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A Plastic Collapse Mechanism for Compressed Plates
Un mécanisme de rupture plastique pour plaques comprimées
Ein plastischer Bruchmechanismus fiir gedriickte Platten

A.C. WALKER N.W. MURRAY
Monash University, Department of Civil Engineering, Clayton, Victoria, 3168

1. Introduction

The analysis developed in this paper sets out to explain and predict the manner
in which rectangular plates, subject to uniform compression along two opposite
edges, behave when they are compressed beyond their ultimate load. The classical
elastic theory for the instability of a flat plate [1] and the analysis for the
subsequent large deflection behaviour [2] are now well-known. For individual thin
plates (o,/0,,>1.5) the maximum load can be predicted with sufficient accuracy
by assuming that when the mid-plane direct stress at some location along an
unloaded edge reaches a yield condition the plate will no longer be able to
sustain a further increase in loading. The same criterion may be applied to thicker
plates, although there is less justification for it, and a semi-empirical design curve
has been formulated [3, 4] in which the effects of initial imperfections have been
included by using a generalised imperfection parameter.

But, of course, plates in engineering practice are not used in isolation; they
form elements in thin-walled structures. If these structures are sufficiently redundant
in topology, the failure of a single plate need not mean that the structures as a
whole will fail. It is necessary in such a situation, however, to know the load-
deformation characteristics of the buckled plates in order that the stiffness and
remaining strength of the structure can be determined. Furthermore, a study of
the load deflection characteristics during and after buckling not only indicates how
suddenly a structure will fail (ie. how “brittle” or “tough” it is) but also how
sensitive it is to initial imperfections. A few analytical attempts to obtain the
post-buckling characteristics of plates have been made. Graves-SmitH [ 5] and others
at Cambridge used numerical methods to obtain an elasto-plastic solution. They
obtained theoretical load-deflection curves for a few plates but the method employed
required large amounts of computer time and it appears that for this reason
more general studies have not been made. More recently SHERBOURNE et al. [6, 7]
have used a plastic mechanism method to study the post-buckling behaviour of
flat and corrugated plates. Although good agreement between theory and experi-



218 A.C. WALKER - N.W. MURRAY

mental results was obtained in some cases this was not true in others for which
the agreement was poor. Sherbourne’s analysis assumed a particular shape of
mechanism and the plastic unloading line was obtained by allowing the geometric
proportions of the shape to vary and determining, by means of a computer,
the minimum load corresponding to a specified deflection amplitude.

Murray [8, 9] has tested thirteen plates stiffened by bulb flats; these plates
were observed to fail either by lateral buckling of the stiffener or by a con-
certina-like buckling of the plate-deck. It is only the latter case which is considered
here. To obtain a theoretical estimate of the plastic collapse behaviour, the geometry
of the plastic mechanism (as indicated by laboratory observations (see Fig. 1a))
was assumed and a numerical minimisation technique was employed to fix the
size of the mechanism. It was found necessary to use a small — and a large —
deflection theory in order to explain the behaviour of these plates. Unfortunately,
it was not possible in the experimentation to obtain the plastic collapse line
because the apparatus could not follow the unloading which occurred. Thus the
theory could not be thoroughly checked against experiment. The theory developed
by Murray does not explain one observed phenomenon in his study of the beha-
viour of stiffened plates. He observed in the laboratory that for stiffener buckling
sudden collapse occurred as predicted by theory. However, for the concertina-like
plate buckling cases failure was somewhat more gradual whereas his theory
predicted that the suddenness of collapse would be similar to that for the stiffener
buckling cases. In other words, the experimental results crossed the theoretical
collapse line (Fig. 1b) and penetrated deeply into a region where failure should
have occurred already.

In this paper a similar approach is taken, rigid-plastic analysis is used and
results are derived that are in good agreement with experiment. But since this
analysis, like the others referred to earlier, assumes a mode of plastic deformation,
it is useful to consider the mechanics by which such a plastic mechanism may be
formed. To obviate the problems involved in solving the non-linear elasto-plastic
plate formulation the phenomena are discussed with reference to simple conceptual
models.
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2. Concept of Plastic Mechanism

When a structure is wholly elastic the analysis can be performed using the
well-established method involving the requirements of compatibility and equilibrium
or the equivalent condition of energy extremum. But when the material begins to
yield in some region due to the state of stress there, the analytical problems
increase by an order of magnitude. Recently, large computers in conjunction with
discrete numerical methods, such as finite elements or finite differences, have been
used to follow the load-deformation characteristics of simple structural elements as
the plasticity spreads due to increased loading. However, even with such machines
it is not a simple task and is often costly in machine time. It is therefore not a
viable approach for initial design calculations — at least not with today’s computers.

An alternative approach has been to assume a state in which the plasticity
has spread to such an extent that all the deformations occur in that region and
we neglect the deformations that occur in the remaining elastic portion. The
behaviour of the plastic portion is itself simplified, without distorting the physics
of the region, so that the mathematics become elementary. The type of conceptual
model used here is shown in Fig. 2a for elastic behaviour and Fig. 2b for
plastic behaviour.

In this, the rotational spring stiffness ¢ models the elastic flexural rigidity of
a strut and the curves (i), (i) and (iii) in Fig. 2¢ indicate the elastic load-
deflection relationship for various values of initial imperfection w,. Now turning to
plastic behaviour we take the particular example of a strut with rectangular
cross-section, breadth b and depth d, that is subjected to a moment M ,and a
longitudinal force P; if the material everywhere on the cross-section is assumed
to be stressed to its yield stress, the maximum moment it can carry is [ 10]

P
M,=M,[1- (P—y)z], (1)
2
where M , is the plastic moment 7 O Putiing an equivalent hinge in the middle,
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Fig. 2b, we determine the curve (iv) in Fig. 2¢. This method assumes that there
is a sudden transition from elastic to plastic mode at the intersection of the curves.
Of course in reality there is a gradual spread of plasticity across the section,
but because most of the energy in the column in both the elastic and plastic
modes is bending strain energy this approach has in the past been a sufficiently
accurate and useful aid in describing the behaviour of struts and frameworks [10].

In this paper we are interested primarily in long rectangular plates and it is
observed during tests that these will deform into regular wave-like patterns of the
type shown in Fig. 3a. Measurements of a typical elastic plate supported at its
edges give a load-deflection relationship of the shape indicated in Fig. 3b. If the
plate is sufficiently thin it will support axial loads in excess of the critical load
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corresponding to the perfectly flat condition. It is well-known that this increase
is due to the restraining effect of the membrane action and that the longitudinal
direct stresses become greater at the edges during buckling. As stated earlier, the
unloading characteristics of an axially loaded thin plate are difficult to obtain
experimentally because collapse occurs very rapidly once a mechanism starts to form.
Elastic energy stored as membrane and bending stresses is released during this
process and drives the mechanism until its deformations are large. Fig. 4a shows
the deformed shape of the mechanism observed for medium-thick steel plates
(o,/o, <1.5)and Fig. 4b typifies the corresponding shape for thin plates (although
the shape shown in Fig. 4a has also been observed).
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In the next two parts of this section the simple lumped parameter model
introduced in Fig. 2 is extended for the purpose of explaining the physics of
elastic and post-elastic plate buckling. This study facilitates the understanding of
the phenomena referred to above and, finally, indicates a suitable form of plastic
mechanism to be used in the analysis in Section 3. The form of this mechanism
is different from that used by Murray [9]. Their relationship is discussed in
Section 5.

2.1 Square Plate

A simple lumped-parameter model of a square plate that incorporates the
stiffening effect of the mid-plane membrane forces is shown in Fig. 5. The lon-
gitudinal strip AB is modelled (Fig. 5b) by two longitudinal rigid links and a
rotational spring which has a lumped flexural stiffness ¢/2. The lateral strip CD is
modelled by two lateral extensional springs of stiffness k and a rotational spring

P P P
’/ z G2 4 c x
i
AT
/ #
P p p

Fig. 5
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of stiffness ¢/2. As this model deflects upwards by an amount w the lateral springs
2

o w
each extend, to a first order approximation, by an amount T Thus the two lateral

springs can be replaced by a non-linear transverse spring (Fig. 5¢) which carries a
3

load equal to The equilibrium equation for small deflections of this model with

2"
no initial imperfections is

4 —pw=k*w® where p=2 k* =% ()
and its load-deflection characteristics are shown in Fig. 6. The other graphs in this
figure are load-deflection curves when there are initial imperfections. Thus this

lumped parameter mechanism models the behaviour of a square plate in the
elastic range.

Fig. 6

Up to the initiation of yielding both the extensional and rotational springs
maintain their stiffness values, but afterwards the moment at the centre pin may be
considered to reach a maximum value of M, which is a function of the axial load
(see eqn. (1)). The rotational spring must then be replaced by one with zero stiffness
because at a full plastic hinge %£=0. During the development of the plastic
mechanism and as yielding penetrates deeper into the plate the stiffness of the
transverse springs (Fig. 5b) is reduced. Eventually when the deflections are large
the mechanism yields across the full section and k is then zero. If we assume a
value of k that is small relative to its initial value and constant throughout
the deformation, the curve II (Fig. 7b) is obtained for the mechanism shown
in Fig. 7a.

Suppose the model were to be tested in a laboratory. As’ the load was
applied we would expect the experimental points to follow curve I until the onset
of yielding. Eventually, when the deflections are large the experimental points
should become asymptotic to curve I1. But we should not expect that the points
would transfer from curve I to curve IT at point 4. This is what happens in the
case of a simple strut in which nearly all of the energy is flexural, but is cannot
happen in the case of the plate model because the stiffness k of the lateral spring
(which represents the membrane stiffness) still has its elastic value at point A.
Thus the rotational spring is restrained from developing its full plastic moment
until point B. The experimental points will therefore proceed beyond point 4 to near
B and then droop down asymptotically along curve I1I towards curve I but from
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Fig. 7

above. During this stage the value of k is decreasing towards zero. Point B and
the actual failure load may or may not be well above 4 depending on the values
of the parameters defining the plate geometry. We can surmise that if the inter-
section of Curves I and II (Fig. 7b) is used as an estimate of the failure load
it will probably, but not necessarily, be conservative.

The position of B (Fig. 7b) for the model shown in Fig. 7a can be found by
considering its equilibrium in the same way for the model shown in Fig. Sc.
Moments about the left hand end give

kw?

By using eqn. (1) and after re-arranging we obtain

4M, _kw?
—w+ Jw2+P2”[—;V—+Mp]
y

2(M /P,y
This equation is plotted as Curve IV in Fig. 7b and its intersection with curve I

defines the point B. As the mechanism develops the value of k decreases (as stated
above) and when k becomes zero eqn. (3) gives curve I1.

P= (3)

2.2 Rectangular Plate

The model of the previous section can be extended to enable us to study the
mechanics of a rectangular plate.

Figure 3a shows a plate with an aspect ratio 3:1 and Fig. 8 its model. We can
compute the model’s elastic behaviour with a wide variety of initial impertfections.
The spacing of the springs and hinges is equal to the half width of the plate
and the equilibrium condition is:

Section 1-2: (6—p) w, +(— 8-+ p) wo+2wy= —k* (w > —wo, %) wy+ 6wy, — 8wy, +2woa



224 A.C. WALKER - N.W. MURRAY

Section 2-3: {—8+p) w, +{14—p) w,+(—=8+p) wy=2k* (w2 —wg,%) wy+ 8w, + 14wy, — 8wqs
Section 3-end: 2w, + (— 8+ p) wy -+ (10— 2p) wy = — 2k* (w32~ wWy3?) W+ 2wg; — 8Wg, -+ 10wy,

where wy, is the initial value of w, etc, p=22and k* = £ 4)
W
W. T -
3 W, _- T ~_ W, W,
% o a3
- ’f- 3 3 -~
P e rNC LN SN~ P
b
e i
g ’ 2 2
(B-p) wy + (-4+p) Wy + W = = KE(WT - gy ") Wy e Bugy - AW, + g
(-44p) Wy + (T-) w, + (~dapdwy = ~2K* (e g, ®y iy + gy T - i,

. 2 2
wy * (4p) Wy b (5-2p) Wy = - ZKTINGT - WggT) Wy * g - AW, + SWoe

where ¥o1 is the initial value of wl, p=—, k*=

Fig. 8

In Fig. 9a the initial imperfections indicated cause the model to deform in a
uniform waveform. But such regularity in the initial imperfections would be
unusual in practice and Fig. 9b indicates the gradual change of waveform as the
load is applied to a model with irregular deformations.

For this latter model, the onset of plasticity will occur at the central hinge and,
as shown in Fig. 10a for a moderately thick plate {c,/o,, = 2), there is unloading
accompanied by reduction of the deflection in the elastic portion until the plastic
condition is reached at the adjacent hinges after which a completely local
mechanism forms. For a much thinner plate (c,/o, ~ 6) the hinges form at both
positions almost simultaneously as shown in Fig. 10b.
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It is now possible to infer the probable causes for the deformed shapes in Fig. 4.
Taking the thinner plate first; as the load is increased, the out-of-plane deforma-
tions will grow and their shape will largely be determined by initial geometry.
In our model there was symmetry about the central hinge but of course this will
probably not occur in the analogous imperfection in a practical plate. When the
maximum load is reached, that is after the edge stresses have attained a yield
condition, the plate begins to unload. The deflections at the position of yielding
increase rapidly and, as indicated by the model, the remaining elastic portion
becomes flatter. The plastic moment will be reached at the positions of maximum
deflection and a mechanism will start to form. This will have a curved form in
plan because the out-of-plane deflections vary across the plate from a maximum
at the centre to zero at the edge. This variation is approximately sinusoidal in
form so the curve of the yield line is the intersection of an inclined flat plane with
a sinusoidal cylinder. Because the plastic hinges form over such a small range of
deflection it is easy for one of the outer hinges to form completely before the
formation of the other outer hinge is at all started. When this happens it is
suffictent that only one side of the mechanism forms for deflection to proceed
and the other side flattens out. Because of the asymmetry of the deflections in
practice this will occur in most cases.

In the thicker plate there is usually a symmetrical buckled plastic shape and
this is in fact the amalgamation of two mechanisms as shown in the thin plate.
The reason is that the asymmetry of deflected shape is not so well developed and
the separation of the deflections at which the first and second hinges form means
that the two outer hinges are forced to form almost simultaneously.

It is interesting to compare this model behaviour to that observed in the
laboratory during tests on long rectangular plates (40 <5/t 2 60). As the axial load
is increased initial imperfections grow in magnitude and gradually form a regular
pattern of elastic waves whose wavelength is approximately equal to their width.
At this stage the longitudinal stresses are greater at the edges (where the plate is
straight) than at the centreline. Finally the plate yields at the edges triggering the
development of a plastic mechanism which initially, for a very uniform elastic
deflection pattern, spreads over a large portion of the plate (Fig. 11). But of course
some region has a slightly greater deflection and it is noticed that this now
begins to deflect at a much faster rate and the other regions begin to flatten out.
The result is the local plastic deformed shape indicated in Fig. 4a.
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The model analysis in this section has indicated that the buckled shape of a
plate is governed not only by plasticity in the material but also by the initial
deformations and the rate of growth of the elastic buckles .in that part of the
plate that is adjacent to the plastic zone. This, of course, is a very complex
problem to analyse mathematically and it is useful to consider approximate, but much
simpler, approaches in an attempt to afford some insight to the plate plastic
unloading characteristics. One approach would be to assume that the initial
deformations were so regular that the buckling mechanism formed simultaneously
everywhere in the plate as in Fig. 11. The link and spring analogue of this
mechanism is shown in Fig. 9a with the resulting plastic unloading line shown
as curve II in Fig. 12. This is similar to the model in Section 2.1, it under-
estimates the collapse load and lies below the actual unloading curve V.

,, - " \V*/%\«,,
R g v N

pcr "

Fig. 12

An alternative approach is to assume that the elastic deflections are zero and
that the deformations occur only as a plastic mechanism. A study of Figs 9, 1a and
11 suggest that the mechanism as shown in Fig. 13 will be the one which the
plate eventually tries to develop because the hexagonal plates (Figs. 1 and 11)
are pivotted along their long diagonal. The length of the link (Fig. 13) is an
estimated value.

This model can be analysed simply to give the equilibrium equation:

Pw=2M, [1 ~ (1] +kw? 5)

y

- bk .
where k = —P»and the corresponding unloading line is shown as curves V1 in Fig. 12.
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In this mechanism we are eliminating the contribution of the elastic portion of
the plate but at the same time increasing the amount of plastic energy dissipated
by increasing the rotation of the outer plastic hinges. Although this mechanism
is not that which corresponds to the exact solution of the problem it serves the
purpose of simplifying the analysis and provides a good approximation of the
maximum load and the unloading line. In the next section we make a similar
simplification for an axially loaded plate and henceforth in this paper we consider
only the symmetric buckle pattern.

3. Continuum Analysis

As we have seen the actual buckled shape of a compressed plate is affected
by the elasticity of the deflected regions adjacent to the region of plasticity.
But the model analysis in the previous section suggests that a modified mechanism
in which this elastic energy is eliminated may predict the plate buckling behaviour
with adequate accuracy. This modified mechanism is shown in Fig. 14 and in the
first instance it is analysed using bending action only. In Section 3.2 membrane
deformation is considered.

I 2

——f

b
Y
7"% “
B z . .
(3 1 e+89 1\ ,ﬁ' 2&\
b/4 / ﬁg | \ ’1 (&) W+ 8w
AC il
Y

SECTION ZZ

U S

SECTION YY

Fig. 14



228 A.C. WALKER - N.W. MURRAY

3.1 Plastic Bending

The theory developed by Murray 8] is used here. The plate is considered as
being composed of longitudinal strips. There are two typical regions; one containing
strips typified by BB and another region comprising strips like CC. For strip BB
of width b (see Fig. 14a and Fig. 15a) the equilibrium equation is

PA=2M, 6)

P=oc,t 8 [\ AP +1-2] (7)

The width of the region is b (1 — % cot B} so that the load P, that this portion
of the plate can support is

that 1s

P, = o,tb{l1 — % cot B) [ (A (8)

Fig. 15

For strip CC, the geometry is shown in Fig. 15b; the inner hinge is inclined in
plan at an angle B and Murray [11] has shown that for such a situation the
effective plastic moment M " is

M, =M, sec* =M, {1 — (P}i)ZJ sec? B (9)

The equilibrium equation for this strip is

M, (14 sec? B)= PA* (10)

where A*=A x

2cot B
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and x is the distance of the strip from the plate edge. The load P, carried by these

outer regions is
zcotB oyt t2

mafteth o

th 2AY, 241 24N, 2n
g gl O B g 21 m
Oz COth {\/ (Kt) -t sk 0% [\/(Kt) +1+KtJ} (1)

where K =1 + sec? B.
The average stress o for the whole plate width is therefore

= = feP +1—e]+% {—2cot B[ AeP + 1 —¢]

+cot B [ \/G{_S)z +1— 28J+ 2‘;‘/);1 g [ \/(%8)2 F1+ 2}—3} (12)

where ¢ = A/t.

The variation of o/o, for a fixed value of £ and with different values of B is
not great and the minimum value for £ 32 is always given by B =45°. Putting
this value in eqn. (12),

E:%[\/(a)2+1—eJ+%[\/(2—;)11—2;]
ot [ \/(2i)2+1+2£J (13)
g 5| \\ 3 3 _

As £ —0 the average stress o — o,. Equation (13) gives the loaddeflection curve for
small €; in the next section a correction for membrane effects is derived. However,
it is found that the expression (13) dominates especially in the important region
of interest, viz. near the plate failure load.

(1 + sec? B)db

Q

3.2 Membrane Action

In this analysis a very simplistic approach is followed and essentially is based
on the premise that during a virtual displacement of the ends the mechanism
will deform such that the surface area must increase to maintain integrity of the
plate. We shall assume that all the required membrane deformation takes place at
the hinge lines and at a constant stress equal to the yield stress. Thus, during
a virtual change, the angle 06— (0+ d0), see Fig. 14b, and the edges of the
mechanism approach each other by 2 b0 d6. Also, the ridge extends by & cot B
sin ® dw where B is the true angle (Fig. 14b). Using the approximation

cot Bsinw~tan O
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the change in perimeter ¢, of the mechanism at some height y is therefore

g,=2b0d 6 [(1+tan By —1] (14)

and the plastic energy dissipated during the virtual change of state is

bo

— ot 1+ tanp
26,b0d 6| 2 [(1+t ~1]dy=2-p20*do| ——— 15
b 00] [0+ tan gy = 1]dy = 5 00| { TP |

The work done during the virtual change is
G, bt 50d0 (16)

where o, is the contribution to the average stress due to membrane action.
Equating (15) and (16), we have

G _ _e_[l + tan? BJ (17)
o, b/t 1+tan B
and for moderate deflections, with B = 45°
c 3
i PO 18
c, b/t (18)

The total average stress applied to the mechanism is the sum of the bending
and membrane actions. Fig. 16 and 17 show the comparison of predictions of
the theory developed above and experimental values obtained by SHERBOURNE and
Korot [6]. The tests were on square thin-walled tubes loaded axially and the elastic
line, which was for simply-supported plates with stress-free unloaded edges [3],
assumes no initial deformations. The plastic mechanism unloading line is seen to
provide reasonable agreement for the maximum load and for the rate of collapse
of the plates.
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4. Stiffened Plates

The resulis of the above plate analysis can be applied to stiffened plates loaded
axially and which fail by yielding at the intersection of the plate and stiffener.
Two examples are considered in detail here; they are from tests described in
Reference (9) and have the geometries shown in Fig. 18 and an average yield
stress of 377 MN/m?. The longitudinal deformed shape is assumed to be as shown
in Fig. 18 and the tiffener is considered to be yielding across to depth. The
analysis is similar to that in Reference (9) and requires the satisfaction of the
compatibility condition,

6=, — (19)

(20)

Also, equilibrium must be satisfied for the deformed position, i.e. for total axial
force P,

P=Ppl+Fsc—"Fst (21)
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and for moment equilibrium about 0,

t 7 h
Fpl|:“5*+h2“cJ+Fsc2TC+FSIC§=P(6+h2_e_C) (22)

in which the plate force F, is obtained using equations (13) and (18). For the
two stiffened plate geometries tabulated in Fig. 19 the unloading line obtained by
satisfying the above condition is shown in Figs. 20 and 21. Also shown there are

cocorresponding theoretical results obtained by Murray using a mechanism
indicated by Fig. 1a for plate collapse.
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5. Discassion and Conclusions

1. Previously the behaviour of isolated struts and frameworks have been studied
by superimposing two theoretical curves, one derived from elastic theory and the other
from rigid-plastic theory. Adequate descriptions of strut and framework buckling
phenomena have been obtained because nearly all of the energy of both the
elastic and plastic modes is bending strain energy. In considering the behaviour
of axially loaded plates significant amounts of energy are also stored in the form
of membrane stresses. In this paper the effect of membrane (elastic) stresses on the
buckling behaviour of axially loaded plates is considered. It is shown that the
elastic strain energy available in this form can affect the failure load, the shape of
the plastic mechanism developed during failure and the suddenness of collapse.
The understanding of the failure process has been facilitated by studying the
behaviour of analogous spring and link mechanisms. From these studies and
laboratory observations it appears that the process of failure is as follows.

With increasing axial load eventually the plate develops a regular pattern of
buckles in roughly square panels. One might expect that the plastic mechanism
would also follow a similar regular pattern throughout the plate. From the studies
of the spring and link analogues (Fig. 9) it is shown that the irregularity of
initial imperfections plays a dominant role and instead of developing a plastic
mechanism which extends right throughout the plate only one section becomes fully
developed. While this is happening the buckles throughout the remainder of the
plate decrease in amplitude and finally disappear after failure.

2. This analysis has been applied to published results for thin-walled square
tubes and agreement between theoretical and experimental results is found to be
good.

3. For the case of stiffened plates failing by plate buckling (i.e. not by stiffener
buckling) (Figs. 20 and 21) the previously published analysis of Murray [9] predicts
sudden collapse in contrast to laboratory observations. The mechanism used by
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him is shown in Fig. la, and it is seen that it is equivalent to a plastic
mechanism which extends throughout the plate. The only significant difference
between his mechanism and the one derived here is that the outer hinge line is
moved inwards (c.p. Figs. 1a and 14a). As seen in Figs. 20 and 21 this raises the
plastic mechanism line, thereby allowing more gradual collapse. It is now apparent
that Murray’s mechanism (Fig. 1a) has the maximum separation of the outer
hinges while the present mechanism (Fig. 14a) has these hinges as close together
as they can be. Thus the two curves in each of Figs. 20 and 21 are bounds and the
actual collapse curve (as suggested for example by Fig. 1b) will lay somewhere
between them. The location of these outer hinge lines although initially near to
these of Fig. la must approach closer to those of Fig. 14a during the failure
process.
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Practical hints for the Engineer and Designer

There is a continuing desire on the part of engineers to develop structural
forms to give ever increasing efficiency. In many circumstances this means that
structures are becoming thinner and more slender. The exact analysis of such
structures, for example box girders, is extremely difficult when the non-linear effects
of plasticity and buckling are included.

Nevertheless, these characteristics do in fact govern the maximum load which
the structure can carry and must be included in design calculations.

As a means of circumventing the analytical problems, there is growing trend
to separate the influences of buckling and plasticity. This paper is concerned
with the latter and proposes a simple analysis whereby the post-buckled behaviour
of stiffened plates and plate elements can be simply calculated from a plastic
medianism. Also, the paper discusses, by menas of a simple model, the influence
of large elastic deflections and membrane stresses on the magnitude of the
collapse load.

Due to the complexity of the analysis of thin structures, it is essential that
engineers and designers have a clear picture of the mechanics of the behaviour
of such structures, The aim of this paper is the simple presentation of an approach
to developing such a picture. With the increasing complexity of structural forms,
these simple approaches will have wide application and provide an approach com-
plementary to the more cumbersome and involved methods of computer based
numerical analysis. . '
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Summary

This paper examines the behaviour of uniformly compressed rectangular thin
plates when they are loaded beyond their ultimate load. The manner in which
plates buckle is described, the behaviour of analogous mechanisms consisting of
rigid links and springs are studied and from these studies a plate mechanism is
derived. It is shown that the membrane elastic energy plays a significant role in
determining the post-buckling behaviour of a thin plate.

Résumé

Dans cette contribution, on étudie le comportement de plaques minces rectan-
gulaires sous U'influence de compressions uniformes et qui sont chargées au-dessus
de leur charge ultime. On dérive le genre du voilement des plaques et on étudie
le comportement de mécanismes analogues comprenant des membres rigides et des
ressorts. On montre que I'énergie élastique de la membrane joue un rodle signi-
ficatif dans la fixation du comportement du voilement postcritique d’une plaque
mince.

Zusammenfassung

Der Beitraguntersuchtdas Verhalten gleichmaéssig gedriickter diinner rechteckiger
Platten, die iiber ihre zuldssige Last hinaus belastet werden. Die Art der Platten-
beulung wird beschrieben und das Verhalten analoger Mechanismen, bestehend aus
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starren Gliedern und Federn wird studiert und aus diesen Untersuchungen ein
Plattenmechanismus abgeleitet. Es wird gezeigt, dass die elastische Membran-
energie eine wichtige Rolle bei der Bestimmung des Nachbeulverhaltens einer
diinnen Platte spielt.
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