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The Analysis of Thin, Thick and Sandwich plates by the Finite Strip Method
Analyse de plagues minces, épaisses et sandwich par la méthode des bandes finies

Berechnung diinner, dicker und Sandwichplatten mittels der finiten
Streifenmethode

A.S. MAWENYA
University of Dar-es-Salaam, P.O. Box 35131, Dar-es-Salaam, Tanzania.

Introduction

The use of the finite strip method for analysing elastic plates is well established
[1-3]. The method, which is similar in principle to the finite element technique,
assumes the plate to be an assemblage of narrow longitudinal strips and defines
the displacement field in terms of one-way slab functions across the width of the
strip and basic series function in the longitudinal direction.

Previous formulations of the finite strip method for the analysis of plate
bending have invariably used slab functions which constrain the plate to obey the
Kirchoff’s normality hypothesis. Consequently, no allowance is made for the effects
of transverse shear deformations. In thick and andwich plate situations the influence
of transverse shear on the deformations and stresses is quite significant and
cannot be neglected in the analysis.

In this paper finite strip formulations are presented for the elastic analysis of
rectangular and curved plates with opposite simply supported ends. The formu-
lations involve transverse shear deformation which is included in the analysis
by discarding the Kirchoff’s normality hypothesis and specifying independently the
transverse displacement and normal rotations of the plate.

Finite Strip Formulation of Rectangular Plates

A detailed description of the ingredients required for the implementation of
the finite strip method in the analysis of plate bending has been given by
Cheung [ 1]. The essential steps involved in deriving the stiffness and load matrices
of a rectangular finite strip in which the effects of transverse shear deformation
are considered, are now given.
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Fig. 1. Rectangular finite strip.

Figure 1 shows a typical finite strip with three nodal lines. The deformation of the
plate is defined in terms of the transverse displacement w, and the rotations 0,
and 0, of the normal to the reference xy-plane. The variables w, 8, and 6, are
independently specified so that plate normals are not constrained to remain normal
during deformation as in the classical thin plate theory. This permits the plate to
experience transverse shear deformations although the transverse cross-sections
of the plate do not warp out of their plane during deformation.

The displacement vector at any point (x, y, z) of a simply supported strip can
then be written in series form as [4]

20 n l
U=-—zy 2 ;0L sin >
15145 b
o0 n l
v==z3 3N 0 cos - (1)
0 n l
= Z Z sm%y

where n denotes the number of nodal lines per strip; and the vector of the nodal-
line displacement amplitudes is prescribed for the [** harmonic as

o 1 ! T
{61} _"{Wi’ exi’ e)?l} (2)

The shape functions N; are simple Lagrangian interpolation functions cor-
responding to those of an n-noded beam element. In this paper only parabolic
shape functions will be considered for which

n=3 N, =—3s5(1—s),N,=1—sand Ny =13s(1 +5) (3)
At y =0 or y = b we shall always have
ov 0
W=Hl=—=
oy

which corresponds to simply supported boundary conditions.
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For orthotropic situations the constitutive relation is given by
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where the strain submatrix [ B] is given by
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With the strain and property matrices known, the stiffness matrix of the strip can
be calculated from the well known relationship [ 5]

[k]={[B]" [D][B] dxdy (7a)
in which a typical submatrix of [k] linking harmonics I and m is given by
[k’"’] =_[ [B’]T [D][B™] dxdy (7b)
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The integration 1s carried out over the area of the strip. It is done explicitly
in the longitudinal direction but it might be necessary to perform it numerically
across the width of the strip. In the examples presented a 2-point Gaussian
integration rule has been used for this purpose. It will be noted, however, that
for the exact integration of equations (7) a 3-point Gaussian rule is needed; but in
accordance with the recommendations of reference [ 4], a lower 2-point rule has been
adopted in order to improve the strip performance and to eliminate the spurious
shear effects inherent in this type of formulation. Numerical integration also
facilitates the treatment of variable thickness [4].

The loading on the plate must be resolved into basic series function in the
longitudinal direction. For instance, a distributed transverse loading of intensity ¢
can be expressed in a series form as

g= Y q'sin - (8)

The consistent load vector corresponding to this loading can be obtained from
the virtual work principle [ 5] as

[
{F'} = —§[N,,0,0,N,,0,0,..]" ¢ sin 2 %’dxdy 9)

for the I** harmonic.

Extension to Curved Plate Situations

The formulation can easily be extended to deal with curved strips generated
by sweeping the section along a circular arc as shown in Figure 2.

Fig. 2. Curved finite strip.
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The variable co-ordinate y is replaced by an angle A and the span b by an
angle o, and the displacements are described by equation (1} now interpreted in
polar co-ordinates as follows:
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The constitutive relationship has also to be changed into polar co-ordinates,
and for orthotropic situations it becomes
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The strain submatrices [ B!] and [ B!] therefore become
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Numerical Examples

In order to verify the accuracy of the formulation, a uniformly loaded simply
supported square sandwich plate having flexural and shear rigidities of D and
100D

3
a2

respectively, is first considered. Because of symmetry only a half of the

plate divided into one, two and three strips is analysed, with the strips running
parallel to the y-axis. Results of the maximum deflections, shearing forces, bending
and twisting moments are given in Table 1, for various numbers of strips at
different harmonic terms. It can be seen that the results converge rapidly as both
the number of strips and the harmonic terms increase. The solution obtained using
3 strips with 4 harmonics agrees closely with that given by PLANTEMA [6].

Table 2 shows a convergence study involving a thin, isotropic, simply supported
square plate also analysed using one, two and three longitudinal strips.

Table 3 shows a study of a uniformly loaded, orthotropic, simply supported
square plate analysed using two strips in a symmetric half of the plate with four
harmonic terms. Two cases of orthotropy were considered with the stiffness rigidities
given in Table 3.

Table 1, Maximum deflection, moments and shearing forces for a square simply supported sandwich plate
under uniform loading.

No. No. Central Central ber;ding Twisting Shfariillg fc(l)rces
of of deflection MOmEN1s moment at mid-cdges
strips | harmonics |y | (M) | Meae | Mo | ©@mas | (@
1 1 0.00495 0.0577 0.0549 0.0319 0.487 0.242
27 00486 0562 0503 0336 460 278
3 .00487 03564 0512 .0339 468 287
4 00487 03563 .0509 .0341 464 291
2 1 0.00489 0.0502 0.0520 0.0309 0425 0.244
2 00479 0487 0475 0326 387 288
3 .00481 0491 0485 .0329 398 304
4 .00480 0489 0481 .0331 393 312
3 1 0.00489 0.0496 0.0518 0.0305 0.401 0.244
2 00479 0481 0473 .0322 359 288
3 00480 0484 .0483 0326 373 304
4 00480 0483 0479 - .0327 367 312
Exact solution [6] 0.00480 0.0479 0.0325 0.338
. qa*
Multiplier o ga’ ga® qa




Table 2. Central deflection, moments and edge shears for an isotropic, square, simply supported thin plate

under uniform loading
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(n=03, £=0.01, total number of harmonics terms = 4)
No Central Central bending Shearing forces at
of denactiog moments mid-edges
tri "
s rlps max (MX)I'IIBX (My)max (Qx)maxl (Qy)max
1 0.00415 0.0563 0.0509 0.315 0.291
2 0.00407 0.0489 0.0481 0.328 0.312
3 0.00407 0.0482 0.0479 0.332 0.312
Thin plate
solution [ 1] 0.00406 0.0479 0.338
qa*
Multiplier - qa® qa

! Values interpolated from those obtained at the integration points.

Table 3. Central deflection and moments for an orthotropic, square, simply supported plate under
uniform loading. '

Central deflection wy,,, (M Jmax (M) nax
Source
4 B A B A B

Present '
solution 0.00153 0.000633 0.0178 0.00812 0.0774 0.0991
Ref.[1] 0.00153 0.000633 0.177 0.00833 0.0777 0.0995
Exact
solution [7] 0.00152 0.000633 0.178 0.00838 0.774 0.0993

. qa*
Multiplier E A qa’® ga’®

D,

Elastic properties
Case A: D, =5.0625D,,D, = 0.375D, D,, =09375D,, S, = §, = c0.
Case B: D,=16D,,D; =3D, D,,=3D,, S, =5,= .

Conclusion

Finite strip formulations which involve transverse shear deformation have been
presented for the elastic analysis of rectangular and curved plates. The examples
presented demonstrate the accuracy and versatility of the formulation.
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Nomenclature
a,b width and length of rectangular plate.
D flexural rigidity of isotropic plate.
D D,. D, late rigidities in flexure and torsion
D,, D, D,, RS '
h plate thickness.
M, ,M, M
X » xy & 5 "

M, M, M, } bending and twisting moments.
q distributed transverse loading.
g"’ g’y } transverse shearing forces.

¥ t
1t radial and tangential directions, respectively, of curved strip.
s local natural dimensionless co-ordinate.
S S e .
S" S” } transverse shear rigidities of an orthotropic plate.

P D ,
u, v, w components of displacement parallel to the x-, y- and z- axes

respectively.

X, ¥z rectangular co-ordinates.
o angle subtended by curved plate.
9,, 0 : :
Gx e” } normal rotations of plate cross-section.

ry >t
A angular co-ordinate.
\Y Poisson’s ratio of isotropic material.
{F} nodal force vector.
{M} stress resultants vector.
{8} displacement vector.
[B] matrix connecting strains and displacements of a strip.
[D] property matrix.
[£] stiffness matrix of strip.
[N] [Ny, N3, Nj,...] shape function matrix.

Practical Application and Scope

The formulations presented in this paper extend the finite strip method to the
analysis of plate structures which undergo considerable transverse shear deformation
and cannot therefore be treated by the conventional finite strip approach [1, 2] which
is based on customary thin plate theory. Examples of such structures occur
frequently in bridge construction. They include sandwich plates and slabs bridges
with relatively high depth to span ratio, as well as voided slabs and multicell
bridge decks that can be idealized by an equivalent homogeneous material. These
structures are being used in increasing numbers in modern highway systems
and the application of the finite strip technique to their analysis is of particular
interest.
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The formulations presented are such that their accuracy is superior to the con-
ventional finite strip and are likely to be adopted as standard in the analysis of
straight and curved bridge decks. However, in order to derive their full benefits,
care must be taken in programming so as to utilize all possible short cuts and
reduce computing time. Reference 4 discusses some useful short cuts that can be
achieved in the practical implementation of simply supported finite strips.

Although the present formulation is restricted to simply supported end conditions,
Fourier transforms corresponding to a variety of other boundary conditions could
be adopted. Also the treatment of intermediate supports follows well established
procedures which could be readily incorporated into the formulation.
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Summary

Finite strip formulations are developed for the elastic analysis of transversely
loaded rectangular and curved plates with opposite simply supported ends. The
formulations involve transverse shear deformation which is included in the analysis
by discarding the Kirchoff’s normality law used in classical thin plate theory.
Numerical examples are presented which demonstrate the applicability of the
formulation to thin, thick and sandwich plates.

Résumeé

Des formulations par bandes finies sont développées pour 'analyse élastique
de plaques rectangulaires et courbes chargées transversalement et supportées aux
extrémités. Les formulations comprennent le cisaillement transversal qui est compris
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dans le calcul en laissant la loi de Kirchhoff de c6té telle qu’elle est appliquee
dans la théorie classique des plaques minces. Des exemples numériques sont pre-
sentés, montrant le champ d’application de la formulation sur des plaques minces,
épaisses et sandwich.

Zusammenfassung

Fir die elastische Berechnung transversal belasteter rechteckiger und ge-
kriimmter Platten mit entgegengesetzten einfach aufgelagerten Enden werden finite
Streifenformulierungen entwickelt. Die Formulierungen schliessen transversale
Schubdeformation ein, die in der Berechnung unter Ausserachtlassung des Kirch-
hoff’schen Normalititsgesetzes inbegriffen ist, wie dies in der klassischen Theorie
diinner Platten verwendet wird. Es werden numerische Beispiele angefiihrt, welche
die Verwendbarkeit der Formulierung fiir diinne, dicke und Sandwichplatten
belegen.
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