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The Nodal Section Method for the Analysis of Box Girders
La méthode de section nodale pour I'analyse de poutres en caisson

Die nodale Querschnitts-Methode zur Berechnung von Kastentrégern.

K.C. ROCKEY H.R. EVANS
Professor and Head of Department, Department Lecturer, Department of Civil and Structural
of Civil and Structural Engineering, University Engineering, University College, Cardiff.

College, Cardiff.

1. Introduction

The Nodal Section Method has been developed to provide a relatively simple
method of analysis for both single-span and continuous box girders in which the
geometry of the cross-section varies along the length of the girder. Although
the method assumes a simplified structural behaviour in order to reduce the
amount of computation required, it does in fact provide results of a high degree
of accuracy. It is anticipated that, since the amount of computation involved is
relatively small, the method will prove to be useful during the design of a box
girder, when several analyses may be necessary in order to investigate the effect
of changing various dimensions. In such a situation, the use of the Finite Element
Method which involves extensive calculations proves to be prohibitively expensive.

The Nodal Section Method is based on a method of analysis previously
applied to folded plate structures. Indeed, a box girder is only a particular type
of folded plate structure, in which the plates have been arranged so as to form
a closed section, as shown in Fig. 1. In recent years much research has been
devoted to the analysis of folded plates and two main methods have been
established, these being the “Elasticity Method” [ 1, 2] and the “Ordinary Method”
[3, 4]

Of these two methods, the Flasticity Method is the more accurate and this
method has, in fact, already been adapted to box girder analysis by ScoORDELIs
[5, 6], this method being termed the “Folded Plate Method”. In this method,
each component plate of the box girder is considered as an individual element
and a stiffness matrix derived for it, the individual stiffness matrices for the plates
then being assembled together as in a matrix stiffness method of analysis. The
bending of each plate element normal to its plane is analysed by plate flexure
theory, and its in-plane bending is analysed by plane stress theory.
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Fig.1. Typical folded plate and box girder
cross-sections.

These classical theories necessitate the representation of the applied loading
by a Fourier Series, with the result that the computational effort required is still
considerable, although very much less than that required in a full Finite Element
solution. The Folded Plate Method is, however, very much more restricted in
its range of application than the Finite Element Method and can only be applied
to box girders in which the geometry of the cross-section remains constant all along
the length. Also, in its basic form, the method can only deal with simply supported
girders, but it has been extended by Scordelis to deal with girders spanning over
intermediate supports, provided that the extreme ends of such girders still remain
simply supported. However, since this extension of the method is based on a
superposition technique this significantly increases the solution time required.

The Ordinary Method of folded plate analysis is an approximate method in
which a simplified structural behaviour is assumed in order to reduce the amount
of computation required in obtaining a solution. The present authors have
previously shown [7], that, provided no concentrated loads are applied perpen-
dicular to the planes of any of the plates, the errors introduced by these simplifying
assumptions become very small provided that the length/width ratio of each com-
ponent plate in the structure exceeds 3. Now, for the majority of box girder
bridges, the dimensions of the component plates will be in accordance with
this requirement.

ScorpeLis [ 6], has already proposed a method, known as the *Finite Segment
Method ”, based on the assumptions of the Ordinary Method. In the Finite Segment
Method, a process basically similar to that of the Finite Element Method is
followed, each plate being divided initially into a number of rectangular elements
which are subsequently assembled together. However, the simplifying assumptions
of the Ordinary Method lead to much simpler element stiffness matrices and to
many fewer nodal degrees of freedom and consequently to a much more economical
solution process than the Finite Element Method. The solution time required by
ScorpeLis’ Finite Segment Method is of the same order as that required by his
Folded Plate Method, but has the advantage of being able to deal with any support
conditions. However, in the formulation as presented by ScorbpeLis, the Finite
Segment Method is restricted to the analysis of box girders in which the geometry
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of the girder cross-section remains constant all along its span, the girders being
loaded by longitudinal line loads only. Furthermore, no provision is made in the
method for dealing with concentrated loads applied normal to the planes of the
plates.

The Nodal Section Method is similar to the Finite Segment Method in that
it is based on the Ordinary Method of folded plate analysis but its formulation
is completely different and leads to further substantial savings of computer storage
and time. The Nodal Section Method is not based on a conventional matrix
stiffness approach but, instead, involves analysing the girder in a number of simple
steps, similar to the steps that would be followed if the analysis was being carried
out by hand. In fact, a hand analysis by the Nodal Section Method is a feasible
proposition for many simple girders [8]. The advantages of the Nodal Section
Method are that it can deal with various support conditions, makes use of a
Finite Element plate bending solution to enable concentrated loads normal to the
planes of the plates to be considered and, by employing an adaptation of a
procedure suggested by Jounson and Lee [9] for folded plates, can be applied to
the analysis of girders in which the geometry of the cross-section varies along the
span. It thus combines a simple solution procedure with a wide field of application.

In the present paper, the basic theory of the Nodal Section Method is presented
and results calculated by the method compared to theoretical solutions obtained
using the Finite Element Method and other existing methods of analysis.

2. Basic Theory

The Nodal Section theory is based on the Ordinary Folded Plate Theory in
which the only assumptions additional to those employed in a conventional elastic
analysis are the following:

1. The bending action of an individual plate normal to its plane may be represented
by considering a transverse one-way slab strip.

2. The in-plane longitudinal bending action of an individual plate is similar to that
of a beam spanning between the end diaphragms.

On the basis of these assumptions, the behaviour of a box girder may be
considered to consist of the action of a series of transverse one-way frames elastically
supported by a system of interconnected plate beams spanning longitudinally
between the supporting diaphragms. These frames only transmit shears and moments
in the transverse direction, this action being termed the “transverse frame action”,
while the plate “beams” only transmit forces in their planes, this action being
termed the “longitudinal plate action™ of the structure. This idealised behaviour
is illustrated in Fig. 2.

2.1. General Outline of Method

The transverse frame action is analysed by assuming each transverse frame to be
supported at its joints, as shown in Fig. 2. By applying the slope-deflection
equations it is possible to obtain the transverse moments acting within the frame,
together with the joint reactions Rg..Rp. The longitudinal plate action is then
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Fig. 2. Idealization of structural behaviour.

analysed by considering each plate to act as a beam spanning between the sup-
porting diaphragms, the analysis ensuring that the longitudinal strain developed at
the edge of each plate is compatible with the edge strain developed in adjacent
plates and that the corresponding longitudinal edge forces in adjacent plates are in
equilibrium as shown in Fig. 2. Furthermore, since the frame and plate systems
are considered to be interconnected at the joints, as shown in Fig. 2, then the
reactions of the frame system and the joint loads of the plate system must be
equal and opposite, and the joint deflections of the two systems must be identical.

Since the Nodal Section Method is to be applied to box girders in which the
geometry of the cross-section varies along the span, a transverse frame analysis is
carried out at a number of sections taken on the structure, as shown in Fig. 2 the
transverse frames being assigned a unit width in the longitudinal direction for
convenience. The transverse sections are termed “nodal sections” and for a tapered
girder, the frame taken at each nodal section will be of different dimensions and
each frame is analysed under the action of the external loading pertaining to that
particular nodal section. The reactions thus determined at each nodal section are
then applied in the negative direction as joint loads on to the plate system and the
longitudinal edge shear forces and strains set up in the plates at each nodal section
are calculated and made to satisfy equilibrium and compatibility.
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From the Nodal Section analysis, values of transverse bending moments,
longitudinal stresses and vertical and horizontal joint displacements are determined
at each nodal section. The basic method gives the values of these quantities at the
joints only, but values at positions across the width of the various plates can also
be determined by carrying out some additional simple steps.

Because equilibrium and compatibility conditions at the joints are only satisfied
explicitly at the centre line of each of the nodal sections, the accuracy of the
solution will vary with the number of nodal sections employed. It will be shown in
Section 5 that the rate of convergence to an exact solution is rapid and that
accurate results can be obtained with only a few nodal sections.

2.2. Special Consideration for Concentrated Loads

Further consideration must be given to the analysis of the transverse frame
system under the action of the external loading. A one-way slab strip is only a good
representation of the actual behaviour of a plate when the plate bends into an
approximately cylindrical surface so that the proportion of the external load
carried by longitudinal bending and twisting is negligible. This is so when the plate
has a length/width ratio greater than 3, provided that the lateral loading has a
reasonably uniform distribution in the longitudinal direction [7].

To deal with localised loading effects such as a wheel load on a top flange, the
out-of-plane bending of each plate subjected to concentrated loading must first be
analysed by the Finite Element Method. In this Finite Element analysis, the
longitudinal edges of the plate are assumed to be fully clamped and the edge
holding forces and moments are calculated. These fictitious holding forces are then
applied in the negative direction to the box girder as joint “loads” and the box
girder analysed by the Nodal Section Method.

Once the Nodal Section analysis has been completed, the results are then super-
imposed on to the initial Finite Element solution so that the fictitious edge holding
forces and moments are eliminated.

In bridge design, it is often necessary to calculate the bending moments set up
in the top flange in the locality. of the applied concentrated loading. The initial
Finite Element solution gives these moments, on the assumption that the longitudinal
edges of the flange plate are clamped. To obtain the true values of these moments,
another Finite Element plate bending solution of the loaded plate must be carried
out after the Nodal Section analysis has been completed. In this final step, the
deflections of the longitudinal edges of the plate, as predicted by the Nodal Section
Method, are imposed on the plate, which is otherwise unloaded. By superimposing
the results of the two Finite Element analyses, a complete picture of the moments
set up in the loaded flange is obtained. The steps in a complete solution of this
type are illustrated in Fig. 3.

The introduction of the Finite Element solution of the deck plates does, of
course, increase the overall solution time. However, it must be appreciated that in the
proposed procedure, a Finite Element solution is only required for those plates
that are subjected to localised loading, and the number of plates loaded in this
way is usually small compared to the total number of plates in the cross-section.
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Furthermore, these plates are only analysed for bending normal to their planes so
that only 3 degrees of freedom have to be considered at each nodal point instead
of the 6 degrees of freedom that would have to be considered at each node in a
full Finite Element analysis of the complete girder.

As an alternative to using the Finite Element Method, the edge holding forces
of the plates subjected to concentrated loads may also be obtained from design
tables [ 10]. The fictitious joint loads to be considered in the Nodal Section analysis
may thus be determined directly without any additional solution time being required.

2.3 Sway Correction

Since, as discussed earlier, it is assumed that the frame system is elastically
supported at the joints by the plate system, a situation is created in which the
displacements of the plate system are produced by the frame reactions, whilst these
reactions themselves depend partly on the plate displacements.

To overcome this problem, the Nodal Section analysis is divided into two parts.
In the first part, which will be called the “No-Sway Solution”, the box girder is
analysed assuming the joints of the frame system to be rigidly supported by the plate
system, whilst, at the same time, allowing the joints of the plate system to deflect.
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The resulting incompatibilities between the deflections of the slab and plate systems
are then removed by a subsequent “Sway Correction”.

2.4. Continuous Box Girders

During the longitudinal plate analysis, each plate is analysed as a beam of
variable cross-section spanning between the supporting diaphragms. If these beams
are statically indeterminate, as in the case of a continuous girder, then a matrix
approach is employed.

3. No-Sway Analysis

In this Section, the matrix formulation of the No-Sway analysis will be described.
The analysis will be presented in general terms, but in some cases the equations will
be written for the specific case of the typical structure shown in Fig. 4 to clarify
their form. Only an outline of the various stages in the analysis can be given in the
present paper, but greater detail of some of the steps has been included in earlier
reports by the authors [11].

Typical externally

apphed joint
suppori ——— moment
(0) Generai view of structure Me,i

Qs O 8 @a B 83

O Joint numbers ¢ ® v
O Plate . A
A B, Plate edge labels Ne & °’B A
@
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Fig.4. Typicalstructureconsidered in the analysis.

3.1. Idealisation of Structure

Before the analysis can be started, the structural idealisation has to be carried
out. First a number of nodal sections must be taken across the structure. These
need not be equally spaced and should be distributed efficiently, i.e. more should
be positioned in regions of anticipated high stress gradients as in a graded Finite
Element mesh. In the general case, the nodal sections are numbered sequentially
from 1 to n,, a typical nodal section being denoted by n.
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The next step is to define the cross-section of the structure. The plates are
numbered from 1 to p, a typical plate being denoted by p and the joints are
numbered from 1 to j, a typical joint being denoted by j. In addition, each
longitudinal edge of each plate must be identified by the letter 4 or B, to assist
the assembly procedure employed in the solution.

The following rules must be observed in carrying out the structural idealisation:
1. As will be discussed in Section 3.3, the method is only capable of dealing with

structures in which no more than 3 plates meet at any joint, and 2 of these

3 plates must be co-planar. Consequently, a structure containing a joint such

as that shown in Fig. 5 cannot be analysed, unless the joint is idealised as shown.

AVARRNAN

P d\sfc_mce
Actual Joint  Idealized Joint

Fig. 5. Idealization of a typical 3 plate joint.

2. When a joint connects two plates only, then edge A of one plate and edge B
of the other plate must be located at the joint, as at joints 1, 3, 4 and 6 of
the structure illustrated in Fig. 4.

3. When a joint connects three plates, then edge 4 of one of the co-planar plates
and edge B of the other co-planar plate must intersect at the joint. Either
edge A or edge B of the third plate can be located at the joint, see joints 2
and 5 in Fig. 4.

4. In a structure containing adjacent co-planar plates, these plates must be
numbered sequentially, see plates 1 and 2, and 4 and 5 in Fig. 4.

Having numbered and labelled the cross-section, a “connectivity” matrix [ AD]
is set up, which specifies which edges of which plates meet at each joint. Each
column of the matrix corresponds to a plate edge and each row corresponds to
a joint, the plate edges meeting at a particular joint being indicated by inserting
the figure “1” in the appropriate place in the matrix. The construction of the
[ AD] matrix for the cross-section shown in Fig. 4 is as follows:

Plate  Plate Plate Plate Plate Plate Plate

1 2 3 4 5 6 7

Edge A B A B A B A B A B A B A B
1 0 0 0 0 O O O 0 O O 1 0 07 Jointl
6o *r 1 0 0 0 0 0 0 0 0 O0 1 O » 2
[AD]=f{0 O 0 1 1 0 O O O O 0 0 0 O » 3
o 0 60 0 0t 1 0 O O O O O O » 4
6o o 6 0o 0 0 0 1 1 0 O 0 0 1 » 5
0o 6 6 0 0 0 0 0 0 1 1 O 0 0] » o

3.2 Transverse Frame Analysis

As discussed in Section 2.1, a transverse frame, such as that shown in Fig. 2,
is analysed for transverse bending at each nodal section during the transverse
frame analysis. This analysis is the same for each nodal section unless the nodal
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section coincides with a diaphragm, which, by preserving the cross-sectional shape,
prevents transverse bending occurring. Thus, for the typical structure shown in Fig. 4,
nodal sections 1, 8 and 11 are supported by diaphragms, and a transverse frame
analysis is not required at these sections.

The transverse frame analysis at a typical nodal section #n will now be considered.
It should be remembered that, in the No-Sway Solution now being discussed,
those joints of the frame system which are not located at free edges are assumed
to be rigidly supported by the plate system, so that no vertical or horizontal
movements of these joints can occur, only transverse joint rotations being permitted.
Joints located at cantilever free edges are considered to be unsupported.

Consider a typical plate p at a typical nodal section n, as shown in Fig. 6.
The transverse span of the plate at this section is termed s,,, the thickness is
termed ¢,,, the inclination to the horizontal (f,, and the modulus of elasticity
E, . The notation and the positive directions for the moments and rotations at the
edges of the plate are as illustrated in Fig. 6, anticlockwise moments and rotations
being considered positive.

In order to reduce the number of subscripts, the subscript n will be deleted
whenever possible, because all expressions relate to the general nodal section n.

'¢P-"‘

Fig. 6. Section through a typical plate p
at nodal section n.

The Slope Deflection Equations for the typical plate p, see Fig. 6, may be
written as:
M, ,=2%,8,4,+%,0p,+MF,,
Mp,=h,0,4,+ 2N, 05,+ MFg,

3E (1)
where A, = e
p

An equation similar to (1) may be written for each plate in the cross-section from
1 to p,, provided that the plate does not have a free edge. In the case of a plate,
such as an edge cantilever, which does have a free edge, then, in equation (1)
BA,p — 93,1, = 0

When equations similar to (1) have been written for all plates from p=1 to p,
at the given nodal section they may be summarised as:

(M)} =[40] {0} + {MF) )

In this equation the vector {M} represents all the plate edge moments, {0}
represents the vector for the plate edge rotations and {MF} represents the vector
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for the fixed end moments, thus for the typical structure shown in Fig. 4, each of
these vectors contains 14 terms.
Clearly, the plate edge moments at any joint must be in equilibrium with any

moment applied externally to that joint. For the particular case of the structure
shown in Fig. 4, the equilibrium equation for joint 3 for example is:

Mg, +M,3:=Mg;

Similar equilibrium equations may be written for each joint in the cross-section and

the equations for the complete cross-section may be written in a general matrix
form as:

{(ZM] = {Mgj (3)

It will be seen that the required addition of the plate edge moments may be

accomplished directly by using the [ AD] matrix defined in Section 3.1, as follows:

{(ZM|=[AD] {M] (4)
Then, from equations (2), (3) and (4)
[AD] [A40] {8} + [AD] {MF) = [M;) (5)

Having satisfied equilibrium, the compatibility of the rotations at the joints must
next be considered. This compatibility condition simply requires that the edge rota-
tions of each plate meeting at a joint are identical.

For example, for the particular case of the structure shown in Fig. 4, using §;
to denote the joint rotation, the compatibility equation for joint 3 is:

93,2 = 8A,3 = Bs

It will be seen that the compatibility equations for the complete cross-section
may again be established by using the [ 4D ] matrix as follows:

(0} =[4D]" (B} (6)
Substituting in equation (5)
[AD][A6]{ADT" {B} + [AD]{MF} = {My}
Defining, for convenience, a new matrix [AB] =[A4AD][A6][AD]", then:
[AB] (B} +[AD] (MF} = (M)

The only unknown in this equation is the vector {$} representing the joint
rotations and this may now be determined as:

(B} = —[AB]™ ([AD] {MF} — {M;}) (7)

Knowing the joint rotations {B], the plate edge rotations {6} may then be
determined from equation (6) and a further substitution back into the matrix form
of the slope deflection equations, i.e. equation (2), yields the required values of
the Transverse Moments {M |} acting at the plate edges at the typical nodal section n.
From a consideration of these edge moments and the external load acting per-
pendicular to the plane of each plate, the transverse moments and the lateral
displacements at positions across the width of each plate can be determined.
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Once the transverse moments at the plate edges are known, the edge support
reactions normal to the plane of each plate may be found. These are shown as
R4 ,and Ry ,in Fig. 6 and for the typical plate they are given by:

M,+M
Rop="0E e,
8)
(M, 4+ M (
R, = (”—S"—)p | RF,,

Where the terms RF, , and RFj , represent the reactions due to the external
loading acting on the span.

An equation similar to (8) may be written for all plates in the cross-section,
other than edge cantilever plates, from 1 to p,. These equations may be sum-
marised as:

(R} = [AH] {M] + {RF] ©

so that the vector representing the edge reactions normal to the plane of each
plate {R} at the typical nodal section #» may be determined. The vertical and
horizontal components of these normal reactions may then be obtained by simple
resolutions, and a vector {R{} containing the vertical components of the plate
edge reactions and another vector {R{} containing the horizontal components of
these reactions may be established. By using the [AD] matrix once again, the
total vertical and horizontal reactions at each joint may be obtained as:

vertical joint reactions  {RZ} =[AD] {Rg}
horizontal joint reactions {RY ]| =[AD] {R} (10)

The transverse frame analysis is now complete for the typical nodal section n.
The analysis is repeated for every nodal section, giving the transverse bending
moments {M,| at each of these sections, together with the intensities of the vertical
and horizontal reactions at the joints {Rz,} and {Ry,}.

3.3. Linking Analysis

In this stage of the analysis, the joint reactions obtained from the transverse
slab analysis are reversed in direction and then applied as joint loads on to the
plate system. Since it is assumed that the plate system can only transmit forces
in the planes of the various plates, the joint loads are resolved into their com-
ponents in the planes of the plates to give the plate loads.

In the case of a joint at which more than 2 plates meet, the transverse frame
reactions cannot be resolved into components in the direction of the intersecting
plates, since only two equilibrium equations are available, i.e. the vertical and
horizontal resolution of forces at the joint. However, if two of the three plates
meeting at the joint are co-planar, then the total in-plane force component acting
on these two plates can be determined and the analysis can be continued. The
type of joint idealisation required to enable this restriction to be met has already
been shown in Fig. 5. '
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34. Longitudinal Plate Analysis

In the longitudinal plate analysis, the plates are analysed as beams spanning
between the supports and since the linking analysis is only able to provide the total
plate load acting on any series of adjacent co-planar plates, such a system of co-
planar plates is considered as one wide beam unit during the plate analysis.
For the typical structure of Fig. 4, the beam units considered are as shown in
Fig. 7, plates 1 and 2 being considered to act as a single beam, plates 4 and 5
being considered to act together as another single beam, and plates 3, 6 and
7 each being considered as an individual beam.

Typicol plate
beam unit

Fig. 7. Beam units considered during analysis of typical
structure.

Thus, in the general case, a single plate beam unit considered during the
longitudinal plate analysis may consist of several plates and may be connected to
other units at its edges and also along several other lines within its width. A
typical beam unit is shown in Fig. 8 this unit containing plates 1, 2..r..v. It is
assumed that all the co-planar plates within the beam unit are numbered con-
secutively (in accordance with restriction 4 in Section 3.1), and that at the typical
nodal section n, each co-planar plate has the same thickness (¢, , = t5 ... =ty g = 1,,,)
and the same elastic modulus (E, , = E, .. = E, ,... = E, ). However, the theory can
be adapted to accommodate different thicknesses, etc.

During the longitudinal bending, the forces shown in Fig. 8 will be set up at
the typical nodal section n of the beam unit, this nodal section being assumed to

Fig. 8. Forces set up in a typical plate beam unit containing several co-planar plates.
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be at a distance x from the end of the beam. For clarity, the suffix n relating
to the nodal section will be omitted from the following equations, but it should
be remembered that these equations relate to nodal section n. The forces set up are:

1. Longitudinal forces N4, Nyj3... N,/ 4 1--Np, set up along the lines at which the
beam unit is connected to adjacent web units. These forces are set up by virtue
of the longitudinal shear developed between the adjacent units, this shear being
assumed to have an intensity Uy, Ujjy...Uppyq ... Up, at the various joints.
The positive directions of these forces are shown in Fig. 8, all the forces,
apart from Ny, being positive when tensile.

2. A bending moment PM,, set up by the total in-plane plate load acting on the
beam unit as obtained from a resolution of the transverse frame reactions.
This moment is calculated assuming the beam unit to be completely disconnected
from all other beam units, and is defined as positive when it is a sagging
moment, as shown in Fig. 8.

Having defined the forces acting on the section, the longitudinal bending
stresses set up by these forces at nodal section n can now be calculated from
beam theory, In the first instance, the bending stresses parallel to the neutral axis
of the beam unit will be calculated. Tt will be appreciated that with a tapered
web beam the neutral axis of the beam will be inclined to the horizontal at an angle
o as defined in Fig. 8. For convenience, define H=s; +5;..5,.. +5, and let
t=t;=ty..=t,..=1,

Total moment (sagging positive) on cross-section

M =PM1/U+ NA,I gCOSOH-NUz (%_Sl)
vt Nypr1 &= (s +53..+5)).. + Ng, Fcos (11)
Total axial force (tension positive) on cross-section =
=Ny;c080+Nyp..+Nypig...—Np,cO80

Thus knowing the bending moment and axial forces acting on the section from
equation (11) the total longitudinal stresses set up at all points across the section
can now be determined from standard beam theory. For example, for the typical
case of a single plate “p”, which does not form part of a co-planar plate unit,
the stress acting at edge “A” is as given in equation (12).

B 6 4 2
Gyp=—5PM,+ —N, ,cos ocp+[w—S—NB,pcosocp (12)
rpP pp PP

The stresses at the edge of the typical plate, ie. 64, and G5, calculated
according to equation (12), act parallel to the neutral axis of the plate. Before
equilibrium and compatibility between this and adjacent plates can be considered
these stresses must be converted into stresses along the edges of the plate unit.
The resolution at edge A of plate p is illustrated in Fig. 9 and the stress along this
edge at section n may be written as:

Cu4p 2Uy,tana,

= 13
cos?oL, t e

cA,p

14
and a similar equation may be written for edge B of the plate.
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Fig. 9. Resolution of stresses at typical plate edge.

Thus, for the typical plate beam unit at nodal section »n, by using equations
(12) and (13) a relationship can be established between stresses (c) and hence
the strains (g) set up along all the lines at which the unit is connected to adjacent
beam units and the longitudinal shear forces (N) and the distributed shear
forces (U) acting along these lines, together with the bending moment (PM)
that would be set up in the unit assuming it to be completely disconnected from
adjacent units.

Similar relationships may be established for all other plate beam units within
the cross-section. If the beam unit has a free edge, as in the case of an edge
cantilever, then the expressions must be modified to allow for the fact that no shear
forces exist along this edge.

When the expressions have been established for all units at nodal section n,
they may be written in a matrix form as follows:

— 1 1
{e} =[SN] {N*} + {MO} —[SU] {U*} (14)
For the typical cross-section shown in Fig. 4, the strain vector {¢} for nodal
section n will contain terms in the following order:
€4,1-€1/2:€82:84,3: 88,3, €445 845, €55, 4,65 EB,65 €4,7 and &g 7.

At a joint between between adjacent beam units, the strains along the joint
must satisfy compatibility. For example, for the typical cross-sections shown in Fig. 4,
the strain compatibility equation for Joint 3 at the typical nodal section » becomes:

83’2 + SA!:J, = O

The compatibility equations for the complete cross-section at nodal section n
may be written as: I5el =0 (15)

It will be seen that the required addition of the plate edge strains can be
carried out by setting up a matrix, that will be denoted by [ AD], which is a modified
form of the [ AD] matrix defined earlier. For the typical structure shown in Fig. 4,
[ AD'] has the following form:

0

[4D']=

cCoo0o0c o~
cooc o~

cCoOOoOROO
coo~oo0
E OO &
SO S 6
R R e
—oco00oo
—ooc0O0O
coococ o~
S5 S D S = &S
oc—~ooc oo
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and the required addition may be obtained as:
{Ze} =[AD'] {gj =0 (16)
Then, substituting for {¢} from equation (14):
[AD'] [SN] {N°} + [AD'] {MO} —[AD'] [SU] {U*} =0 (17)

Also, at a joint between two plate beam units, in addition to the strain com-
patibility condition the shear forces along the joint must satisfy equilibrium.

For the typical cross-section shown in Fig. 4, the shear force equilibrium for
joint 3 for example is as follows:

NB,z =NA,3 =N3

It will be seen that the shear equilibrium equations for the complete cross-
section may again be established by using the [ AD'] matrix as follows:

(N°} =[AD']" {N} (18)

Similar equilibrium equations may be written for the distributed shear forces
acting along the edge, i.e.

(U} = [AD*]” (U} (19)
Substituting from equations (18) and (19) in equation (17) yields:

[AD'][SNT[AD'" {N} + [AD'] {MO} — [AD'][SU][AD']" {U}=0  (20)

Defining, for convenience, two new matrices and a new vector:

[DN,]=[AD'] [SN] [4D']"
[DU,]=[4D'] [SU] and [DO,] =[A4D"] {MO}

Then, reintroducing the suffix n to show that the terms relate to the typical nodal
section n, equation 20 may be re-written as:

[DN,] {N.} + {DO,j = [DU,] {U,;=0 (21)

There are two unknowns in this equation, viz. the vectors {N,} and {U,}
which represent, respectively, the total longitudinal shear force and the intensity of
the longitudinal shear force at each joint at the nodal section n. Another relationship
between these two vectors must be established before the equations can be solved.

Such a relationship will now be obtained by considering nodal section n on a
typical joint j. Let a co-ordinate axis z be taken along this joint, as shown in
Fig. 10a, the distance along the joint between adjacent nodal sections then being
I, n-1, I n, €tc. By considering an elemental length 8z of the joint, as in Fig. 10b at
at a distance z from the end support, it is apparent that, U(z) = dN(z)/dz.

A portion of a typical curve representing the longitudinal distribution of the
joint shear forces is shown in Fig. 10a. Assume that the curve may be represented
by a polynomial function:

N(iz)=N,+a, z+a, 2*

the origin of the z co-ordinate axis being assumed to be located at section n.
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Then U(Z) = (4 + 2 a, Z (22)

and by determining the values of the coefficients a; + a, from the values of N
at each section, the value of U, may be determined from equation (22) as:

- lzn (lzn - lz —1) lzn—l
U,=N,_ +N, VN, 23
" et lzn—l (lzn~1 IF lzn) lzn lzn—l o lzn (lzn—l 5 lzn) ( )

A similar equation may be written for each other joint at nodal section n
and these equations may be summarised as:

{Ua} =[LB,] {No-1} +[LC,] Ny} +[LF,] {Nui1} (24)

Equation (24) gives the required additional relationship between the {U,} and

{N,} vectors,
Substituting for {U,} in equation (21) gives:

[DN,] {N,} +{DO,} —[DU,] [LB,] {Ny-1} — [DU.] [LCa] [Na]
~[DU,] [LF.] {Nys1} =0 |

This equation may be written as:
[DB,] {Nu—1} +[DC,] {Nuj +[DF,] {Nuy1} = — {DO,j (25)

Where

[DC,]=[DN,]—[PU,] [LC,];
[DB,]= ~[DU,][LB,] and DF, = — [DU,][LF,]

Equation (25) relates to the typical nodal section n only and similar equations
may be established for each nodal section and all the equations thus obtained
arranged in matrix form. Equation (26) illustrates the form of these equations for

3 typical nodal sections: n— 1, nand n + 1.
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[DB,1] [DC,_y] [DF,_] Ny (DO,_.}
[DB,] [DC,] [DF,] N,y + =—11D0,}  (26)
[DBn+1] [Dcn+1][DFn+1] {Nn+1} {D0n+1}

The equations for the complete structure, i.e. for all nodal sections, can be
summarised as shown in equation (27} and by inverting the [AA] matrix, the
joint shear forces can be obtained as shown in equation (28).

[44] {N} ={M] (27)
[N} =[A4T" {M} (28)

The terms of the vector {N} represent the shear forces at each joint at each
nodal section. The joint shear forces relating to any one nodal section, e.g. {N,},
can then be extracted from the {N} vector and the shear forces at the edges
of the individual plates, i.e. {N°}, determined, as in equation (18).

Knowing the longitudinal edge shear forces acting on each individual plate,
the Longitudinal Stresses at the edges of each plate acting parallel to the neutral
axis of the plate can then be determined from equation (12). Since in equation
(12) these stresses are assumed to be linearly distributed across the width of each
plate the stress at any point across the width of the plate can be determined once
the edge stresses are known.

Since the stress distribution and therefore the bending moment acting at all
sections of each of the plate beam units is now known, the deflection of each
individual plate can be determined using normal beam theory. Once all the in-
plane plate deflections are known, the Vertical and Horizontal Displacements of the
joints may be obtained from a simple resolution procedure.

The Nodal Section No-Sway Analysis is now complete. During the analysis the
following quantities have been calculated at each nodal section:

1. The transverse bending moments at the plate edges and at any required position
across the width of each plate.

2. The longitudinal stresses at the plate edges and at any required position across
the width of each plate.

3. The deflection normal to the plane and the deflection in the plane of each
plate at any required position across the width of the plate.

4. The vertical and horizontal displacement of each joint.

These quantities present a comprehensive picture of the behaviour of the box
girder.

4.0. Sway Correction

During the No-Sway analysis described in Section 3, the transverse frame action
was analysed assuming the one-way slab strips to be rigidly supported at the
longitudinal joints of the girder, whereas, in the longitudinal plate analysis, these
joints were allowed to deflect and their deflections were calculated. Consequently,
incompatibilities exist between the joint displacements of the plate and frame
systems and the object of the Sway Correction is to remove these incompatibilities.

There are two methods by which the Sway Correction may be accomplished.
The first of these methods is based on the “Method of Particular Loadings”
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developed by Yirzuakr [4] for folded plate structures and this provides a closed-
form solution, which is applicable to all girders, but which considerably
increases demands on computer time and storage space. The second method employs
an iterative technique and does not lead to any increased demands on computer
storage space and converges in all cases, the rate of convergence depending on the
form of the girder cross-section.

The authors have investigated the use of both methods and have found that the
iterative technique is the most suitable for a method of analysis that is to be used
in a design office. An adaptation of the Standard Iterative Technique used in
folded plate structures was first tried but was found to be unsatisfactory since, in some
instances, the rate of convergence was very slow and, in some particular cases,
the solution was found to be divergent. As a result of this an improved “Accelerated
Iterative Technique” based upon a method established by Mast [12] for folded
plates has been developed and Fig. 11 shows how, for a typical girder, the
accelerated iterative process rapidly converges to the correct solution where as
the normal iterative procedure does not.
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Fig. 11. Comparison of rates of con-

vergence of standard iteration and

accelerated iteration sway correction
procedures.

The first step in the Sway Correction is to quantify the incompatibilities
between plate and frame displacements, arising from the No-Sway Analysis. A con-
venient way of doing this is to express the incompatibilities in terms of the
“relative joint displacements” or “sway displacements” of each component plate.
The sway displacement for a typical plate p at nodal section #, i.e. A, , is defined in
Fig. 12a.

Hence, the in-plane plate displacements v,, and the vertical and horizontal
joint displacements 8v; , and 3k, ,, obtained from the No-Sway Analysis, must now
be converted, by means of simple geometry, into equivalent sway displacements
A, for the various plates and these sway displacements must be determined at
each nodal section that does not coincide with the position of a supporting dia-
phragm. At a diaphragm position, all such sway displacements are prevented.
Clearly should any plate have a free edge, such as an edge cantilever plate, then a
sway displacement will not be set up within the plate.
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Fig. 12a. Definition of sway displacement
of typical plate p at nodal section.

4.1, The Accelerated Iteration Method

It must be remembered that the object of the Sway Correction is to remove
the incompatibilities existing between the displacement of the frame and plate
systems at the end of the No-Sway Analysis for the external load condition.
Defining the incompatibility for a typical plate as:

incompatibility=sway displacement of plate in plate system minus the sway
displacement of plate in frame system (29)

then, since in the No-Sway analysis for the girder under external loading, the
joints of the frame system are assumed to be non-deflecting, the incompatibility
(B) for a typical plate p at nodal section n arising from the No-Sway analysis is:
EM=AZ-0 (30)

p.n
where the superscript Ext denotes that the incompatibilities relate to the No-Sway
Analysis. ' ' '

The first cycle of the Accelerated Iteration Method is now commenced. Sway
deformations equal to the incompatibilities (A %%) which exist at the end of the exter-
nal load analysis are imposed on each member of the frame system at each
nodal section. These imposed deformations set up additional transverse moments
within the members and another No-Sway Analysis is now carried out as des-
cribed in Section 3. From this analysis, additional sway displacements (AL ) are
calculated for the plate system. Then, according to equation (29), the incom-
patibilities arising from the first cycle may be defined as:

ra=AL, — A% (Y

One of the unwanted incompatibilities corresponding to the external loading,
as determined from equation {30), may now be removed by superimposing the
incompatibilities obtained from the first cycle, as listed in equation (31), in the
correct proportion. Any incompatibility may be chosen for removal; for example,
to remove the incompatibility in plate 4 at nodal section 6, then:

45+ 1 (Bi,6) =0 therefore uy = — BJ75 (32)
Bi.s
u! defining the proportion of the values from the first cycle that must be super-
imposed on to the external load values.
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The complete solution at the end of the first cycle may now be obtained as:

Complete solution=external load solution+p; (first cycle solution) (33)

Also, the incompatibilities remaining at the end of the first cycle may be
determined as:

on = Boon + 11 (Byn) (34)
the remaining incompatibility for plate 4 at nodal section 6 now being zero.

In the second cycle of the Accelerated Iteration Method, sway deformations
equal to the incompatibilities that exist at the end of the first cycle, as in equation
(34), are imposed on the slab system. Another No-Sway Analysis is carried out and
additional sway displacements (All) are calculated. Then, from equation (29), the
incompatibilities arising from the second cycle are:

I — A{;;{n _nl (35)

p.n p.n

A superposition of a certain proportion (pf) of these incompatibilities, together
with a certain proportion (u'f) of the first cycle incompatibilities, from equation
(31), will enable any two of the unwanted incompatibilities corresponding to the
external loading listed in equation (30), to be removed.

For example, if the incompatibilities of plates 4 and 9 at nodal section 6 are
chosen for removal, then:

for plate 4 BEE + W' (Bi,e) + piz (Bile) =0
for plate 9 B3 + 'l (Bs,6) + uit (BSls) =0 (36)

From these equations, the values of the proportions p'f and pjf may be determined
and then the complete solution at the end of the second cycle may be obtained as:

Complete solution = external load + p'j (1st cycle + pff (2nd cycle (37)
solution solution) solution)

Also, the incompatibilities remaining at the end of the second cycle may be

determined as: .

pn = Bpn + 0T (Bpn) + i1 (Bya) (38)
the remaining incompatibilities on both plates 4 and 9 at nodal section 6 now
being zero.

A third cycle of the Accelerated Iteration Method may now be carried out, in
which sway deformations equal to the incompatibilities that exist at the end of the
second cycle are applied to the frame system and another No-Sway Analysis of the
girder carried out. This third cycle will provide a further set of incompatibilities
which, when taken in conjunction, with those obtained from the first and second
cycles, will enable any three of the initial incompatibilities corresponding to the
external loading to be removed. Thus, a solution of greater accuracy may be
obtained after the third cycle.

Further iterative cycles may be carried out, each successive cycle commencing
with the application to the frame system of sway deformations equal to the
incompatibilities remaining at the end of the previous cycle. In each cycle, a
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No-Sway Analysis of the girder has to be carried out, and each cycle provides a
new set of incompatibilities which enables one more of the original incompatibilities,
arising from the external load analysis, to be eliminated. In order to remove all
these original incompatibilities and thus provide an exact solution, the total number
of iterative cycles required is theoretically equal to the product of the number of
plates in the cross-section and the number of nodal sections taken, i.e. p, x n,, and
the last of these cycles would involve the solution of p, x n, simultaneous equations.

However, in practice it is found that, by virtue of the nature of the deformations
set up in the box girder, the elimination of one particular incompatibility leads
to the simultaneous elimination of several others, so that an accurate solution can
be obtained by taking very many fewer cycles than are theoretically necessary for
an exact solution. The reasons for this are two-fold:

In the first place, any set of sway displacements set up will have a variation
over the length of the girder which is a function of the elastic properties of the
girder. Thus, any set of sway displacements such as Al, set up by another set of
sway displacements, such as A®™' will have a longitudinal distribution similar to
the original set and the ratio of A’ to A" will be almost the same at each nodal
section. Consequently, when the incompatibilities are eliminated from a particular
plate at a particular nodal section, they are also made extremely small at all the
other nodal sections on that plate. Thus, accurate results may be obtained by
considering the removal of incompatibilities at a few nodal sections only; in many
cases it has been found sufficient to remove the incompatibilities at only one nodal
section and in no case has the removal of the incompatibilities at.more than two
nodal sections been found necessary in order to provide a convergent solution.

Secondly, within any closed cell of the cross-section, the relationship between
the sway displacement of any one plate and the sway displacements of the other
plates within the cell is dependent on the resistance of the girder cross-section to
distortion. For any set of sway displacements, such as A’, set up by another set of
sway displacements, such as A", the ratio of A’ to AF** will be similar for each
plate within the closed region. Consequently, when the incompatibilities are removed
from any one plate within the closed cell, they are also greatly reduced for all
the other plates within the cell.

Satisfactory convergence of the Accelerated Iteration Method can thus be
achieved by removing the incompatibilities at one or two nodal sections only and
carrying out one iterative cycle for each closed cell within the cross-section,
together with one cycle for any other plates that may exist in the cross-section.
Thus, for a multi-cell girder, where the cross-section effectively forms only one
closed region, one iterative cycle only is required. For a girder containing
discreet cells, such as that shown in Fig. 12b, one iterative cycle is required for
each box, together with an additional cycle for each connecting flange, so that three
iterative cycles are required in this particular case. The order in which the 3 cycles
are carried out is immaterial as illustrated in the convergence plot shown in
Fig. 12b.

When all the required iterative cycles have been completed for a given section,
the final results for the complete girder are obtained by superimposing the
appropriate proportion of the values calculated in each cycle on to the original
values obtained from the external load analysis.
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5. Discussion of Results

In this section, the accuracy of the Nodal Section Method will be assessed by
analysing several different types of girders subjected to different loading and support
conditions and comparing the results obtained from the Nodal Section Method with
those results obtained from a full three-dimensional Finite Element analysis and
also to results obtained from the Folded Plate Method (MUPDI) developed by
Scordelis. Both these methods are currently widely used in box girder analysis

-and their accuracy, within their particular fields of application, has been firmly
established.

The first type of girder COIlSIdel‘Cd will be the simply-supported, single-cell
girder shown in Fig. 13. A full parametric study of such girders has been carried
out by the authors [14] in which 20 girders of differing dimensions were analysed,
the girder dimensions and proportions being chosen on the basis of a statistical
survey of the girders currently in service. All these girders were subjected to a line
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Girder cross-section

Fig. 13. Details of typical single-cell girder.
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loading applied over one web, as shown in Fig. 13, since such a loading would
tend to set up gross cross-sectional deformations and would thus provide a good
test of the accuracy of the Nodal Section Method.

The extensive results obtained from this parametric study have been presented
in detail in a separate report [ 14] and cannot be repeated here. However, a sample
of the results will be presented for the girder having the dimensions shown in
Fig. 13 and this girder may be regarded as a typical single-cell girder, since its
proportions closely represent the most frequently occurring proportions observed
during the statistical survey of practical girders.

Since both the Finite Element and Nodal Section methods require an idealisation
of the structure, convergence tests were carried out first of all for the typical girder
to determine the accuracy obtainable from various idealisations. The finite element
meshes and nodal section positions considered are shown in Fig. 14 and the results
of the convergence tests are summarised in Fig. 15 where the predicted transverse
moments and longitudinal stresses at the loaded joint at the mid-span cross-section
are compared to values given by the folded plate method. The results show clearly that
both methods converge rapidly and that for the particular loading case considered,
reasonably accurate results can be obtained by taking 5 nodal sections only.
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Fig. 14. Idealisations considered in convergence tests.

In each Nodal Section Analysis, two cycles of the sway correction procedure were
carried out since it has been found that two cycles are necessary in order to obtain
accurate values of the transverse moments for concrete girders in which the resistance
to cross-sectional deformations is high. The longitudinal stresses and deflections
of both concrete and steel girders and also the transverse moments of steel girders
are obtained accurately after 1 sway correction. In no case during the parametric
study of single-cell girders was it found necessary to employ more than 2 cycles
of the sway correction procedure.
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In Fig. 16 the Finite Element and Nodal Section solution times for the
parametric study are plotted, and this diagram illustrates clearly the main dis-
advantage of the finite element method in a design context. For the finest mesh
considered in the analysis, i.e. the mesh containing 144 elements, a solution time of
20 minutes was required on an I.C.L. System 470 computer, whereas the com-
parable time for the Nodal Section solution employing 11 sections and 2 sway
corrections, was of the order of 1 minute. The finite element mesh containing
144 elements, whilst being more than adequate to provide accurate results for the
simply supported single-cell girder of Fig. 13, would certainly not be sufficient for
the analysis of multi-cell, multi-span girders and the use of larger meshes for
such structures would make the Finite Element Solution time prohibitive in any

design study.
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In addition to the actual computer time used, the Finite Element Solution also
requires a great deal of data preparation time. The 144 element mesh used in
the present investigation required the preparation of some 300 computer cards,
compared to the preparation of some 25 cards for the comparable Nodal Section
Solution, and this is another serious disadvantage of the Finite Element Method in
any design application.

Since the values given in Fig. 15 relate to the loaded corner of the girder
only, the transverse moments, longitudinal stresses and vertical deflections for the
complete central cross-section are shown in Fig. 17 and it is seen that the distri-
butions predicted by the Nodal Section and Folded Plate methods agree closely.
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Fig. 17. Distribution around mid-
span cross-section of typical girder.

Figures 15 and 17 shown the accuracy obtainable with the Nodal Section
Method for one typical girder only. Obviously, as the girder proportions were
varied during the parametric study, significant changes occurred in the structural
behaviour, but, in all cases, the accuracy of the Nodal Section solution was
maintained. An example of this is given in Fig. 18 where the effects of varying the

o
i i I fvy }
30 o idw
|-

Finite clement
—-#Nodal section

No distortion of
o-sk the cross- section
o 1 L i A i i >
1 3 4 L] [}
P

Fig. 18. Variation in ratio of vertical web
deflections with variation in flange width/
web depth ratio (bf/dw).
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flange width/web depth parameter are illustrated. The amount of cross-sectional
deformation under load is seen to vary rapidly with a change of this parameter,
but the curves obtained from the nodal section and finite element solutions are
seen to agree closely throughout the complete range considered. '

In addition to single-cell girders, the two types of girder shown in Fig. 19 were
also analysed. Since, as discussed earlier, the finite element solution times for such
girders would be prohibitive, the Nodal Section values will in both cases be com-
pared to results obtained from the Folded Plate Method.

-UD.L on right hand cell

Cosely |y p bbby b bbb bpidd I
o

I..Li 1 Ib/lnsz
Il LU

g{ A ac D
o] . Lo-08

—
£
J

[y 6"0" | I '5..
f 3 -~ l
Side Elevotion End Elevation

E=320x10%1p/in?

Ur=03
_ O KN :
£
Casz )| ‘ ) ¢ L e 4220mm o £
— y— T
I J 3 A [ o)
220 _}|_ 220 8 S
‘ L 28 Mm ._J THOmm !
f 3400 mm 2800mm | 2500
Side Elevation ey
14 000CMmm
End Elevation
E=13-8kN/mm
U= 0185

Fig. 19. Typical sections considered.

In Fig. 19, Case I shows a simply supported double-cell steel box, the girder
being subjected to a transversely unsymmetrical loading consisting of a uniformly
distributed load applied over one of the cells. Certain, typical results for this
girder are listed in Table 1 — Case I and it is seen that the values of transverse
moments, longitudinal stresses and deflections given by the Nodal Section Method
agree closely with those given by the Folded Plate Method.

Similarly, close agreement of the values given in Table 1 — Case II is observed,
these values having been obtained for the typical discreet-cell, concrete girder
illustrated in Fig. 19 Case II. The convergence characteristics of the Nodal Section
solution for this girder have been discussed earlier and shown in Fig. 12b and
the results given in Table 1 — Case II were obtained after the third iterative
cycle. For a point loading applied over a web, such as that shown in Fig. 19 —
Case II, the Nodal Section Method, in common with most other methods, is not
capable of predicting accurate values of the extremely high stresses set up in the
immediate vicinity of the point loads. However, at positions away from the point load,
satisfactory values are given by the method, as shown in the table.
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Fig. 20. Results for unsymmetrically loaded continuous girder.

All the girders considered in the comparison so far have been simply sup-
ported, but in Fig, 20 a continuous single-cell girder subjected to an unsymmetrical
point loading over one web is illustrated, the loading being applied to one span
only at a position close to the end support. In the figure, the variation along both
spans of the vertical deflection of the loaded joint is plotted, and the unsymmetrical
nature of the behaviour about the mid-span support position is clearly illustrated.
The curves predicted by both the Nodal Section and Folded Plate methods are
seen to correspond closely in both the loaded and unloaded spans.

Finally, the tapered girder shown in Fig. 21 was analysed, the girder once
again being subjected to an unsymmetrical line loading applied over one of the
webs. In this case, the Folded Plate method could not be used in the analysis since
it is not capable of dealing with girders of non-uniform cross-section, consequently,
the Nodal Section results are compared to values obtained by the Finite Element
Method. In the figure, the variation along the span of the vertical deflection of a
typical joint is plotted together with the distribution of the transverse moments and
longitudinal stresses around the mid-span cross-section, and the Nodal Section and
Finite Element values are once again seen to agree closely in all cases.

6. Advantages of the Nodal Section Method

The nodal section method provides a simple and accurate method of analysis
for box girders. The computer programme (BOXGDR) based on the method requires
relatively little computer time and storage space and is thus an economical
means of analysing girders at the design stage, when many analyses may be
necessary in order to achieve the optimum dimensions. The programme has the
further advantage that both the preparation of data and the interpretation of
results is relatively simple thus leading to additional significant economies.
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Fig. 21. Results for tapered girder.

Furthermore, the sequential nature of the calculations enables solutions to be
obtained by hand, in many cases, without requiring the use of digital computers.
In addition to the obvious economic advantages, such a hand solution enables the
engineer to retain a better appreciation of the structural behaviour, particularly
since each step within the analysis is related to a certain aspect of the physical
behaviour.

Finally, the nodal section method is extremely adaptable and may be applied to
the analysis of box girders of any cross-sectional shape under any loading con-
ditions. It is also the only method, other than the very expensive finite element
method, that is capable of dealing with the analysis of box girders in which
the geometry of the cross-section varies along the span. Such girders are, of
course, frequently encountered in practice, as, for example, in the case of motorway
bridges having web plates of varying depths.

7. Conclusions

In this paper, the basic theory of the Nodal Section Method has been presented
and the accuracy of the method in the analysis of a number of different girders
has been illustrated. It is anticipated that this accuracy, coupled with the sim-
plicity of the solution procedure, which enables solutions to be obtained either by
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hand or from a computer programme that is very economical of computer time and
storage space, will make the method a valuable analytical tool for use during the
design of box girders. '

Several developments of the method are in hand at the present time. In the
first place, the method is being extended to consider the effects of shear lag on the
distribution of the longitudinal stresses set up in the flanges of a girder, and the
proposed approach (13), which is based on the use of empirical factors, has yielded
results of good accuracy. The method is also being developed for the analysis
of box girders curved in plan, and results obtained to date show excellent
agreement between the Nodal Section values and values obtained both experimentally
and from a Finite Element study. Finally, the analysis of girders on skew supports
and girders containing deflecting internal diaphragms is being considered together
with the behaviour of girders of non-uniform cross-section. All these developments
will greatly extend the field of application of the method without, in any way,
affecting the simplicity and economy of the solution procedure.

The integration of the Nodal Section Method with a Finite Element solution is
also being considered. Such an arrangement has been described in the present
paper in the method for dealing with concentrated loadings. It is intended to develop
this technique further so that the designer can if he wishes, when dealing with a
position of rapidly changing stress, such as at column supports and internal
diaphragms, use a Finite Element Solution to provide a more detailed picture of the
stress field in the local area. This procedure thus providing an accurate and
economical method of analysis with great adaptability and a wide field of application.

List of Symbols

l... n..n, nodal section numbering:
l..p..p, plate numbering. o

l... j... j, joint numbering.

Aand B plate edge labels.

AD connectivity matrix.

S plate width.

t plate thickness.

6] inclination of plate to horizontal.
M transverse bending moments.

N longitudinal shear forces at the edges of the plate beams.
c longitudinal stresses.

A sway displacement of a plate.
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Summary

This paper describes the basic theory of the Nodal Section Method. This method

has been developed for the analysis of box girders and, by assuming an idealised
structural behaviour, it provides a simplified solution procedure, which it is anticipat-
ed will prove to be of use during the design stage, when many analyses of the
girder may be required. Results are presented for many different types of box
girders, the values given by the Nodal Section Method being compared to those
obtained from other established methods, and the accuracy of the Nodal Section
values is illustrated.
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Résumeé

La contribution décrit la théorie de base de la méthode de section nodale.
Cette méthode a été développée pour lanalyse de poutres en caisson et, en
admettant un comportement structural idéalisé, elle fournit une solution de procédure
simplifiée, laquelle s’avére utile durant la phase du projet lorsque beaucoup
d’analyses de poutres sont demandées. On présente des résultats pour de nombreux
types différents de poutres en caisson; les valeurs fournies par la méthode de
section nodale sont comparées a celles obtenues par d’autres méthodes établies.
La précision des valeurs de la section nodale est démontrée.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Grundtheorie der nodalen Querschnitts-
Methode. Diese wurde zur Berechnung von Briickentrdgern entwickelt; unter An-
nahme eines idealisierten baulichen Verhaltens liefert sie eine vereinfachte Ver-
fahrenslésung, welche sich wihrend des Projektstadiums als niitzlich erweist, falls
viele Berechnungen fiir den Triger erforderlich sind. Es werden Resultate fiir
zahlreiche Typen von Kastentrigern mitgeteilt, wobei die aus der nodalen Quer-
schnitts-Methode herriithrenden Werte mit jenen von anderen Methoden verglichen
werden und die Genauigkeit der nodalen Querschnittswerte veranschaulicht wird.
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