the various plates, the joint loads are resolved into their com-
ponents in the planes of the plates to give the plate loads.

In the case of a joint at which more than 2 plates meet, the transverse frame
reactions cannot be resolved into components in the direction of the intersecting
plates, since only two equilibrium equations are available, i.e. the vertical and
horizontal resolution of forces at the joint. However, if two of the three plates
meeting at the joint are co-planar, then the total in-plane force component acting
on these two plates can be determined and the analysis can be continued. The
type of joint idealisation required to enable this restriction to be met has already
been shown in Fig. 5. '
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34. Longitudinal Plate Analysis

In the longitudinal plate analysis, the plates are analysed as beams spanning
between the supports and since the linking analysis is only able to provide the total
plate load acting on any series of adjacent co-planar plates, such a system of co-
planar plates is considered as one wide beam unit during the plate analysis.
For the typical structure of Fig. 4, the beam units considered are as shown in
Fig. 7, plates 1 and 2 being considered to act as a single beam, plates 4 and 5
being considered to act together as another single beam, and plates 3, 6 and
7 each being considered as an individual beam.

Typicol plate
beam unit

Fig. 7. Beam units considered during analysis of typical
structure.

Thus, in the general case, a single plate beam unit considered during the
longitudinal plate analysis may consist of several plates and may be connected to
other units at its edges and also along several other lines within its width. A
typical beam unit is shown in Fig. 8 this unit containing plates 1, 2..r..v. It is
assumed that all the co-planar plates within the beam unit are numbered con-
secutively (in accordance with restriction 4 in Section 3.1), and that at the typical
nodal section n, each co-planar plate has the same thickness (¢, , = t5 ... =ty g = 1,,,)
and the same elastic modulus (E, , = E, .. = E, ,... = E, ). However, the theory can
be adapted to accommodate different thicknesses, etc.

During the longitudinal bending, the forces shown in Fig. 8 will be set up at
the typical nodal section n of the beam unit, this nodal section being assumed to

Fig. 8. Forces set up in a typical plate beam unit containing several co-planar plates.
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be at a distance x from the end of the beam. For clarity, the suffix n relating
to the nodal section will be omitted from the following equations, but it should
be remembered that these equations relate to nodal section n. The forces set up are:

1. Longitudinal forces N4, Nyj3... N,/ 4 1--Np, set up along the lines at which the
beam unit is connected to adjacent web units. These forces are set up by virtue
of the longitudinal shear developed between the adjacent units, this shear being
assumed to have an intensity Uy, Ujjy...Uppyq ... Up, at the various joints.
The positive directions of these forces are shown in Fig. 8, all the forces,
apart from Ny, being positive when tensile.

2. A bending moment PM,, set up by the total in-plane plate load acting on the
beam unit as obtained from a resolution of the transverse frame reactions.
This moment is calculated assuming the beam unit to be completely disconnected
from all other beam units, and is defined as positive when it is a sagging
moment, as shown in Fig. 8.

Having defined the forces acting on the section, the longitudinal bending
stresses set up by these forces at nodal section n can now be calculated from
beam theory, In the first instance, the bending stresses parallel to the neutral axis
of the beam unit will be calculated. Tt will be appreciated that with a tapered
web beam the neutral axis of the beam will be inclined to the horizontal at an angle
o as defined in Fig. 8. For convenience, define H=s; +5;..5,.. +5, and let
t=t;=ty..=t,..=1,

Total moment (sagging positive) on cross-section

M =PM1/U+ NA,I gCOSOH-NUz (%_Sl)
vt Nypr1 &= (s +53..+5)).. + Ng, Fcos (11)
Total axial force (tension positive) on cross-section =
=Ny;c080+Nyp..+Nypig...—Np,cO80

Thus knowing the bending moment and axial forces acting on the section from
equation (11) the total longitudinal stresses set up at all points across the section
can now be determined from standard beam theory. For example, for the typical
case of a single plate “p”, which does not form part of a co-planar plate unit,
the stress acting at edge “A” is as given in equation (12).

B 6 4 2
Gyp=—5PM,+ —N, ,cos ocp+[w—S—NB,pcosocp (12)
rpP pp PP

The stresses at the edge of the typical plate, ie. 64, and G5, calculated
according to equation (12), act parallel to the neutral axis of the plate. Before
equilibrium and compatibility between this and adjacent plates can be considered
these stresses must be converted into stresses along the edges of the plate unit.
The resolution at edge A of plate p is illustrated in Fig. 9 and the stress along this
edge at section n may be written as:

Cu4p 2Uy,tana,

= 13
cos?oL, t e

cA,p

14
and a similar equation may be written for edge B of the plate.
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Fig. 9. Resolution of stresses at typical plate edge.

Thus, for the typical plate beam unit at nodal section »n, by using equations
(12) and (13) a relationship can be established between stresses (c) and hence
the strains (g) set up along all the lines at which the unit is connected to adjacent
beam units and the longitudinal shear forces (N) and the distributed shear
forces (U) acting along these lines, together with the bending moment (PM)
that would be set up in the unit assuming it to be completely disconnected from
adjacent units.

Similar relationships may be established for all other plate beam units within
the cross-section. If the beam unit has a free edge, as in the case of an edge
cantilever, then the expressions must be modified to allow for the fact that no shear
forces exist along this edge.

When the expressions have been established for all units at nodal section n,
they may be written in a matrix form as follows:

— 1 1
{e} =[SN] {N*} + {MO} —[SU] {U*} (14)
For the typical cross-section shown in Fig. 4, the strain vector {¢} for nodal
section n will contain terms in the following order:
€4,1-€1/2:€82:84,3: 88,3, €445 845, €55, 4,65 EB,65 €4,7 and &g 7.

At a joint between between adjacent beam units, the strains along the joint
must satisfy compatibility. For example, for the typical cross-sections shown in Fig. 4,
the strain compatibility equation for Joint 3 at the typical nodal section » becomes:

83’2 + SA!:J, = O

The compatibility equations for the complete cross-section at nodal section n
may be written as: I5el =0 (15)

It will be seen that the required addition of the plate edge strains can be
carried out by setting up a matrix, that will be denoted by [ AD], which is a modified
form of the [ AD] matrix defined earlier. For the typical structure shown in Fig. 4,
[ AD'] has the following form:

0

[4D']=

cCoo0o0c o~
cooc o~

cCoOOoOROO
coo~oo0
E OO &
SO S 6
R R e
—oco00oo
—ooc0O0O
coococ o~
S5 S D S = &S
oc—~ooc oo
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and the required addition may be obtained as:
{Ze} =[AD'] {gj =0 (16)
Then, substituting for {¢} from equation (14):
[AD'] [SN] {N°} + [AD'] {MO} —[AD'] [SU] {U*} =0 (17)

Also, at a joint between two plate beam units, in addition to the strain com-
patibility condition the shear forces along the joint must satisfy equilibrium.

For the typical cross-section shown in Fig. 4, the shear force equilibrium for
joint 3 for example is as follows:

NB,z =NA,3 =N3

It will be seen that the shear equilibrium equations for the complete cross-
section may again be established by using the [ AD'] matrix as follows:

(N°} =[AD']" {N} (18)

Similar equilibrium equations may be written for the distributed shear forces
acting along the edge, i.e.

(U} = [AD*]” (U} (19)
Substituting from equations (18) and (19) in equation (17) yields:

[AD'][SNT[AD'" {N} + [AD'] {MO} — [AD'][SU][AD']" {U}=0  (20)

Defining, for convenience, two new matrices and a new vector:

[DN,]=[AD'] [SN] [4D']"
[DU,]=[4D'] [SU] and [DO,] =[A4D"] {MO}

Then, reintroducing the suffix n to show that the terms relate to the typical nodal
section n, equation 20 may be re-written as:

[DN,] {N.} + {DO,j = [DU,] {U,;=0 (21)

There are two unknowns in this equation, viz. the vectors {N,} and {U,}
which represent, respectively, the total longitudinal shear force and the intensity of
the longitudinal shear force at each joint at the nodal section n. Another relationship
between these two vectors must be established before the equations can be solved.

Such a relationship will now be obtained by considering nodal section n on a
typical joint j. Let a co-ordinate axis z be taken along this joint, as shown in
Fig. 10a, the distance along the joint between adjacent nodal sections then being
I, n-1, I n, €tc. By considering an elemental length 8z of the joint, as in Fig. 10b at
at a distance z from the end support, it is apparent that, U(z) = dN(z)/dz.

A portion of a typical curve representing the longitudinal distribution of the
joint shear forces is shown in Fig. 10a. Assume that the curve may be represented
by a polynomial function:

N(iz)=N,+a, z+a, 2*

the origin of the z co-ordinate axis being assumed to be located at section n.
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Then U(Z) = (4 + 2 a, Z (22)

and by determining the values of the coefficients a; + a, from the values of N
at each section, the value of U, may be determined from equation (22) as:

- lzn (lzn - lz —1) lzn—l
U,=N,_ +N, VN, 23
" et lzn—l (lzn~1 IF lzn) lzn lzn—l o lzn (lzn—l 5 lzn) ( )

A similar equation may be written for each other joint at nodal section n
and these equations may be summarised as:

{Ua} =[LB,] {No-1} +[LC,] Ny} +[LF,] {Nui1} (24)

Equation (24) gives the required additional relationship between the {U,} and

{N,} vectors,
Substituting for {U,} in equation (21) gives:

[DN,] {N,} +{DO,} —[DU,] [LB,] {Ny-1} — [DU.] [LCa] [Na]
~[DU,] [LF.] {Nys1} =0 |

This equation may be written as:
[DB,] {Nu—1} +[DC,] {Nuj +[DF,] {Nuy1} = — {DO,j (25)

Where

[DC,]=[DN,]—[PU,] [LC,];
[DB,]= ~[DU,][LB,] and DF, = — [DU,][LF,]

Equation (25) relates to the typical nodal section n only and similar equations
may be established for each nodal section and all the equations thus obtained
arranged in matrix form. Equation (26) illustrates the form of these equations for

3 typical nodal sections: n— 1, nand n + 1.
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[DB,1] [DC,_y] [DF,_] Ny (DO,_.}
[DB,] [DC,] [DF,] N,y + =—11D0,}  (26)
[DBn+1] [Dcn+1][DFn+1] {Nn+1} {D0n+1}

The equations for the complete structure, i.e. for all nodal sections, can be
summarised as shown in equation (27} and by inverting the [AA] matrix, the
joint shear forces can be obtained as shown in equation (28).

[44] {N} ={M] (27)
[N} =[A4T" {M} (28)

The terms of the vector {N} represent the shear forces at each joint at each
nodal section. The joint shear forces relating to any one nodal section, e.g. {N,},
can then be extracted from the {N} vector and the shear forces at the edges
of the individual plates, i.e. {N°}, determined, as in equation (18).

Knowing the longitudinal edge shear forces acting on each individual plate,
the Longitudinal Stresses at the edges of each plate acting parallel to the neutral
axis of the plate can then be determined from equation (12). Since in equation
(12) these stresses are assumed to be linearly distributed across the width of each
plate the stress at any point across the width of the plate can be determined once
the edge stresses are known.

Since the stress distribution and therefore the bending moment acting at all
sections of each of the plate beam units is now known, the deflection of each
individual plate can be determined using normal beam theory. Once all the in-
plane plate deflections are known, the Vertical and Horizontal Displacements of the
joints may be obtained from a simple resolution procedure.

The Nodal Section No-Sway Analysis is now complete. During the analysis the
following quantities have been calculated at each nodal section:

1. The transverse bending moments at the plate edges and at any required position
across the width of each plate.

2. The longitudinal stresses at the plate edges and at any required position across
the width of each plate.

3. The deflection normal to the plane and the deflection in the plane of each
plate at any required position across the width of the plate.

4. The vertical and horizontal displacement of each joint.

These quantities present a comprehensive picture of the behaviour of the box
girder.

4.0. Sway Correction

During the No-Sway analysis described in Section 3, the transverse frame action
was analysed assuming the one-way slab strips to be rigidly supported at the
longitudinal joints of the girder, whereas, in the longitudinal plate analysis, these
joints were allowed to deflect and their deflections were calculated. Consequently,
incompatibilities exist between the joint displacements of the plate and frame
systems and the object of the Sway Correction is to remove these incompatibilities.

There are two methods by which the Sway Correction may be accomplished.
The first of these methods is based on the “Method of Particular Loadings”
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developed by Yirzuakr [4] for folded plate structures and this provides a closed-
form solution, which is applicable to all girders, but which considerably
increases demands on computer time and storage space. The second method employs
an iterative technique and does not lead to any increased demands on computer
storage space and converges in all cases, the rate of convergence depending on the
form of the girder cross-section.

The authors have investigated the use of both methods and have found that the
iterative technique is the most suitable for a method of analysis that is to be used
in a design office. An adaptation of the Standard Iterative Technique used in
folded plate structures was first tried but was found to be unsatisfactory since, in some
instances, the rate of convergence was very slow and, in some particular cases,
the solution was found to be divergent. As a result of this an improved “Accelerated
Iterative Technique” based upon a method established by Mast [12] for folded
plates has been developed and Fig. 11 shows how, for a typical girder, the
accelerated iterative process rapidly converges to the correct solution where as
the normal iterative procedure does not.
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Fig. 11. Comparison of rates of con-

vergence of standard iteration and

accelerated iteration sway correction
procedures.

The first step in the Sway Correction is to quantify the incompatibilities
between plate and frame displacements, arising from the No-Sway Analysis. A con-
venient way of doing this is to express the incompatibilities in terms of the
“relative joint displacements” or “sway displacements” of each component plate.
The sway displacement for a typical plate p at nodal section #, i.e. A, , is defined in
Fig. 12a.

Hence, the in-plane plate displacements v,, and the vertical and horizontal
joint displacements 8v; , and 3k, ,, obtained from the No-Sway Analysis, must now
be converted, by means of simple geometry, into equivalent sway displacements
A, for the various plates and these sway displacements must be determined at
each nodal section that does not coincide with the position of a supporting dia-
phragm. At a diaphragm position, all such sway displacements are prevented.
Clearly should any plate have a free edge, such as an edge cantilever plate, then a
sway displacement will not be set up within the plate.
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Fig. 12a. Definition of sway displacement
of typical plate p at nodal section.

4.1, The Accelerated Iteration Method

It must be remembered that the object of the Sway Correction is to remove
the incompatibilities existing between the displacement of the frame and plate
systems at the end of the No-Sway Analysis for the external load condition.
Defining the incompatibility for a typical plate as:

incompatibility=sway displacement of plate in plate system minus the sway
displacement of plate in frame system (29)

then, since in the No-Sway analysis for the girder under external loading, the
joints of the frame system are assumed to be non-deflecting, the incompatibility
(B) for a typical plate p at nodal section n arising from the No-Sway analysis is:
EM=AZ-0 (30)

p.n
where the superscript Ext denotes that the incompatibilities relate to the No-Sway
Analysis. ' ' '

The first cycle of the Accelerated Iteration Method is now commenced. Sway
deformations equal to the incompatibilities (A %%) which exist at the end of the exter-
nal load analysis are imposed on each member of the frame system at each
nodal section. These imposed deformations set up additional transverse moments
within the members and another No-Sway Analysis is now carried out as des-
cribed in Section 3. From this analysis, additional sway displacements (AL ) are
calculated for the plate system. Then, according to equation (29), the incom-
patibilities arising from the first cycle may be defined as:

ra=AL, — A% (Y

One of the unwanted incompatibilities corresponding to the external loading,
as determined from equation {30), may now be removed by superimposing the
incompatibilities obtained from the first cycle, as listed in equation (31), in the
correct proportion. Any incompatibility may be chosen for removal; for example,
to remove the incompatibility in plate 4 at nodal section 6, then:

45+ 1 (Bi,6) =0 therefore uy = — BJ75 (32)
Bi.s
u! defining the proportion of the values from the first cycle that must be super-
imposed on to the external load values.
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The complete solution at the end of the first cycle may now be obtained as:

Complete solution=external load solution+p; (first cycle solution) (33)

Also, the incompatibilities remaining at the end of the first cycle may be
determined as:

on = Boon + 11 (Byn) (34)
the remaining incompatibility for plate 4 at nodal section 6 now being zero.

In the second cycle of the Accelerated Iteration Method, sway deformations
equal to the incompatibilities that exist at the end of the first cycle, as in equation
(34), are imposed on the slab system. Another No-Sway Analysis is carried out and
additional sway displacements (All) are calculated. Then, from equation (29), the
incompatibilities arising from the second cycle are:

I — A{;;{n _nl (35)

p.n p.n

A superposition of a certain proportion (pf) of these incompatibilities, together
with a certain proportion (u'f) of the first cycle incompatibilities, from equation
(31), will enable any two of the unwanted incompatibilities corresponding to the
external loading listed in equation (30), to be removed.

For example, if the incompatibilities of plates 4 and 9 at nodal section 6 are
chosen for removal, then:

for plate 4 BEE + W' (Bi,e) + piz (Bile) =0
for plate 9 B3 + 'l (Bs,6) + uit (BSls) =0 (36)

From these equations, the values of the proportions p'f and pjf may be determined
and then the complete solution at the end of the second cycle may be obtained as:

Complete solution = external load + p'j (1st cycle + pff (2nd cycle (37)
solution solution) solution)

Also, the incompatibilities remaining at the end of the second cycle may be

determined as: .

pn = Bpn + 0T (Bpn) + i1 (Bya) (38)
the remaining incompatibilities on both plates 4 and 9 at nodal section 6 now
being zero.

A third cycle of the Accelerated Iteration Method may now be carried out, in
which sway deformations equal to the incompatibilities that exist at the end of the
second cycle are applied to the frame system and another No-Sway Analysis of the
girder carried out. This third cycle will provide a further set of incompatibilities
which, when taken in conjunction, with those obtained from the first and second
cycles, will enable any three of the initial incompatibilities corresponding to the
external loading to be removed. Thus, a solution of greater accuracy may be
obtained after the third cycle.

Further iterative cycles may be carried out, each successive cycle commencing
with the application to the frame system of sway deformations equal to the
incompatibilities remaining at the end of the previous cycle. In each cycle, a
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No-Sway Analysis of the girder has to be carried out, and each cycle provides a
new set of incompatibilities which enables one more of the original incompatibilities,
arising from the external load analysis, to be eliminated. In order to remove all
these original incompatibilities and thus provide an exact solution, the total number
of iterative cycles required is theoretically equal to the product of the number of
plates in the cross-section and the number of nodal sections taken, i.e. p, x n,, and
the last of these cycles would involve the solution of p, x n, simultaneous equations.

However, in practice it is found that, by virtue of the nature of the deformations
set up in the box girder, the elimination of one particular incompatibility leads
to the simultaneous elimination of several others, so that an accurate solution can
be obtained by taking very many fewer cycles than are theoretically necessary for
an exact solution. The reasons for this are two-fold:

In the first place, any set of sway displacements set up will have a variation
over the length of the girder which is a function of the elastic properties of the
girder. Thus, any set of sway displacements such as Al, set up by another set of
sway displacements, such as A®™' will have a longitudinal distribution similar to
the original set and the ratio of A’ to A" will be almost the same at each nodal
section. Consequently, when the incompatibilities are eliminated from a particular
plate at a particular nodal section, they are also made extremely small at all the
other nodal sections on that plate. Thus, accurate results may be obtained by
considering the removal of incompatibilities at a few nodal sections only; in many
cases it has been found sufficient to remove the incompatibilities at only one nodal
section and in no case has the removal of the incompatibilities at.more than two
nodal sections been found necessary in order to provide a convergent solution.

Secondly, within any closed cell of the cross-section, the relationship between
the sway displacement of any one plate and the sway displacements of the other
plates within the cell is dependent on the resistance of the girder cross-section to
distortion. For any set of sway displacements, such as A’, set up by another set of
sway displacements, such as A", the ratio of A’ to AF** will be similar for each
plate within the closed region. Consequently, when the incompatibilities are removed
from any one plate within the closed cell, they are also greatly reduced for all
the other plates within the cell.

Satisfactory convergence of the Accelerated Iteration Method can thus be
achieved by removing the incompatibilities at one or two nodal sections only and
carrying out one iterative cycle for each closed cell within the cross-section,
together with one cycle for any other plates that may exist in the cross-section.
Thus, for a multi-cell girder, where the cross-section effectively forms only one
closed region, one iterative cycle only is required. For a girder containing
discreet cells, such as that shown in Fig. 12b, one iterative cycle is required for
each box, together with an additional cycle for each connecting flange, so that three
iterative cycles are required in this particular case. The order in which the 3 cycles
are carried out is immaterial as illustrated in the convergence plot shown in
Fig. 12b.

When all the required iterative cycles have been completed for a given section,
the final results for the complete girder are obtained by superimposing the
appropriate proportion of the values calculated in each cycle on to the original
values obtained from the external load analysis.
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5. Discussion of Results

In this section, the accuracy of the Nodal Section Method will be assessed by
analysing several different types of girders subjected to different loading and support
conditions and comparing the results obtained from the Nodal Section Method with
those results obtained from a full three-dimensional Finite Element analysis and
also to results obtained from the Folded Plate Method (MUPDI) developed by
Scordelis. Both these methods are currently widely used in box girder analysis

-and their accuracy, within their particular fields of application, has been firmly
established.

The first type of girder COIlSIdel‘Cd will be the simply-supported, single-cell
girder shown in Fig. 13. A full parametric study of such girders has been carried
out by the authors [14] in which 20 girders of differing dimensions were analysed,
the girder dimensions and proportions being chosen on the basis of a statistical
survey of the girders currently in service. All these girders were subjected to a line
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Fig. 13. Details of typical single-cell girder.
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loading applied over one web, as shown in Fig. 13, since such a loading would
tend to set up gross cross-sectional deformations and would thus provide a good
test of the accuracy of the Nodal Section Method.

The extensive results obtained from this parametric study have been presented
in detail in a separate report [ 14] and cannot be repeated here. However, a sample
of the results will be presented for the girder having the dimensions shown in
Fig. 13 and this girder may be regarded as a typical single-cell girder, since its
proportions closely represent the most frequently occurring proportions observed
during the statistical survey of practical girders.

Since both the Finite Element and Nodal Section methods require an idealisation
of the structure, convergence tests were carried out first of all for the typical girder
to determine the accuracy obtainable from various idealisations. The finite element
meshes and nodal section positions considered are shown in Fig. 14 and the results
of the convergence tests are summarised in Fig. 15 where the predicted transverse
moments and longitudinal stresses at the loaded joint at the mid-span cross-section
are compared to values given by the folded plate method. The results show clearly that
both methods converge rapidly and that for the particular loading case considered,
reasonably accurate results can be obtained by taking 5 nodal sections only.
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Fig. 14. Idealisations considered in convergence tests.

In each Nodal Section Analysis, two cycles of the sway correction procedure were
carried out since it has been found that two cycles are necessary in order to obtain
accurate values of the transverse moments for concrete girders in which the resistance
to cross-sectional deformations is high. The longitudinal stresses and deflections
of both concrete and steel girders and also the transverse moments of steel girders
are obtained accurately after 1 sway correction. In no case during the parametric
study of single-cell girders was it found necessary to employ more than 2 cycles
of the sway correction procedure.
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In Fig. 16 the Finite Element and Nodal Section solution times for the
parametric study are plotted, and this diagram illustrates clearly the main dis-
advantage of the finite element method in a design context. For the finest mesh
considered in the analysis, i.e. the mesh containing 144 elements, a solution time of
20 minutes was required on an I.C.L. System 470 computer, whereas the com-
parable time for the Nodal Section solution employing 11 sections and 2 sway
corrections, was of the order of 1 minute. The finite element mesh containing
144 elements, whilst being more than adequate to provide accurate results for the
simply supported single-cell girder of Fig. 13, would certainly not be sufficient for
the analysis of multi-cell, multi-span girders and the use of larger meshes for
such structures would make the Finite Element Solution time prohibitive in any

design study.
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In addition to the actual computer time used, the Finite Element Solution also
requires a great deal of data preparation time. The 144 element mesh used in
the present investigation required the preparation of some 300 computer cards,
compared to the preparation of some 25 cards for the comparable Nodal Section
Solution, and this is another serious disadvantage of the Finite Element Method in
any design application.

Since the values given in Fig. 15 relate to the loaded corner of the girder
only, the transverse moments, longitudinal stresses and vertical deflections for the
complete central cross-section are shown in Fig. 17 and it is seen that the distri-
butions predicted by the Nodal Section and Folded Plate methods agree closely.

—
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Fig. 17. Distribution around mid-
span cross-section of typical girder.

Figures 15 and 17 shown the accuracy obtainable with the Nodal Section
Method for one typical girder only. Obviously, as the girder proportions were
varied during the parametric study, significant changes occurred in the structural
behaviour, but, in all cases, the accuracy of the Nodal Section solution was
maintained. An example of this is given in Fig. 18 where the effects of varying the
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Fig. 18. Variation in ratio of vertical web
deflections with variation in flange width/
web depth ratio (bf/dw).



210 K.C. ROCKEY - H.R. EVANS

flange width/web depth parameter are illustrated. The amount of cross-sectional
deformation under load is seen to vary rapidly with a change of this parameter,
but the curves obtained from the nodal section and finite element solutions are
seen to agree closely throughout the complete range considered. '

In addition to single-cell girders, the two types of girder shown in Fig. 19 were
also analysed. Since, as discussed earlier, the finite element solution times for such
girders would be prohibitive, the Nodal Section values will in both cases be com-
pared to results obtained from the Folded Plate Method.
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Fig. 19. Typical sections considered.

In Fig. 19, Case I shows a simply supported double-cell steel box, the girder
being subjected to a transversely unsymmetrical loading consisting of a uniformly
distributed load applied over one of the cells. Certain, typical results for this
girder are listed in Table 1 — Case I and it is seen that the values of transverse
moments, longitudinal stresses and deflections given by the Nodal Section Method
agree closely with those given by the Folded Plate Method.

Similarly, close agreement of the values given in Table 1 — Case II is observed,
these values having been obtained for the typical discreet-cell, concrete girder
illustrated in Fig. 19 Case II. The convergence characteristics of the Nodal Section
solution for this girder have been discussed earlier and shown in Fig. 12b and
the results given in Table 1 — Case II were obtained after the third iterative
cycle. For a point loading applied over a web, such as that shown in Fig. 19 —
Case II, the Nodal Section Method, in common with most other methods, is not
capable of predicting accurate values of the extremely high stresses set up in the
immediate vicinity of the point loads. However, at positions away from the point load,
satisfactory values are given by the method, as shown in the table.
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Fig. 20. Results for unsymmetrically loaded continuous girder.

All the girders considered in the comparison so far have been simply sup-
ported, but in Fig, 20 a continuous single-cell girder subjected to an unsymmetrical
point loading over one web is illustrated, the loading being applied to one span
only at a position close to the end support. In the figure, the variation along both
spans of the vertical deflection of the loaded joint is plotted, and the unsymmetrical
nature of the behaviour about the mid-span support position is clearly illustrated.
The curves predicted by both the Nodal Section and Folded Plate methods are
seen to correspond closely in both the loaded and unloaded spans.

Finally, the tapered girder shown in Fig. 21 was analysed, the girder once
again being subjected to an unsymmetrical line loading applied over one of the
webs. In this case, the Folded Plate method could not be used in the analysis since
it is not capable of dealing with girders of non-uniform cross-section, consequently,
the Nodal Section results are compared to values obtained by the Finite Element
Method. In the figure, the variation along the span of the vertical deflection of a
typical joint is plotted together with the distribution of the transverse moments and
longitudinal stresses around the mid-span cross-section, and the Nodal Section and
Finite Element values are once again seen to agree closely in all cases.

6. Advantages of the Nodal Section Method

The nodal section method provides a simple and accurate method of analysis
for box girders. The computer programme (BOXGDR) based on the method requires
relatively little computer time and storage space and is thus an economical
means of analysing girders at the design stage, when many analyses may be
necessary in order to achieve the optimum dimensions. The programme has the
further advantage that both the preparation of data and the interpretation of
results is relatively simple thus leading to additional significant economies.
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Fig. 21. Results for tapered girder.

Furthermore, the sequential nature of the calculations enables solutions to be
obtained by hand, in many cases, without requiring the use of digital computers.
In addition to the obvious economic advantages, such a hand solution enables the
engineer to retain a better appreciation of the structural behaviour, particularly
since each step within the analysis is related to a certain aspect of the physical
behaviour.

Finally, the nodal section method is extremely adaptable and may be applied to
the analysis of box girders of any cross-sectional shape under any loading con-
ditions. It is also the only method, other than the very expensive finite element
method, that is capable of dealing with the analysis of box girders in which
the geometry of the cross-section varies along the span. Such girders are, of
course, frequently encountered in practice, as, for example, in the case of motorway
bridges having web plates of varying depths.

7. Conclusions

In this paper, the basic theory of the Nodal Section Method has been presented
and the accuracy of the method in the analysis of a number of different girders
has been illustrated. It is anticipated that this accuracy, coupled with the sim-
plicity of the solution procedure, which enables solutions to be obtained either by
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hand or from a computer programme that is very economical of computer time and
storage space, will make the method a valuable analytical tool for use during the
design of box girders. '

Several developments of the method are in hand at the present time. In the
first place, the method is being extended to consider the effects of shear lag on the
distribution of the longitudinal stresses set up in the flanges of a girder, and the
proposed approach (13), which is based on the use of empirical factors, has yielded
results of good accuracy. The method is also being developed for the analysis
of box girders curved in plan, and results obtained to date show excellent
agreement between the Nodal Section values and values obtained both experimentally
and from a Finite Element study. Finally, the analysis of girders on skew supports
and girders containing deflecting internal diaphragms is being considered together
with the behaviour of girders of non-uniform cross-section. All these developments
will greatly extend the field of application of the method without, in any way,
affecting the simplicity and economy of the solution procedure.

The integration of the Nodal Section Method with a Finite Element solution is
also being considered. Such an arrangement has been described in the present
paper in the method for dealing with concentrated loadings. It is intended to develop
this technique further so that the designer can if he wishes, when dealing with a
position of rapidly changing stress, such as at column supports and internal
diaphragms, use a Finite Element Solution to provide a more detailed picture of the
stress field in the local area. This procedure thus providing an accurate and
economical method of analysis with great adaptability and a wide field of application.

List of Symbols

l... n..n, nodal section numbering:
l..p..p, plate numbering. o

l... j... j, joint numbering.

Aand B plate edge labels.

AD connectivity matrix.

S plate width.

t plate thickness.

6] inclination of plate to horizontal.
M transverse bending moments.

N longitudinal shear forces at the edges of the plate beams.
c longitudinal stresses.

A sway displacement of a plate.
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Summary

This paper describes the basic theory of the Nodal Section Method. This method

has been developed for the analysis of box girders and, by assuming an idealised
structural behaviour, it provides a simplified solution procedure, which it is anticipat-
ed will prove to be of use during the design stage, when many analyses of the
girder may be required. Results are presented for many different types of box
girders, the values given by the Nodal Section Method being compared to those
obtained from other established methods, and the accuracy of the Nodal Section
values is illustrated.
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Résumeé

La contribution décrit la théorie de base de la méthode de section nodale.
Cette méthode a été développée pour lanalyse de poutres en caisson et, en
admettant un comportement structural idéalisé, elle fournit une solution de procédure
simplifiée, laquelle s’avére utile durant la phase du projet lorsque beaucoup
d’analyses de poutres sont demandées. On présente des résultats pour de nombreux
types différents de poutres en caisson; les valeurs fournies par la méthode de
section nodale sont comparées a celles obtenues par d’autres méthodes établies.
La précision des valeurs de la section nodale est démontrée.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Grundtheorie der nodalen Querschnitts-
Methode. Diese wurde zur Berechnung von Briickentrdgern entwickelt; unter An-
nahme eines idealisierten baulichen Verhaltens liefert sie eine vereinfachte Ver-
fahrenslésung, welche sich wihrend des Projektstadiums als niitzlich erweist, falls
viele Berechnungen fiir den Triger erforderlich sind. Es werden Resultate fiir
zahlreiche Typen von Kastentrigern mitgeteilt, wobei die aus der nodalen Quer-
schnitts-Methode herriithrenden Werte mit jenen von anderen Methoden verglichen
werden und die Genauigkeit der nodalen Querschnittswerte veranschaulicht wird.



A Plastic Collapse Mechanism for Compressed Plates
Un mécanisme de rupture plastique pour plaques comprimées
Ein plastischer Bruchmechanismus fiir gedriickte Platten
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Monash University, Department of Civil Engineering, Clayton, Victoria, 3168

1. Introduction

The analysis developed in this paper sets out to explain and predict the manner
in which rectangular plates, subject to uniform compression along two opposite
edges, behave when they are compressed beyond their ultimate load. The classical
elastic theory for the instability of a flat plate [1] and the analysis for the
subsequent large deflection behaviour [2] are now well-known. For individual thin
plates (o,/0,,>1.5) the maximum load can be predicted with sufficient accuracy
by assuming that when the mid-plane direct stress at some location along an
unloaded edge reaches a yield condition the plate will no longer be able to
sustain a further increase in loading. The same criterion may be applied to thicker
plates, although there is less justification for it, and a semi-empirical design curve
has been formulated [3, 4] in which the effects of initial imperfections have been
included by using a generalised imperfection parameter.

But, of course, plates in engineering practice are not used in isolation; they
form elements in thin-walled structures. If these structures are sufficiently redundant
in topology, the failure of a single plate need not mean that the structures as a
whole will fail. It is necessary in such a situation, however, to know the load-
deformation characteristics of the buckled plates in order that the stiffness and
remaining strength of the structure can be determined. Furthermore, a study of
the load deflection characteristics during and after buckling not only indicates how
suddenly a structure will fail (ie. how “brittle” or “tough” it is) but also how
sensitive it is to initial imperfections. A few analytical attempts to obtain the
post-buckling characteristics of plates have been made. Graves-SmitH [ 5] and others
at Cambridge used numerical methods to obtain an elasto-plastic solution. They
obtained theoretical load-deflection curves for a few plates but the method employed
required large amounts of computer time and it appears that for this reason
more general studies have not been made. More recently SHERBOURNE et al. [6, 7]
have used a plastic mechanism method to study the post-buckling behaviour of
flat and corrugated plates. Although good agreement between theory and experi-
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mental results was obtained in some cases this was not true in others for which
the agreement was poor. Sherbourne’s analysis assumed a particular shape of
mechanism and the plastic unloading line was obtained by allowing the geometric
proportions of the shape to vary and determining, by means of a computer,
the minimum load corresponding to a specified deflection amplitude.

Murray [8, 9] has tested thirteen plates stiffened by bulb flats; these plates
were observed to fail either by lateral buckling of the stiffener or by a con-
certina-like buckling of the plate-deck. It is only the latter case which is considered
here. To obtain a theoretical estimate of the plastic collapse behaviour, the geometry
of the plastic mechanism (as indicated by laboratory observations (see Fig. 1a))
was assumed and a numerical minimisation technique was employed to fix the
size of the mechanism. It was found necessary to use a small — and a large —
deflection theory in order to explain the behaviour of these plates. Unfortunately,
it was not possible in the experimentation to obtain the plastic collapse line
because the apparatus could not follow the unloading which occurred. Thus the
theory could not be thoroughly checked against experiment. The theory developed
by Murray does not explain one observed phenomenon in his study of the beha-
viour of stiffened plates. He observed in the laboratory that for stiffener buckling
sudden collapse occurred as predicted by theory. However, for the concertina-like
plate buckling cases failure was somewhat more gradual whereas his theory
predicted that the suddenness of collapse would be similar to that for the stiffener
buckling cases. In other words, the experimental results crossed the theoretical
collapse line (Fig. 1b) and penetrated deeply into a region where failure should
have occurred already.

In this paper a similar approach is taken, rigid-plastic analysis is used and
results are derived that are in good agreement with experiment. But since this
analysis, like the others referred to earlier, assumes a mode of plastic deformation,
it is useful to consider the mechanics by which such a plastic mechanism may be
formed. To obviate the problems involved in solving the non-linear elasto-plastic
plate formulation the phenomena are discussed with reference to simple conceptual
models.

:\/:TI !

Stitfeners —— Plastic hinge lines

PLAN VIEW
(stiffeners underneath)

Fig. la
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2. Concept of Plastic Mechanism

When a structure is wholly elastic the analysis can be performed using the
well-established method involving the requirements of compatibility and equilibrium
or the equivalent condition of energy extremum. But when the material begins to
yield in some region due to the state of stress there, the analytical problems
increase by an order of magnitude. Recently, large computers in conjunction with
discrete numerical methods, such as finite elements or finite differences, have been
used to follow the load-deformation characteristics of simple structural elements as
the plasticity spreads due to increased loading. However, even with such machines
it is not a simple task and is often costly in machine time. It is therefore not a
viable approach for initial design calculations — at least not with today’s computers.

An alternative approach has been to assume a state in which the plasticity
has spread to such an extent that all the deformations occur in that region and
we neglect the deformations that occur in the remaining elastic portion. The
behaviour of the plastic portion is itself simplified, without distorting the physics
of the region, so that the mathematics become elementary. The type of conceptual
model used here is shown in Fig. 2a for elastic behaviour and Fig. 2b for
plastic behaviour.

In this, the rotational spring stiffness ¢ models the elastic flexural rigidity of
a strut and the curves (i), (i) and (iii) in Fig. 2¢ indicate the elastic load-
deflection relationship for various values of initial imperfection w,. Now turning to
plastic behaviour we take the particular example of a strut with rectangular
cross-section, breadth b and depth d, that is subjected to a moment M ,and a
longitudinal force P; if the material everywhere on the cross-section is assumed
to be stressed to its yield stress, the maximum moment it can carry is [ 10]

P
M,=M,[1- (P—y)z], (1)
2
where M , is the plastic moment 7 O Putiing an equivalent hinge in the middle,
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Fig. 2

Fig. 2b, we determine the curve (iv) in Fig. 2¢. This method assumes that there
is a sudden transition from elastic to plastic mode at the intersection of the curves.
Of course in reality there is a gradual spread of plasticity across the section,
but because most of the energy in the column in both the elastic and plastic
modes is bending strain energy this approach has in the past been a sufficiently
accurate and useful aid in describing the behaviour of struts and frameworks [10].

In this paper we are interested primarily in long rectangular plates and it is
observed during tests that these will deform into regular wave-like patterns of the
type shown in Fig. 3a. Measurements of a typical elastic plate supported at its
edges give a load-deflection relationship of the shape indicated in Fig. 3b. If the
plate is sufficiently thin it will support axial loads in excess of the critical load

"

—— 3
" 7,
T R .
] W,y=0-1 )
b
: R

Fig. 3
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corresponding to the perfectly flat condition. It is well-known that this increase
is due to the restraining effect of the membrane action and that the longitudinal
direct stresses become greater at the edges during buckling. As stated earlier, the
unloading characteristics of an axially loaded thin plate are difficult to obtain
experimentally because collapse occurs very rapidly once a mechanism starts to form.
Elastic energy stored as membrane and bending stresses is released during this
process and drives the mechanism until its deformations are large. Fig. 4a shows
the deformed shape of the mechanism observed for medium-thick steel plates
(o,/o, <1.5)and Fig. 4b typifies the corresponding shape for thin plates (although
the shape shown in Fig. 4a has also been observed).

W A -Pi 8

b5 EB l%icfg Z7

B
T {

—-t

Fig. 4

In the next two parts of this section the simple lumped parameter model
introduced in Fig. 2 is extended for the purpose of explaining the physics of
elastic and post-elastic plate buckling. This study facilitates the understanding of
the phenomena referred to above and, finally, indicates a suitable form of plastic
mechanism to be used in the analysis in Section 3. The form of this mechanism
is different from that used by Murray [9]. Their relationship is discussed in
Section 5.

2.1 Square Plate

A simple lumped-parameter model of a square plate that incorporates the
stiffening effect of the mid-plane membrane forces is shown in Fig. 5. The lon-
gitudinal strip AB is modelled (Fig. 5b) by two longitudinal rigid links and a
rotational spring which has a lumped flexural stiffness ¢/2. The lateral strip CD is
modelled by two lateral extensional springs of stiffness k and a rotational spring

P P P
’/ z G2 4 c x
i
AT
/ #
P p p

Fig. 5
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of stiffness ¢/2. As this model deflects upwards by an amount w the lateral springs
2

o w
each extend, to a first order approximation, by an amount T Thus the two lateral

springs can be replaced by a non-linear transverse spring (Fig. 5¢) which carries a
3

load equal to The equilibrium equation for small deflections of this model with

2"
no initial imperfections is

4 —pw=k*w® where p=2 k* =% ()
and its load-deflection characteristics are shown in Fig. 6. The other graphs in this
figure are load-deflection curves when there are initial imperfections. Thus this

lumped parameter mechanism models the behaviour of a square plate in the
elastic range.

Fig. 6

Up to the initiation of yielding both the extensional and rotational springs
maintain their stiffness values, but afterwards the moment at the centre pin may be
considered to reach a maximum value of M, which is a function of the axial load
(see eqn. (1)). The rotational spring must then be replaced by one with zero stiffness
because at a full plastic hinge %£=0. During the development of the plastic
mechanism and as yielding penetrates deeper into the plate the stiffness of the
transverse springs (Fig. 5b) is reduced. Eventually when the deflections are large
the mechanism yields across the full section and k is then zero. If we assume a
value of k that is small relative to its initial value and constant throughout
the deformation, the curve II (Fig. 7b) is obtained for the mechanism shown
in Fig. 7a.

Suppose the model were to be tested in a laboratory. As’ the load was
applied we would expect the experimental points to follow curve I until the onset
of yielding. Eventually, when the deflections are large the experimental points
should become asymptotic to curve I1. But we should not expect that the points
would transfer from curve I to curve IT at point 4. This is what happens in the
case of a simple strut in which nearly all of the energy is flexural, but is cannot
happen in the case of the plate model because the stiffness k of the lateral spring
(which represents the membrane stiffness) still has its elastic value at point A.
Thus the rotational spring is restrained from developing its full plastic moment
until point B. The experimental points will therefore proceed beyond point 4 to near
B and then droop down asymptotically along curve I1I towards curve I but from
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Fig. 7

above. During this stage the value of k is decreasing towards zero. Point B and
the actual failure load may or may not be well above 4 depending on the values
of the parameters defining the plate geometry. We can surmise that if the inter-
section of Curves I and II (Fig. 7b) is used as an estimate of the failure load
it will probably, but not necessarily, be conservative.

The position of B (Fig. 7b) for the model shown in Fig. 7a can be found by
considering its equilibrium in the same way for the model shown in Fig. Sc.
Moments about the left hand end give

kw?

By using eqn. (1) and after re-arranging we obtain

4M, _kw?
—w+ Jw2+P2”[—;V—+Mp]
y

2(M /P,y
This equation is plotted as Curve IV in Fig. 7b and its intersection with curve I

defines the point B. As the mechanism develops the value of k decreases (as stated
above) and when k becomes zero eqn. (3) gives curve I1.

P= (3)

2.2 Rectangular Plate

The model of the previous section can be extended to enable us to study the
mechanics of a rectangular plate.

Figure 3a shows a plate with an aspect ratio 3:1 and Fig. 8 its model. We can
compute the model’s elastic behaviour with a wide variety of initial impertfections.
The spacing of the springs and hinges is equal to the half width of the plate
and the equilibrium condition is:

Section 1-2: (6—p) w, +(— 8-+ p) wo+2wy= —k* (w > —wo, %) wy+ 6wy, — 8wy, +2woa
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Section 2-3: {—8+p) w, +{14—p) w,+(—=8+p) wy=2k* (w2 —wg,%) wy+ 8w, + 14wy, — 8wqs
Section 3-end: 2w, + (— 8+ p) wy -+ (10— 2p) wy = — 2k* (w32~ wWy3?) W+ 2wg; — 8Wg, -+ 10wy,

where wy, is the initial value of w, etc, p=22and k* = £ 4)
W
W. T -
3 W, _- T ~_ W, W,
% o a3
- ’f- 3 3 -~
P e rNC LN SN~ P
b
e i
g ’ 2 2
(B-p) wy + (-4+p) Wy + W = = KE(WT - gy ") Wy e Bugy - AW, + g
(-44p) Wy + (T-) w, + (~dapdwy = ~2K* (e g, ®y iy + gy T - i,

. 2 2
wy * (4p) Wy b (5-2p) Wy = - ZKTINGT - WggT) Wy * g - AW, + SWoe

where ¥o1 is the initial value of wl, p=—, k*=

Fig. 8

In Fig. 9a the initial imperfections indicated cause the model to deform in a
uniform waveform. But such regularity in the initial imperfections would be
unusual in practice and Fig. 9b indicates the gradual change of waveform as the
load is applied to a model with irregular deformations.

For this latter model, the onset of plasticity will occur at the central hinge and,
as shown in Fig. 10a for a moderately thick plate {c,/o,, = 2), there is unloading
accompanied by reduction of the deflection in the elastic portion until the plastic
condition is reached at the adjacent hinges after which a completely local
mechanism forms. For a much thinner plate (c,/o, ~ 6) the hinges form at both
positions almost simultaneously as shown in Fig. 10b.
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It is now possible to infer the probable causes for the deformed shapes in Fig. 4.
Taking the thinner plate first; as the load is increased, the out-of-plane deforma-
tions will grow and their shape will largely be determined by initial geometry.
In our model there was symmetry about the central hinge but of course this will
probably not occur in the analogous imperfection in a practical plate. When the
maximum load is reached, that is after the edge stresses have attained a yield
condition, the plate begins to unload. The deflections at the position of yielding
increase rapidly and, as indicated by the model, the remaining elastic portion
becomes flatter. The plastic moment will be reached at the positions of maximum
deflection and a mechanism will start to form. This will have a curved form in
plan because the out-of-plane deflections vary across the plate from a maximum
at the centre to zero at the edge. This variation is approximately sinusoidal in
form so the curve of the yield line is the intersection of an inclined flat plane with
a sinusoidal cylinder. Because the plastic hinges form over such a small range of
deflection it is easy for one of the outer hinges to form completely before the
formation of the other outer hinge is at all started. When this happens it is
suffictent that only one side of the mechanism forms for deflection to proceed
and the other side flattens out. Because of the asymmetry of the deflections in
practice this will occur in most cases.

In the thicker plate there is usually a symmetrical buckled plastic shape and
this is in fact the amalgamation of two mechanisms as shown in the thin plate.
The reason is that the asymmetry of deflected shape is not so well developed and
the separation of the deflections at which the first and second hinges form means
that the two outer hinges are forced to form almost simultaneously.

It is interesting to compare this model behaviour to that observed in the
laboratory during tests on long rectangular plates (40 <5/t 2 60). As the axial load
is increased initial imperfections grow in magnitude and gradually form a regular
pattern of elastic waves whose wavelength is approximately equal to their width.
At this stage the longitudinal stresses are greater at the edges (where the plate is
straight) than at the centreline. Finally the plate yields at the edges triggering the
development of a plastic mechanism which initially, for a very uniform elastic
deflection pattern, spreads over a large portion of the plate (Fig. 11). But of course
some region has a slightly greater deflection and it is noticed that this now
begins to deflect at a much faster rate and the other regions begin to flatten out.
The result is the local plastic deformed shape indicated in Fig. 4a.
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The model analysis in this section has indicated that the buckled shape of a
plate is governed not only by plasticity in the material but also by the initial
deformations and the rate of growth of the elastic buckles .in that part of the
plate that is adjacent to the plastic zone. This, of course, is a very complex
problem to analyse mathematically and it is useful to consider approximate, but much
simpler, approaches in an attempt to afford some insight to the plate plastic
unloading characteristics. One approach would be to assume that the initial
deformations were so regular that the buckling mechanism formed simultaneously
everywhere in the plate as in Fig. 11. The link and spring analogue of this
mechanism is shown in Fig. 9a with the resulting plastic unloading line shown
as curve II in Fig. 12. This is similar to the model in Section 2.1, it under-
estimates the collapse load and lies below the actual unloading curve V.

,, - " \V*/%\«,,
R g v N

pcr "

Fig. 12

An alternative approach is to assume that the elastic deflections are zero and
that the deformations occur only as a plastic mechanism. A study of Figs 9, 1a and
11 suggest that the mechanism as shown in Fig. 13 will be the one which the
plate eventually tries to develop because the hexagonal plates (Figs. 1 and 11)
are pivotted along their long diagonal. The length of the link (Fig. 13) is an
estimated value.

This model can be analysed simply to give the equilibrium equation:

Pw=2M, [1 ~ (1] +kw? 5)

y

- bk .
where k = —P»and the corresponding unloading line is shown as curves V1 in Fig. 12.
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Fig. 13

In this mechanism we are eliminating the contribution of the elastic portion of
the plate but at the same time increasing the amount of plastic energy dissipated
by increasing the rotation of the outer plastic hinges. Although this mechanism
is not that which corresponds to the exact solution of the problem it serves the
purpose of simplifying the analysis and provides a good approximation of the
maximum load and the unloading line. In the next section we make a similar
simplification for an axially loaded plate and henceforth in this paper we consider
only the symmetric buckle pattern.

3. Continuum Analysis

As we have seen the actual buckled shape of a compressed plate is affected
by the elasticity of the deflected regions adjacent to the region of plasticity.
But the model analysis in the previous section suggests that a modified mechanism
in which this elastic energy is eliminated may predict the plate buckling behaviour
with adequate accuracy. This modified mechanism is shown in Fig. 14 and in the
first instance it is analysed using bending action only. In Section 3.2 membrane
deformation is considered.
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3.1 Plastic Bending

The theory developed by Murray 8] is used here. The plate is considered as
being composed of longitudinal strips. There are two typical regions; one containing
strips typified by BB and another region comprising strips like CC. For strip BB
of width b (see Fig. 14a and Fig. 15a) the equilibrium equation is

PA=2M, 6)

P=oc,t 8 [\ AP +1-2] (7)

The width of the region is b (1 — % cot B} so that the load P, that this portion
of the plate can support is

that 1s

P, = o,tb{l1 — % cot B) [ (A (8)

Fig. 15

For strip CC, the geometry is shown in Fig. 15b; the inner hinge is inclined in
plan at an angle B and Murray [11] has shown that for such a situation the
effective plastic moment M " is

M, =M, sec* =M, {1 — (P}i)ZJ sec? B (9)

The equilibrium equation for this strip is

M, (14 sec? B)= PA* (10)

where A*=A x

2cot B
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and x is the distance of the strip from the plate edge. The load P, carried by these

outer regions is
zcotB oyt t2

mafteth o

th 2AY, 241 24N, 2n
g gl O B g 21 m
Oz COth {\/ (Kt) -t sk 0% [\/(Kt) +1+KtJ} (1)

where K =1 + sec? B.
The average stress o for the whole plate width is therefore

= = feP +1—e]+% {—2cot B[ AeP + 1 —¢]

+cot B [ \/G{_S)z +1— 28J+ 2‘;‘/);1 g [ \/(%8)2 F1+ 2}—3} (12)

where ¢ = A/t.

The variation of o/o, for a fixed value of £ and with different values of B is
not great and the minimum value for £ 32 is always given by B =45°. Putting
this value in eqn. (12),

E:%[\/(a)2+1—eJ+%[\/(2—;)11—2;]
ot [ \/(2i)2+1+2£J (13)
g 5| \\ 3 3 _

As £ —0 the average stress o — o,. Equation (13) gives the loaddeflection curve for
small €; in the next section a correction for membrane effects is derived. However,
it is found that the expression (13) dominates especially in the important region
of interest, viz. near the plate failure load.

(1 + sec? B)db

Q

3.2 Membrane Action

In this analysis a very simplistic approach is followed and essentially is based
on the premise that during a virtual displacement of the ends the mechanism
will deform such that the surface area must increase to maintain integrity of the
plate. We shall assume that all the required membrane deformation takes place at
the hinge lines and at a constant stress equal to the yield stress. Thus, during
a virtual change, the angle 06— (0+ d0), see Fig. 14b, and the edges of the
mechanism approach each other by 2 b0 d6. Also, the ridge extends by & cot B
sin ® dw where B is the true angle (Fig. 14b). Using the approximation

cot Bsinw~tan O
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the change in perimeter ¢, of the mechanism at some height y is therefore

g,=2b0d 6 [(1+tan By —1] (14)

and the plastic energy dissipated during the virtual change of state is

bo

— ot 1+ tanp
26,b0d 6| 2 [(1+t ~1]dy=2-p20*do| ——— 15
b 00] [0+ tan gy = 1]dy = 5 00| { TP |

The work done during the virtual change is
G, bt 50d0 (16)

where o, is the contribution to the average stress due to membrane action.
Equating (15) and (16), we have

G _ _e_[l + tan? BJ (17)
o, b/t 1+tan B
and for moderate deflections, with B = 45°
c 3
i PO 18
c, b/t (18)

The total average stress applied to the mechanism is the sum of the bending
and membrane actions. Fig. 16 and 17 show the comparison of predictions of
the theory developed above and experimental values obtained by SHERBOURNE and
Korot [6]. The tests were on square thin-walled tubes loaded axially and the elastic
line, which was for simply-supported plates with stress-free unloaded edges [3],
assumes no initial deformations. The plastic mechanism unloading line is seen to
provide reasonable agreement for the maximum load and for the rate of collapse
of the plates.
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4. Stiffened Plates

The resulis of the above plate analysis can be applied to stiffened plates loaded
axially and which fail by yielding at the intersection of the plate and stiffener.
Two examples are considered in detail here; they are from tests described in
Reference (9) and have the geometries shown in Fig. 18 and an average yield
stress of 377 MN/m?. The longitudinal deformed shape is assumed to be as shown
in Fig. 18 and the tiffener is considered to be yielding across to depth. The
analysis is similar to that in Reference (9) and requires the satisfaction of the
compatibility condition,

6=, — (19)

(20)

Also, equilibrium must be satisfied for the deformed position, i.e. for total axial
force P,

P=Ppl+Fsc—"Fst (21)
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and for moment equilibrium about 0,

t 7 h
Fpl|:“5*+h2“cJ+Fsc2TC+FSIC§=P(6+h2_e_C) (22)

in which the plate force F, is obtained using equations (13) and (18). For the
two stiffened plate geometries tabulated in Fig. 19 the unloading line obtained by
satisfying the above condition is shown in Figs. 20 and 21. Also shown there are

cocorresponding theoretical results obtained by Murray using a mechanism
indicated by Fig. 1a for plate collapse.
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5. Discassion and Conclusions

1. Previously the behaviour of isolated struts and frameworks have been studied
by superimposing two theoretical curves, one derived from elastic theory and the other
from rigid-plastic theory. Adequate descriptions of strut and framework buckling
phenomena have been obtained because nearly all of the energy of both the
elastic and plastic modes is bending strain energy. In considering the behaviour
of axially loaded plates significant amounts of energy are also stored in the form
of membrane stresses. In this paper the effect of membrane (elastic) stresses on the
buckling behaviour of axially loaded plates is considered. It is shown that the
elastic strain energy available in this form can affect the failure load, the shape of
the plastic mechanism developed during failure and the suddenness of collapse.
The understanding of the failure process has been facilitated by studying the
behaviour of analogous spring and link mechanisms. From these studies and
laboratory observations it appears that the process of failure is as follows.

With increasing axial load eventually the plate develops a regular pattern of
buckles in roughly square panels. One might expect that the plastic mechanism
would also follow a similar regular pattern throughout the plate. From the studies
of the spring and link analogues (Fig. 9) it is shown that the irregularity of
initial imperfections plays a dominant role and instead of developing a plastic
mechanism which extends right throughout the plate only one section becomes fully
developed. While this is happening the buckles throughout the remainder of the
plate decrease in amplitude and finally disappear after failure.

2. This analysis has been applied to published results for thin-walled square
tubes and agreement between theoretical and experimental results is found to be
good.

3. For the case of stiffened plates failing by plate buckling (i.e. not by stiffener
buckling) (Figs. 20 and 21) the previously published analysis of Murray [9] predicts
sudden collapse in contrast to laboratory observations. The mechanism used by
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him is shown in Fig. la, and it is seen that it is equivalent to a plastic
mechanism which extends throughout the plate. The only significant difference
between his mechanism and the one derived here is that the outer hinge line is
moved inwards (c.p. Figs. 1a and 14a). As seen in Figs. 20 and 21 this raises the
plastic mechanism line, thereby allowing more gradual collapse. It is now apparent
that Murray’s mechanism (Fig. 1a) has the maximum separation of the outer
hinges while the present mechanism (Fig. 14a) has these hinges as close together
as they can be. Thus the two curves in each of Figs. 20 and 21 are bounds and the
actual collapse curve (as suggested for example by Fig. 1b) will lay somewhere
between them. The location of these outer hinge lines although initially near to
these of Fig. la must approach closer to those of Fig. 14a during the failure
process.
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Practical hints for the Engineer and Designer

There is a continuing desire on the part of engineers to develop structural
forms to give ever increasing efficiency. In many circumstances this means that
structures are becoming thinner and more slender. The exact analysis of such
structures, for example box girders, is extremely difficult when the non-linear effects
of plasticity and buckling are included.

Nevertheless, these characteristics do in fact govern the maximum load which
the structure can carry and must be included in design calculations.

As a means of circumventing the analytical problems, there is growing trend
to separate the influences of buckling and plasticity. This paper is concerned
with the latter and proposes a simple analysis whereby the post-buckled behaviour
of stiffened plates and plate elements can be simply calculated from a plastic
medianism. Also, the paper discusses, by menas of a simple model, the influence
of large elastic deflections and membrane stresses on the magnitude of the
collapse load.

Due to the complexity of the analysis of thin structures, it is essential that
engineers and designers have a clear picture of the mechanics of the behaviour
of such structures, The aim of this paper is the simple presentation of an approach
to developing such a picture. With the increasing complexity of structural forms,
these simple approaches will have wide application and provide an approach com-
plementary to the more cumbersome and involved methods of computer based
numerical analysis. . '
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Summary

This paper examines the behaviour of uniformly compressed rectangular thin
plates when they are loaded beyond their ultimate load. The manner in which
plates buckle is described, the behaviour of analogous mechanisms consisting of
rigid links and springs are studied and from these studies a plate mechanism is
derived. It is shown that the membrane elastic energy plays a significant role in
determining the post-buckling behaviour of a thin plate.

Résumé

Dans cette contribution, on étudie le comportement de plaques minces rectan-
gulaires sous U'influence de compressions uniformes et qui sont chargées au-dessus
de leur charge ultime. On dérive le genre du voilement des plaques et on étudie
le comportement de mécanismes analogues comprenant des membres rigides et des
ressorts. On montre que I'énergie élastique de la membrane joue un rodle signi-
ficatif dans la fixation du comportement du voilement postcritique d’une plaque
mince.

Zusammenfassung

Der Beitraguntersuchtdas Verhalten gleichmaéssig gedriickter diinner rechteckiger
Platten, die iiber ihre zuldssige Last hinaus belastet werden. Die Art der Platten-
beulung wird beschrieben und das Verhalten analoger Mechanismen, bestehend aus



236 A.C. WALKER - N.W. MURRAY

starren Gliedern und Federn wird studiert und aus diesen Untersuchungen ein
Plattenmechanismus abgeleitet. Es wird gezeigt, dass die elastische Membran-
energie eine wichtige Rolle bei der Bestimmung des Nachbeulverhaltens einer
diinnen Platte spielt.
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Introduction

“Primary tensile cracking”, cracks transversing the entire thickness [2] in the
walls of reinforced concrete, liquid carrying tanks, creates an undesirable situation [4].
Appreciable circumferential tensile stresses develop in the concrete of the walls of
circular tanks due to (a) the shrinkage tendency of concrete, (b) drop in ambient
temperature and temperature gradient in the concrete, and (c¢) the ring tension
induced by the hydrostatic pressure. “Primary tensile cracks” form, vertically, when
the average of these stresses exceeds the tensile capacity of concrete, necessitating
expensive repairs.

This study is an attempt to develop a formula to determine the minimum
wall thickness of circular reinforced concrete tanks, sufficient to prevent “primary
tensile cracking” of concrete. It takes into account the time-dependent nature of
shrinkage, relaxation of the stresses due to tensile creep of concrete, frictional
restraint at the base of the tank, and thermal effects. Thermal coefficients of steel
and concrete are assumed to be equal and effects of any temperature gradient
along the height of the tank are ignored. Furthermore, instantaneous modulus of
elasticity of concrete under tension is considered to be independent of time, since
it tends to approach a constant value, much faster than the modulus of elasticity
of concrete under compression, following a relatively short curing period [9].

Shrinkage and Tensile Creep Strains in Concrete

The average time-dependent shrinkage strain of unrestrained concrete, (gg,),
may be expressed as [7]
- é(t - to))

(ash)t = (gsh)oo (1 —e (1)

where ¢ is the age of concrete at the time of strain measurement, ¢, is the age
of concrete at the start of shrinkage, (g4)., = (€)- ., and & is the coefficient
determining the change of slope of the shrinkage curve [6].



238 V.A. YERLICI

The total, initial and time-dependent linear strain of concrete per unit of tensile
stress, 1/(E,),, may be expressed as [1, 10]

YED = YEa+ (e + ) 1=~ 7 5) o
where t; is the age of concrete at the loading time, E; is the instantaneous tensile
modulus of elasticity of concrete, ¢,, is the maximum strain in concrete loaded
at a very old age, n is the coefficient determining the relation between maximum
creep strain and g, { is the coefficient determining the change of siope of the
creep curve, and x is a coefficient introducing the influences of the climatic
conditions, geometric dimensions of the member, composition of the concrete, etc.,
on the creep of concrete [3].

Shrinkage Stresses in Concrete Restrained by Reinforcement

Using relations (1) and (2) stated above, it is shown in Reference [11] that the
average concrete stress in the sections of concentrically reinforced concrete bars
under pure shrinkage for any specific age of concrete, t;, can be expressed as
— pyx(t;). Here, p is the percentage of steel and

(1) = (£ e) /m)s 16— e TR gy Aoy = A=ty

where ® = (p/E.;) + (1/E,), E, is the modulus of elasticity of steel, A = {pxn/®,
and Q = {{pke,./®) + {

The value of y(t;) as given by Eq. (3) can easily be computed with the help
of a digital computer for any p, f,, t; combination in terms of the material
constants E, E,;, (€n)ws & K, T, €o,, and ¢, which can all be determined from test
data. y values for a particular set of these constants are given in Fig. 1 for
various ages of concrete, t,, various percentages of reinforcement, p, and for various
maximum unrestrained shrinkage strains of concrete, (g,),,. Effort has been made
to choose realistic values for constants in the preparation of Fig. 1; the following
were assumed: t, = 7 days, E; =29 x 10° psi (2.04 x 10° kg per sq cm), E,;=5 x 10°
psi (0.352 x 10% kg per sq cm), £ = 0.037, k¥ = 1.0. Also, based on tensile creep data
of Rose Dam concrete [9], constants m, g,, and { were taken as 3.2 x 107%/psi
(45.4 x 10°°/kg per sq cm), 0.04 x 10°%/psi (0.568 x 10%/kg per sq cm), and 0.06
respectively.

Stresses in Concrete Wall Due to Base Restraint

Uniform circumferential tensile stresses develop in the concrete of tank walls,
due to environmental temperature drop and to shrinkage of concrete, whenever
free contraction of the tank is restrained by the frictional resistance of its subbase.
These stresses quickly vanish with height [8]. Deflected wall shape for such a
tank is shown in Fig. 2. A free tank contracts from the center of its base and,
unless the tank dimensions are unusually large, the frictional force developed can
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nowhere reach a magnitude high enough to arrest the movement of the tank’s
base completely [5]. If the subgrade resistance is assumed to be a linear function
of the tank diameter, d, and if the average friction coefficient, p, between the tank
base and the ground is taken as constant, then, these stresses can be expressed
as 6Z/2dh, [5]. Here, Z is the total ground reaction and is equal to the weight of
the tank and the enclosed liquid, h, is the thickness of the base slab of the tank,
and 6 is restraint reduction factor, introducing the height effect. Assuming rotational
fixity at the base and uniform wall thickness, & varies with the distance from the
wall base, x, the wall thickness, h,,, and the tank diameter as shown in Fig. 3 [8].
& should be taken as equal to zero for elevated tanks.

The average friction coefficient varies with the displacement of the base slab and,
in the absence of accurate pertinent data, it can be determined with the help of
Fig. 4 [5], where o is the thermal coefficient of expansion of concrete and T is the
maximum expected drop in ambient temperature.

§

15
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02 g5 10 12 */V03dhg,

Fig. 3. 8 — x/./0.3dh, relationship.

Stresses in Concrete Wall Due to Temperature Gradient

Circumferential thermal stresses develop in the concrete of the tank walls under
a temperature gradient in radial direction. It can be shown that (8) when linear
variation of temperature through the wall thickness is assumed and the effect
of Poisson’s ratio is ignored, these stresses vary uniformly and reach £ 0.8E 0T, — 15|
values at the exterior and interior surfaces. Here, T} and T, are the temperatures
of the tank wall at the interior and exterior surfaces, respectively. Although these
stresses do not alter the average concrete stresses, they may force flexural type
of cracking from one face, reducing the cross-sectional area of concrete resisting
tensile cracking.

A temperature gradient along the height of the tank will increase the average
circumferential concrete stresses (8). However, this effect is assumed to be relatively
unimportant for normal tank conditions and is ignored.
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Minimum Wall Thickness

The average circumferential tensile stress in the concrete of the tank walls for
any age t,; can be found by summing up the stresses developed due to the
shrinkage tendency of concrete, environmental temperature drop, and ring tension,
F, caused by hydrostatic pressure as

Ja={— pxlt)+ 8Zy/2dh) + F/[A.(1 + pE/E )]} (4)

Here, A, is the cross-sectional area of concrete. If h,, is the wall thickness in
inches, and the tensile force, F, is computed for a ring depth of 12 in., then,
A,=12 h,. On the other hand, the usual procedure in tank design is to provide
sufficient circumferential steel reinforcement to carry all the ring tension, at a
certain allowable stress, f,, as though designing for a cracked section (4). Ac-
cordingly, p= F/(A.f.). Substituting these values of A, and p into Eq. (4) and
introducing the tensile stresses caused by temperature gradient, and assuming a
linear interaction between tension and flexural types of cracking, one obtains:

{F[—x/(12h, fo) + (fiEcY (12h,, fEqi+ FE,)]
+ (BZu)Rdh)if, + (08E0|T, — Tl iy/f=1 (5)
Here, f, is the average tensile strength of concrete per unit area, f, is the modulus

of rupture of concrete, and y is the appropriate safety factor against “primary
tensile cracking” of concrete in tank walls.
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x values, given by Eq. (3), decrease in time as can be seen in Fig. 1 and
approach an asymptotic value for all intensities of shrinkage and percentages of
reinforcement. In designing for wall thickness, the minimum y value should be used
with Eq. (5) in order to cover all the significant effects of the shrinkage of concrete.
For practical purposes, it would be accurate enough to take minimum y value =1
(t; =90 days). Such minimum values of y, based on the same set of material
constants used in the preparation of Fig. 1, are given in Fig. 5 for various
maximum unrestrained shrinkage strains of concrete and for varying percentages of
reinforcement.
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Fig. 5. x(t; =90 days) — p relationship.

Fig. 6 shows the variation in the minimum % values given in Fig. 5 with
change in E.; and . The minimum v values of Fig. 5 can be adjusted for use
with different E,; and x values when multiplied by the corresponding adjustment
factors B; and B, given in Fig. 6, respectively.
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Fig. 6. Adjustment factors, B; and B, for corresponding E,; and « values, respectively.

Example

Determine the minimum wall thickness, h,,, for the given circular water tank,
sufficient to prevent “primary tensile cracking” at the specified depth. Given:
d =300 in., x =24 in., F = 10,000 Ib per ft of wall depth, f, =280 psi, f, = 560 psi,
£.=20,000 psi, E,;=40x 10° psi, E;=29 x 10° psi, (g4). =0.0003, x=1.25,
Z=07x%10°1b, hy=12 in, T=30deg F, |T, — T,| =6 deg F, o = 6.0 x 107° per
degF,and y=14.

Area of circumferential reinforcement, 4= F/f, = 10,000/20,000 =0.5 sq. in.
Assume h, = 14 in. For the given 4, x, and assumed h,, Fig. 3 gives 6=0.43.
Assume p = 0.005. For the given (gg,),, and assumed p, Fig. 5 gives x(t; =90 days)
= — 8333, For the given E,; and «, Fig. 6 gives B, =0.994 and P, =0.9%4.
Therefore, adjusted y(t; = 90)= By By =0.994 x 0.994 (— 8333)= — 8230. Then,
(e + PY/Eei + 0T)d/2 = 0.0705 and Fig. 4 gives u = 1.18. Substituting the values
given and found above into Eq. (5) and solving it for h,, one finds h, = 12.4 in.

Therefore, use 12.5 in. thickness.

Actual p= A /A, =0.5/12 x 12.5 = 0.0033, less than assumed p, therefore, O.K.

In the above example, about 25% of the concrete strength is used up by the
frictional restraint at the base of the tank and 29% by the temperature gradient.
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For the given tank, effect of base restraint vanishes 36 in. above ground,
Fig. 3. Disregarding the base restraint and the temperature gradient, and then
using the rest of the previously given data, minimum wall thickness is found to
be, h,, = 5.7 in. from Eq. (5). This value is only 1.7 in. larger than the wall thickness
found by feeding the same data into the thickness formula given in Reference (4).

Conclusion

Mmimum wall thickness of circular reinforced concrete tanks, sufficient to
prevent “primary tensile racking”, can directly be determined from Eq. (5). The
solution takes into consideration the effects of hydrostatic pressure, shrinkage and
tensile creep of concrete, ground restraint, thermal stresses and the interaction
between the tensile and flexural type of cracking forces in concrete. For usual
design purposes, values of 8, u, and y used in Eq. (5) can readily be obtained
from Fig. 3, 4, and 5 and 6 respectively.

Notation

The following symbols are used in this paper:

A, cross-sectional area of concrete.

A area of circumferential reinforcement.

d diameter of the tank.

E, instantaneous tensile modulus of elasticity of concrete.

(E.) time-dependent tensile strain modulus of concrete.

E, modulus of elasticity of steel.

F ring tension per unit depth of tank wall due to hydrostatic pressure.

fu average circumferential tensile stress in concrete.

1 average tensile strength of concrete per unit area.

f modulus of rupture of concrete.

I allowable stress in steel.

hy thickness of the base slab of the tank.

h,, thickness of the tank wall.

T, and T, temperature of-the tank wall at the interior and exterior surfaces,
respectively.

T maximum expected drop in ambient temperature.

t age of concrete at the time of strain measurement.

t, age of concrete at the start of shrinkage.

ty a specific age for concrete.

t; age of concrete at the time of loading. -

% distance from ground to the tank wall slice under consideration.

e total ground reaction under the tank.

o thermal coefficient of expansion of concrete.

B, and B, adjustment factors.

Y appropriate factor of safety against “primary temsile cracking of

concrete” in tank walls.
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0 restraint reduction factor.

g maximum strain of concrete loaded at a very old age.

(En) average time-dependent shrinkage strain of unrestrained concrete.

(Ssh)oc (gsh)(!=°0)-

¢ coefficient determining the change of slope of the creep curve.

n coefficient determining the relation between maximum creep strain
loaded at a very young age and ¢ .

K a coefficient introducing the influences of the climatic conditions,
geometric dimensions of the member, composition of the concrete,
etc., on the creep of concrete,

A Epxn/@.

L average friction coefficient between the tank base and the ground.

£ coefficient determining the change of slope of the shrinkage curve.

p percentage of reinforcement.

® (p/Ec) + (1/E,)

v(t,) a function given by Eq. (3).

Q (Coxe, /@) +

Practical Consequences

The environmental conditions around the building site, the method of cons-
truction, the properties of materials used in the construction, the existing foundation
conditions, the time of initial loading, and utilization greatly vary from one
reinforced concrete tank to the other. Different minimum tank wall thicknesses
are needed to prevent “primary tensile cracking” in different tanks because the
above stated factors significantly influence the ultimate tensile strength, the
shrinkage, and the tensile creep properties of concrete, the amount of base
friction restraining the displacement tendencies of the tank, and the amount of the
maximum temperature gradient which may develop in the tank walls. Eq. (5),
which accounts separately for all these effects, enables the designer to determine
the required minimum wall thickness for a circular reinforced concrete tank under
any given set of conditions. Use of tank wall thicknesses greater than those
thus found not only leads to waste in material and labor, but, in extreme cases,
may force cracking because of the adverse effect of wall thickness on the base
restraint of the tank. Therefore, the minimum wall thickness found with the help
of Eq. (5) is the most economical solution to the problem ensuring safety against
cracking under all conditions.
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Summary

A formula is developed for determining the minimum wall thickness of circular
reinforced concrete tanks, sufficient to prevent “primary tensile cracking” of
concrete. It accounts for the effects of hydrostatic pressure, time-dependent
shrinkage and tensile creep of concrete, ground restraint, thermal stresses and the
interaction between the tensile and flexural type of cracking forces in concrete
and easily lends itself to solution with the help of accompanying charts.

Résumé

On développe une formule pour la détermination de I’épaisseur minimale de
réservoirs en béton armeé, a section circulaire, suffisante 4 prévenir la rupture
intégrale du béton. Elle s’explique par I’effet de la pression hydrostatique, par le
retrait dépendant du temps et I'effet du fluage du béton ainsi que par le serrage
au fond du réservoir; en plus par les contraintes thermiques et I'interaction entre
leffet de dilatation et de flexion des forces de rupture dans le béton. On arrive
facilement a la solution du probléme 4 la main des diagrammes accompagnants.

Zusammenfassung

Es wird eine Formel zur Bestimmung der Mindestwandstirke kreisférmiger
Stahlbetontanks entwickelt, die das durchgehende Reissen des Betons verhindert.
Dieses erklért sich aus der Wirkung des hydrostatischen Druckes, des zeitabhin-
gigen Schrumpfens und Kriechens des Beton, der Einspannung am Boden des
Tanks, aus Warmebeanspruchungen und der Wechselwirkung zwischen der durch
Dehnung und Biegung veranlassten Risskrifte im Beton. Die angegebene Formel
verhilft unschwer zur Losung mit Hilfe der beigefiigten Diagramme.

Imprimé en Suisse



Erratum

Band 34-11 der « Abhandlungen».
Vol. 34-1I des « Mémoires».
Vol. 34-11 of ““Publications™.

Aufsatz G. Eisenbiegler :

Dreiseitig gelagerte isotrope Rechteckplatten mit linear
veriinderlicher Dicke

Isotropic Rectangular Plates of Linearly Variable Thickness Supported
on Three Sides

Dalles rectangulaires isotropes d épaisseur linéairement variable
appuyées sur trois cotés
Die Tabelle 1.10 (Seite 63) und die Tabelle I1.8 (Seite 66) sind irrttimlicher-
weise vertauscht worden.

Par erreur le tableau 1.10 (page 63) et le tableau I1.8 (page 66) ont &té confondus.

Table 1.10 (page 63) and table I1.8 (page 66) have been taken by mistake.
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