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Structures en poutres-caissons reliées par des dalles *
Structures of Box-Girders Joint Together by Slabs
Kastentréger-Briicken mit untereinander verbundenen Platten

S. KLIMINSKI

Docteur-Ingénieur
(Entreprises SPIE-BATIGNOLLES France)

Préface

La détermination des contraintes et des déformations dans les profils minces
fermés que constituent les poutres-caissons ne reléve pas de théories élémentaires;
a vouloir simplifier le probléme & coups d’hypothéses, difficiles a justifier, on court
le risque d’ignorer dans quelle mesure on ne s’écarte pas trop de la réalité.
A une époque ou les ponts courbes deviennent de plus en plus nombreux, ou
les parois des poutres-caissons sont de plus en plus minces, il importait que le
comportement de telles poutres soit étudié en prenant essentiellement en compte:

— la flexion transversale des parois,
-— la contrainte normale longitudinale engendrée par la torsion non uniforme,

Cest le travail qu'a entrepris d’effectuer M. Kliminski, et pour avoir suivi pas
a pas son élaboration, j’ai pu me rendre compte de Ieffort continu et passionné
qu’a di fournir Pauteur pour arriver a la volumineuse thése soutenue récemment.

C’est un résumé de ce travail que je suis heureux de présenter ici, convaincu
que tous ceux qui sont intéressés par le calcul de telles structures sauront y trouver
a la fois des renseignements directement utilisables et matiére & réflexion.

P .M. Géry

Professeur a I’Ecole nationale Supérieure des mines
et au Conservatoire national des arts et métiers.

* Extraits d’une thése de doctorat soutenue le 22 septembre 1971, & la Faculté des sciences de Paris,
devant le jury composé de MM. les professeurs: R. Siestrunck (Président), R. Vichnievsky, P. Géry,
D. Ceylon.
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Introduction

Utilisées fréequemment comme structures d’ouvrages d’art, en métal ou béton
précontraint, les poutres-caissons sont une source de calculs parfois complexes.

Lorsqu’il s’agit d’ouvrages en béton précontraint, ces poutres-caissons sont’
maintenant trés souvent reliées transversalement par le seul intermédiaire de dalles
souples. Actuellement, la résolution de telles structures ainsi définies est conduite,
compte tenu de:
— la rigidité a la torsion des poutres-caissons, la torsion étant supposée uniforme;
— la rigidité a la flexion des dalles de liaison.

Pour des systémes composes de deux poutres-caissons, ces hypotheses de calculs

semblent fournir des résultats satisfaisants. Cependant, appliquées a plusieurs
poutres-caissons, celles-ci deviennent caduques.

Deux sollicitations importantes sont en effet négligées:

1° La flexion transversale des parois de caissons.

2° La torsion qui engendre une contrainte normale longitudinale.

L’objet de cette recherche est d’analyser le comportement de structures en
plusieurs poutres-caissons, qui peuvent étre classées, de par leurs dimensions, dans
la catégorie des piéces longues en voile mince, en considérant les deux sollicitations
précitées comme fondamentales.

Définition du probléme

Les sections transversales des structures comprennent n caissons (7 = 2). Chaque
caisson est symétrique au moins par rapport a son axe vertical. Les caissons sont
liés entre eux par des dalles pouvant étre de longueur différente. Ainsi, la section
transversale a la forme ci-dessous:

Fig. 1
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Les axes longitudinaux des structures d’inertie constante sont rectilignes. Aux
deux extrémités de la travée étudiée, les sections transversales sont unies par
des diaphragmes. Ceux-ci sont, le plus souvent, inextensibles dans le plan vertical
et normal a I'axe longitudinal des structures. Ils sont, par contre, souples a la
torsion. Ainsi les sections extrémes des structures sont parfaitement encastrées
a la torsion et chaque poutre-caisson est encastrée €lastiquement 4 la flexion.

La charge appliquée est une charge verticale p, uniformément répartie dans le
sens longitudinal, et ponctuelle transversalement (fig. 1).

La position de la charge étant variable transversalement.

Sous une telle charge, la structure est soumise a la flexion et a la torsion.

Si la flexion ne pose pas de probléme majeur, la torsion apparait, en revanche,
complexe. En effet, nous avons le phénoméne de torsion non uniforme. Les sections
transversales sont encastrées a leurs extrémités (gauchissement empéché), et cet
encastrement engendre des réactions longitudinales qui sont €quilibrées par des
contraintes normales.

Nous décomposons la structure, par des coupures effectuées au milieu de
chaque dalle de liaison, parallelement a I’axe longitudinal.

D’une maniere générale, nous obtenons ainsi des profils dissymétriques d’un
caisson a deux porte-d-faux. La dissymétrie est créée par la longueur différente
des porte-a-faux.

Etat des contraintes et déformations — Convention de signes

Soit une tranche de poutre-caisson a deux porte-a-faux, soumise a la compression,
flexion et torsion non uniformes.

Les axes Ox et Oy se trouvent dans le plan d’une section transversale, et ce
sont ses axes principaux d’inertie (fig. 2).

Fig. 2
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Suivant les hypothéses de Viassov, nous pouvons exprimer 'allongement lon-
gitudinal relatif &, compté positivement suivant la direction de I'axe Oz:
1—v? c

o, €= —
E E,

E =

et la déformation de distorsion, comptée positivement, contrairement au sens
trigonométrique, par:

T

=%

Il faut maintenant déterminer les contraintes o et 1.
Pour les profils ouverts, cette détermination se fait & l'aide des formules
suivantes développées par VLASSOV:

N M. M, B "
o= — - =G _ X .
A LT LT L®

(T;-Sx L5, M,S,
T=— + EE

16 1,6 1,0

X @

(2)

Le sens des symboles est expliqué en notations.

L’effort normal N est compté positif quand il est dirigé le long de I'axe O,.

Les moments (M,) et (M,) sont positifs quand leurs vecteurs ont les directions
des axes O, et O,

On donne au moment de torsion C le signe positif comme sur la fig. 3.

Fig. 3

On voit qu'avec la torsion non uniforme une nouvelle force généralisée apparait
dans les formules: ¢’est le bimoment B. Contrairement a un moment, le bimoment
represente une force statiquement équivalente 4 zéro.

Le moment de torsion fléchie (M) est 1ié avec le bimoment par la relation:
M,=4£

(0]
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Pour les profils fermés, on peut déterminer ces contraintes par les formules
semblables, développées par Oumansky, OUurBaN [26], [27], [30] et [33]:

N M. M, B "
= — — —_— _-x '__-(D
°CAT LT LT
C T,'S, TS, M;Ss
= - 4o .. 4
T oo (Ix-éi 1,5 1,:,-6) @

La différence entre ces formules et celles des profils ouverts porte sur les carac-
téristiques géométriques. En outre, dans la formule de contraintes tangentielles, on
rencontre un terme supplémentaire, qui exprime la torsion uniforme. Il apparait
cependant que, dans le cas du profil étudié pour le calcul des contraintes, on ne
peut utiliser aucune de ces formules, parce que:

1° Le profil en question est découpé dans une section transversale continue.

2° Le profil est composé, car il est constitué¢ en méme temps par un profil

fermé et deux profils ouverts.

Nous déterminons les contraintes pour un tel profil, compte tenu de la res-
semblance des formules (1), (2) avec (3) et (4).

Il est a remarquer que, dans les nouvelles formules, certains termes vont dispa-
raitre. Soit une poutre-caisson a deux porte-a-faux, dont la section transversale est
découpée dans une section continue. L’effet des coupures est remplacé par (g) et
(m), comme sur la fig. 4. {Nous négligeons les glissements longitudinaux au droit
des coupures.)

dg dd ‘

Cr
0 N

Ma Dc+ / G,

<Y

Ty

Fig. 4

Considérons les axes O xy comme les axes principaux d’inertie. En effet, nous
pouvons admettre, avec une bonne approximation, que ces axes sont verticaux et
horizontaux. La dissymétrie de la section est provoquée seulement par la longueur
différente des porte-a-faux. Or, application numérique montre que dans ce cas les
axes principaux d’inertie sont quasiment verticaux et longitudinaux. Ceci confirme
I'étude de M. Renarp [20], dans laquelle la différence de longueur des porte-a-
faux atteint 3 m, ce qui est d’ailleurs difficilement réalisable en pratique.
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Les formules relatives aux contraintes du profil étudié, avec les nouvelles
notations sectorielles, prennent la forme suivante:

M B
= = S 5
a=y+ i [0] (5)

C TS, MggT
T = — i
Q-3 Ix8 I[w]S

(6)

Dans ces formules [®], I S, et dépendent de la section transversale.
B et My, par contre, dépendent de la longueur, et se déterminent de I’équation
de torsion non uniforme.

Avant de définir ces grandeurs, nous analysons I'hyperstaticité des structures.

Inconnues hyperstatiques

Soit un systéme plan a (n) caissons reliés par des dalles, soumis aux forces
extérieures quelconques.

Un tel systtme est a la fois hyperstatique intérieur et extérieur. En effet,
chaque caisson représente un portique fermé, trois fois hyperstatique — I’hyper-
staticité intérieure.

Pour lever totalement 'hyperstaticité du systéme, il faut pratiquer des coupures
dans chaque dalle de liaison. On crée, ainsi, trois inconnues hyperstatiques par
coupure — l'hyperstaticité extérieure. Chaque coupure implique I'introduction de
trois inconnues hyperstatiques, qui sont:

— effort tranchant ¢, — g;

— effort normal N, — N;
— moment fléchissant m, — m.

% I \/
® "~ O ® [\ 8/

Fig. 5

Le systéme de la fig. 5 aura les inconnues hyperstatiques représentées sur la
fig. 6.
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94 92 K
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Fig. 6

Le degré d’hyperstaticité total du systéme peut étre exprimé par la formule:
3n+ 3 (n— 1), n étant le nombre des caissons.

Pour quatre caissons, par exemple (fig. 5 et fig. 6), le degré d’hyperstaticité
est: 3x4+3x(4—-1)=12+9=21,car n=4. Il y a 12 inconnues hyperstatiques
mntéricures et 9 inconnues hyperstatiques extérieures.

Pour un seul caisson (z = 1), nous avons:
3x 14+3x(1—1)=23. En effet, le systéme ne posséde que trois inconnues hyper-
statiques intérieures.

Dans les cas courants, les structures en question sont soumises aux charges
verticales seules. Ceci réduit le nombre total des inconnues hyperstatiques. A chaque
coupure de la dalle de liaison, I'effort normal N devient nul.

Le degré d’hyperstaticité du systéme s’exprime par la formule suivante:
3n+2(n—1), ot (n) est également le nombre de caissons.

i |
® ®

Fig. 7

T S T
L—.é@)(%s—— P& qn jd\é 7

ar i

NI NE qm NN

My mg Nm my
my

Fig. 8
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Pour le systéme de la fig. 7, le nombre d’inconnues hyperstatiques est:
3x4+42(4—1)=18, car n=4. Il y a toujours 12 inconnues hyperstatiques inte-
rieures et 6 inconnues hyperstatiques extérieures.

Les structures le plus souvent rencontrées ont les sections transversales syme-
triques, et de cette symétrie découle une simplification importante:

* !

Fig. 9

En effet, nous pouvons décomposer la charge extérieure selon le procédé de la
symétric et de lantisymétrie. Ceci réduit le nombre d’inconnues hyperstatiques

(fig. 10 et 11).
')k CI2'0 q

A £ \fﬁc v et

ar a1
Nz Nn Nm Ng
my g mp mp

Fig. 10. Chargement symétrique.

X q,
p l 2o ‘p
T

Fig. 11. Chargement antisymétrique.

Jusqu’a présent, nous avons analysé 'hyperstaticité des systemes plans (sections
transversales des structures). Il apparait cependant que les structures étudiées forment
des systémes spatiaux. En conséquence, toutes les inconnues hyperstatiques ne sont
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pas des nombres mais des fonctions de la longueur (z). Pour simplifier le probléme
nous séparons les inconnues intérieures et extérieures.
Résumons la marche & suivre en nous reportant au caisson @ de la fig. 10.

b

On détermine d’abord les inconnues hyperstatigues intérieures (g;), (N;) et (m;),
dues aux charges extérieures; les inconnues (g;) et (m,) étant considérées aussi
comme les charges extérieures.

Afin de pouvoir considérer le caisson comme un systéme plan, il faut déter-
miner les forces axiales qui apparaissent dans les parois. Ces forces proviennent
de la différence des cisaillements sur deux faces d’une tranche élémentaire (dz)
(fig. 13), et la tranche unitaire se comporte comme un portique élastique.

= i

Fig. 13.

Les cisaillements en question sont définis par la formule (6), dans laquelle le
dernier terme exprime les cisaillements provenant de la torsion non uniforme.
Nous négligeons ce terme dans le calcul des inconnues hyperstatiques.

Si 'on voulait tenir compte de ces cisaillements, il faudrait définir le moment
de torsion fléchie. Celui-ci ne peut pas étre déterminé autrement que par la
résolution de I'équation de torsion non uniforme. Comme le moment extérieur de
torsion (¢) dépend de valeurs (g), et (m),, il se trouve que I'on aurait pour une
équation trois inconnues:

(©), (q); et (m),
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Il est donc impossible de déterminer par cette équation le moment de torsion
fléchie, indispensable a la définition de telles contraintes.

Ensuite nous rendons le systéme isostatique. Nous avons donc trois états unitaires
dus aux charges extérieures (fig. 14).

m|=1

[0 2 © [

Tig. 14

A chacun de ces trois €tats sont associés trois états unitaires relatifs aux
inconnues gq;, N; et m; (fig. 15).

® © | ©

4| N
ly v/ o+
qr=1 Nr=1 my=1
Fig. 15

Les inconnues recherchées (q;), {N;) et (m;) se déterminent & partir d’un systéme
de trois équations linéaires, dont la forme matricielle est:

d11 4y dizy dr Ayp
A1a Gpy 32| X | Ny |+ |Aap | =

e v B

(13 daz3z dsj my Azp

La matrice (g;;) est indépendante du systéme des forces extéricures, et elle est
symétrique (a; ; = a; ;). Les coefficients (g; ;) et (4 ;») se calculent habituellement par
les intégrales de MoHRr.

Les moments fléchissants réels dans les parois sont & multiplier par les valeurs
réelles de (p), (m,) et (g,). Ces deux derniers étant les inconnues hyperstatiques
extérieures & déterminer.

Déterminons d’abord les inconnues hyperstatiques extérieures pour une travée
isostatique.

La poutre est soumise & la charge extérieure (p), d’excentricité constante (d)
(fig. 16). '

Puisque la poutre est isolée, il faut rétablir la continuité transversale de la
structure en appliquant, le long de la coupure, des inconnues hyperstatiques
9(z) €L M.
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P

Fig. 16

Nous développons la charge extérieure (p) et les fonctions g, et my,, en séries
de FOURIER:

(2n—1)rz 4 1
Z Pu’ Sln L ——avec p, = 7{ (m

R (2n—1)nz )
= 3 g,sin ——L—avec g, = inconnue

n=1

e C(2n—1)nz )
my= Y, m, sin —————avec m, = inconnue
L

n=1

Pour écrire que les déplacements sont nuls, au droit de la coupure, il faut
considérer une force et un couple auxiliaire qui correspondent a g, et m,.

La somme des travaux de la force ou du couple auxiliaire unités, dans les
déplacements dus aux inconnues ¢, et my,, et & la charge extérieure, doit étre
nulle. Ceci se traduit par un systéme d’équations linéaires (autant d’équations
que d’inconnues) que nous pouvons exprimer sous forme matricielle:

[a]-[*] +[4]=[0]

La matrice [a] se compose de quantités (g; ;) qui représentent le travail de la
force auxiliaire ) dans les déplacements dus a une force unitaire (), relative a
I'inconnue hyperstatique ). Cette matrice ne dépend pas du systeme des forces exte-
rieures. Elle est symétrique (a;;) = (a;;).

La matrice [x] est une matrice colonne des inconnues (q,); (m;); (q,); (m,), etc.

La matrice [ A] est une matrice colonne des quantités (4 ;p), qui représentent
le travail de la force auxiliaire () dans les déplacements dus aux forces exté-
rieures (p).
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Les quantités (a;;) sont des sommes de trois termes:

ay = (agh + ()2 + (a;)s

(a; ;); provient de la flexion longitudinale verticale.

0 0

z ;
L L
- Mi |y -4 Mj Ty
diagramme des Mi diagramme des Mj
Fig. 17
L
(aij)l = M:E?/IJ dz (7)

o

(a;;), représente le travail de torsion uniforme.

diagramme des 0; diagramme des Cj

Fig. 18

C;-C; '
(aij)z = j GI, L dz _ (8)

(a; ;); représente le travail de flexion transversale qui provient de la déformation
des dalles de liaison et des parois des caissons. Nous avons dans ce cas Iintégrale
double étendue au contour » de la section, et a la longueur ;) de la travée.
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force cuxiligire force unitaire

Fig. 19

L
m; mi;
(a,); = JJ EI(S: ds dz (9)

dans laquelle I(s) concerne I'inertie des parois.
De méme chaque {A;p) est la somme de trois termes:

Aip = (Aip)1 + (Aip)z + (4ip)s

Le calcul de chaque terme se fait de la méme fagon que celui des (a;;). Les dia-
grammes de moments relatifs & la force auxiliaire sont les mémes; les diagrammes
de moments dus & la force unitaire sont remplacés par les diagrammes des
moments dus aux forces extérieures.

Les intégrales (7), (8), (9) concernent toute la section de la structure.

Un ou plusieurs (a;;), ou (4;p), peuvent étre nuls, en raison de la symétrie de
la section transversale et de la symétrie des charges.

Pour une travée encastrée ¢€lastiquement a la flexion a ses deux extrémités,
le probléme consiste & rechercher les fonctions g, et m correspondant a des
moments d’encastrement. »

On procede de la méme facon que dans le cas de la travée isostatique. La
charge extérieure étant le moment d’encastrement appliqué aux abouts de la travée.

On détermine enfin les inconnues (g) et (m) comme la somme de deux effets:
celui de la charge (p) et celui des moments d’encastrement.

Un tel calcul permet de déterminer les valeurs des inconnues g et m, au milieu
de la travée (les coefficients inconnus g, et m, se¢ déduisent du coefficient p, qui
caractérise la charge extérieure).

Par contre, nous ne connaissons pas ’équation de la courbe suivant laquelle
sont réparties les inconnues g et my, le long de la travée. Nous savons que les
courbes sont symétriques par rapport au milieu de la travée (p = C,.), et obtiennent
zéro aux extrémités (fig. 20).
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Gz) OU M) inconnu

g, Ou Mg connu

Fig. 20

Nous supposons que les fonctions inconnues sont réparties, soit suivant une loi

sinusoidale, soit suivant une parabole du deuxiéme degré. Seules l'application
numérique et la vérification expérimentale peuvent démontrer quelle est la fonction

qui

répond le mieux & ce probléme.

Hypothéses de la torsion

Pour la détermination des inconnues hyperstatiques, nous avons été obligés de

simplifier le probléme en considérant la torsion comme uniforme, mais & partir

de

maintenant nous adoptons les hypothéses de Oumansky et BenscoTer. Ces

auteurs ont défini une «fonction de gauchissement».

10

20

30

Les hypothéses se définissent ainsi:

Le contour de la section transversale est considéré comme indéformable. Pour
les constructions en métal, cette indéformabilité est assurée par les raidisseurs
transversaux. On adopte cette hypothése également méme pour les pieces sans
raidisseur qui ont des parois plus épaisses: les profilés laminés, par exemple
[16],[26] et [33].

Dans les constructions en béton précontraint, la section est constituée de voiles
relativement épais. Les intersections des ames et des hourdis sont renforcées
par des goussets dans lesquels on loge des c@bles. Ceci assure 'indéformabilite
du contour méme en cas de constructions peu entretoisées.

Les contraintes normales longitudinales dues 4 la torsion non uniforme sont
réparties dans la section de la méme fagon que le gauchissement dans le cas
de torsion uniforme.

Les contraintes de cisaillement sont uniformément distribuées sur toute I’épais-
seur de la paroi. Cette hypothése concerne les piéces longues a parois minces,
dont les dimensions sont telles que:

201, £<0,1

0: épaisseur de la paroi
a: hauteur de la paroi
L: longueur de la barre.
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Pour les constructions précontraintes, on néglige ’effet des cables sur la rigidité
a la torsion. Selon Vviassov [32], pour les picces précontraintes au lieu de Gl
relative aux sections non précontraintes, il faudrait prendre:

GId = R'E

I, =1e moment d’inertie relatif a la torsion uniforme,

R = la résultante des forces de précontrainte,

E =Tlexpression qui dépend de la géométrie de la section et de la position

du point d’application de R.

Ce probleme, a notre connaissance, n’a €té traité que par VLASSOV pour une
barre de section ouverte dans laquelle le tracé du cable est rectiligne. Il faut
cependant remarquer que, lorsque la section est composée d’éléments fermés et
ouverts, I'effet de cibles est moindre.

Rappel des caracteristiques géométriques sectorielles

Comme nous I'avons déja remarqué, les caractéristiques sectorielles définissent
le gauchissement des sections. Nous rappelons la définition de ces caractéristiques.
Elles correspondent, dans leur appellation, a celles qui sont données par les princi-
paux auteurs ayant pris part a 1’élaboration de la thérie classique des barres a
parois minces. Parmi ces auteurs, on peut citer particuliérement Viassov et
WAGNER.

Profils ouverts
— Surface sectorielle [ L]?, appelée aussi coordonnée sectorielle.

£ .

hgne moyenne

i du profil

Soit: P =un pdle arbitraire,
PF, =rayon initial,
Fig. 21 PF = rayon mobile.
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Conformément a la fig. 21, la surface sectorielle est définie par I'intégrale:
o=/ rds

La surface sectorielle est comptée comme positive, si le rayon mobile PF qui
I'engendre tourne dans le sens trigonométrique vu selon Oz.

— Moment statique sectoriel [L]*; il est donné par: S, = [, 0dA.

— Moments linéaires sectoriels [L]°; ils sont donnés par les intégrales:
Sey =faxwdA, S,.=[sy0dA.

— Moment d’inertie sectoriel [L]°; il s'exprime par lintégrale: I, = {,0*dA

Profils fermés

Les caractéristiques sectorielles des profils fermés ont été établies par les auteurs
russes [26], [27], [30] et [33] et ont pour but d¢largir la théorie de Viassov
concernant les profils ouverts.

— Surface sectorielle des profils fermés : appelée aussi surface de gauchissement.

Elle s’établit par I'analyse d’un profil fermé soumis a la torsion uniforme (le gau-
chissement est libre) et s’exprime par ’expression:

§ ds
Go

Les autres caractéristiques ont la méme forme que celles des profils ouverts.

Centre de flexion

La surface sectorielle des profils ouverts et fermés que 'on trouve dans les
formules (1) et (3) est calculée par rapport au centre de flexion, également appelé
centre de cisaillement.

La position du centre de flexion dépend uniquement des caractéristiques
géométriques de la section transversale, et sa détermination, pour les profils ouverts
ou fermés, se fait aisément a partir d’un podle arbitraire P (fig. 22).

1
b, —a,=— — | ywpdA
IxA
1 (10)
by—ay=j—jx0\)PdA

y A
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0
-.lr _—

Fig. 22

Caractéristiques sectorielles des profils composés d’¢léments fermés et ouverts

Pour définir les caractéristiques sectorielles des profils composés d’éléments
fermes et ouverts, il faut définir la surface sectorielle qui se compose dans ce
cas de trois parametres:

— de la surface sectorielle du profil fermé @, et

— des surfaces sectorielles de profils ouverts .

Considérons le profil étudié comme indépendant (les extrémités des porte-a-faux
sont définies par les coupures).

Nous prenons en compte I'égalité de gauchissement suivant les arétes I — I
et II — II' (fig. 23) pour le caisson et les porte-a-faux.

iy '
/ //"
il

Fig. 23

Notons qu’un raisonnement semblable est fait pour ’étude de la torsion d’une
coque de navire ayant une structure composée. La coque est soumise a la torsion
par une vague biaise rencontrée par le navire [22], [27].

La torsion étant non uniforme, conformément aux hypothéses, le gauchissement
doit étre exprimé par la fonction de gauchissement:

d3
= —[w] — 11
o=~ 0] (1)
On voit que le gauchissement de la section est proportionnel & la surface

sectorielle. Pour qu’il y ait ’égalité de gauchissement & la naissance des porte-a-
faux, il faut que les surfaces sectorielles calculées pour les parties fermées et
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ouvertes soient égales aux points I et IT (fig. 23). Cette condition nous conduit
a exprimer la surface sectorielle des parties ouvertes par:

S
lo| = | rds + D,
[]

Les autres caractéristiques sectorielles qui concernent les profils composés se
calculent a partir de la surface sectorielle. Celle-ci se compose de & et de la nouvelle
valeur pour la partie ouverte déterminée ci-dessus |w|. Nous avons donné leurs
symboles en notations.

Déterminons maintenant la position du point sectoriel nul, et celle du centre de
flexion.

Connaissant le gauchissement, on peut écrire pour la contrainte normale:

d
o= El * —c
dz
et, compte tenu de (11), nous avons:
a9

La barre est soumise uniquement 4 un moment de torsion, la contrainte o doit
donc satisfaire aux équations d’équilibre:

N=|odAd=0
A

M,= [oxdA=0 (13)
A

M, = jcysA%O
A

En introduisant (12) dans les équations (13), on trouve:

[[]dd=0
[[0]xdA =0 (14)
£[m]ydA=0

Le probléme est ramené a celui des profils ouverts. Les équations (14) per-
mettent de trouver le point ou le gauchissement est nul, et les coordonnées du
centre de flexion s’expriment par les formules [ 10].

Cisaillements d’«effort tranchant» et de «forsion»

On détermine les caractéristiques S, et I', indispensables pour la définition
des contraintes tangentielles, par ’'analyse des contraintes dues & I'effort tranchant
et 4 la torsion.
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Soit une tranche de poutre-caisson a deux porte-a-faux, flechie dans un plan
paralléle au plan (0,, 0,) par un moment (M) (fig. 24). Déterminons les cisaillements
d’«effort tranchant» (T) provenant de cette flexion.

> d
0 T
/c u/d [& X
/
| 4}
Fig. 24

Soit abcd 1élément découpé dans la paroi en deux endroits différents (fig. 25).
1° Le cdté ac est confondu avec le bord de I'un des porte-a-faux.
2° L’¢lément est situé dans un des plans de la poutre-caisson (ac restant // &

P'axe Oz).

Partant du point a, nous déterminons les flux de cisaillements pour un point
couvrant b.

Fig. 25

L’équilibre de I’élément abcd implique que:
ON oN
A TP — @ = I
0z P oz ¢
D’autre part, en prenant 'équation due a NAvIER, nous obtenons pour le flux
de cisaillement:

o="—2+¢, (15)

Le long des bords libres des porte-a-faux, les tensions tangentielles sont nulles
(@, = 0), nous avons: : :

o= (16)
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Le caisson, par contre, est un profil fermé et il faut déterminer le flux supplé-
mentaire constant @,. Pour calculer ce flux, on pratique une coupure passant par le
cOté ac de I’élément abcd.

Considérons le point (P) de position quelconque comme le centre de flexion
d’un profil fermé (fig. 26). -

Fig. 26

Le moment de torsion autour de I’axe paralléle a Oz, et passant par P, est tel que:
C=4§Drds (17)

Compte tenu de la relation (15), la relation (17) devient:

T8
szﬁ - “rds + $@,rds

x

d’ou:

T
C E§erd3

_ — 18
° ®rds $rds (18)

Puisque le plan de sollicitation passe par P, C =0, et 'expression (18) devient:
1T,
O, = — B jchSx rds
et ’équation (15) s’écrit:

T 1
® = I-(Sx - §§Sx rds)

X

Celle-ci peut €tre exprimée sous la forme suivante:

_ TS,
i

P

X

dans laquelle le moment statique pour les profils fermés est:

-~

1 ,
S, = Sx~§'§erds (20)




STRUCTURES EN POUTRES-CAISSONS RELIEES PAR DES DALLES 135

A T'aide des formules (16), (19) et (20), nous pouvons déterminer les cisaillements
dus a leffort tranchant en tout point de la paroi du profil étudié.

Remarque: Pour la détermination des cisaillements d’«effort tranchant», dans
un profil compose, les principes de la résistance des matériaux classiques, sont
encore applicables. En effet, dans la partie fermée du profil, dans laquelle on a
pratiqué une coupure, les cisaillements sont entierement déterminés par la statique.
Cela signifie que le systéme est isostatique du point de vue de ses liaisons
internes, et il est strictement complet.

D’autre part, le profil ainsi composé est hyperstatique, car a I’aide d’une coupure
nous avons déterminé le profil d’abord ouvert, et ensuite fermé.

Cette hyperstaticité est du premier degré.

L’examen d’une tranche de poutre-caisson & deux porte-d-faux encastrée a une
extrémité, et soumise & un moment de torsion a l'autre extrémité, conduit a la
définition de cisaillements de «torsion» et de la valeur sectorielle T,

Ecrivant I'équation d’équilibre de I’¢lément abed découpé en deux endroits,
comme dans le cas précédent, et compte tenu de I'expression (12), nous avons:

Pour les porte-a-faux:

' 1
T= SIH'El * g’S[m]

Pour le caisson:

C E
_ SIII,_l,r
oty s

ou:

1
I'= S[m] —_ §'§S[m] rds

Remarque: Pour la partie fermée du profil, les contraintes de cisaillement se
composent de celles de la torsion uniforme et de celles provenant de la torsion
non uniforme. Ces derniéres dépendent de la dérivée troisiéme de la fonction de
gauchissement § et sont réparties de la méme fagon que la caractéristique sec-
torielle T'.

La valeur I" concerne le contour entier du profil (parties fermées et ouvertes),
bien qu’elle provienne de I'intégration des déplacements le long de la partie fermée
seulement. Ceci provient de la valeur [w], dont l'intégrale est étendue sur le
contour entier.

Equation différentielle de torsion non uniforme

Pour connaitre ’état de contraintes et de déformations dans une piéce soumise
a la torsion non uniforme, il est indispensable de dé&finir le bimoment et le moment
de torsion fléchie. Ces deux grandeurs liées a4 I’angle de torsion et 4 la fonction
de gauchissement se déterminent & partir de ’équation différentielle de torsion
non uniforme.
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Pour la premiére fois, le probléme de torsion non uniforme a été mis en €équation
par TiMosHENKO (1905), dans le cas particulier d’une poutre en «I». Plus tard (1926),
WEBER a complété cette équation pour la méme section, mais asymétrique. Ce
sont WaGNER (1929) et Viassov qui ont généralisé I’équation. Ils I'ont rendue
valable pour toutes les sections ouvertes, en lui donnant la forme:

@IV_kZ @II_—‘T]'C
avec: (21)

Pour les sections fermées, ce sont les problémes d’aviation qui ont principale-
ment développé la théorie de torsion. Dans une premiere théorie technique de
torsion des profils fermés, on a appliqué I’équation (21). Les modifications ont
porté seulement sur les caractéristiques sectorielles (voir exemple: 1étude de
BORNSCHEUR [4]). '

Les études de Oumansky [30], et BeEnscorteEr [10] sont plus exactes. Ces
auteurs introduisent dans 1’équation une deuxi¢éme fonction — fonction de gau-
chissement 3. La nouvelle équation a la forme:

@IV_k2®II=n.c

avec:
Gld 1 22
- ‘u

K=y n=—
E 1 o E I

on voit que les termes k? et n sont multipliés par le coefficient de gauchissement p.

En ce qui concerne les profils composés d’éléments fermeés et ouverts, on
connait 'équation établie par rapport & la fonction de gauchissement [10]. II est
sans doute préférable d’étudier ces profils de la méme fagon que les profils ouverts
et fermés, c’est-a-dire & 'aide d’une équation semblable a celle (21) ou (22).

Nous établissons maintenant une telle équation, ou plus précisément nous
transformons les termes k et m, en analysant la répartition des contraintes dans
toutes les parties du profil composé. '

Conformément aux hypotheses, nous introduisons en plus de ® une nouvelle
fonction: 3.

Pour deux inconnues, deux équations sont indispensables.

— La premiére se déduit de la condition de continuité des déplacements longi-
tudinaux, le long du contour de la partie fermée:

Bud 0
as
et elle s’exprime:
E, |T 1 |d
9 L Pds— @1 Q = —c —— P (23)
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— La deuxié¢me équation provient de I’équilibre du moment de torsion C par les
contraintes [7-8-rds: 7
A & e B 9!

- T (24)

: I . ;
Dans cette équation p = (1 — I—d) étant le coefficient de gauchissement, avec:

o

QZ

f‘f@
3

I,= [r*8ds quiconcerne toute la section du profil composé (parties fermées et

I, = qui caractérise la torsion uniforme des profils fermés, et

A ouvertes).
En dérivant trois fois (24), nous avons la relation entre les deux fonctions:
@IV
W= (25)
’ H

Introduisons (25) dans (23); nous avons ainsi I’équation différentielle recherchée
par rapport a Pangle de torsion:

®IV_k2®II=n_C

ds

‘G Q )
ot ok Jo (26)

£y jgrd_s"n_ Elg cis_
' 5 8

Pour vérifier I'équation établie, nous I'avons appliquée au profil fermé, en
remarquant que, pour un tel profil I' = S5 — 4§ S rds. Ainsi nous avons obtenu
I’équation (22). L’équation (26} avec ses termes k et 1| est donc correcte.

dans laquelle':

Résolution de I’équation de torsion non uniforme

Pour Ia résolution de I’équation (26), nous utilisons fa méthode des paramétres
initiaux, appliquée par VLassov au calcul des voiles & profils ouverts [32].

d

Qe AT™ 4T -
g X
L
plz)
» se"btiz:‘ csplz)d
) . e y

Fig. 27
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La matrice définissant les quatre facteurs fondamentaux pour une charge continue
a répartition quelconque et d’excentricité constante (fig. 27) s’écrit:

o.| e | -p = _c, b
GQ Iy GI, GI,
o || 1 8 hkkz Chkz — 1 S hkkz R j c(kz — Shkz)dz
@y || 0 | Chkz kShkz Chkz — 1 jz ¢(1 — Chkz)dz
ol || 0 | kShkz k2 Chkz kShkz —k jz c-Shkzdz
Ol | 0 | K*Chkz | K3Shkz kK*Chkz | —k? jz ¢ Chkzdz

Les parameétres initiaux @,, ®2, B, et C, s’expriment par les constantes d’inté-
gration de I’équation différentielle, et doivent donc étre déterminés par les conditions
aux limites, imposées aux extrémités de la piéce (z =0et z = L).

Les sections extrémes sont encastrées 4 la torsion (© = 0), et elles restent planes
(B#£0),doncpourz=0etz=LO=0"=0.

Nous obtenons dans une section z = C¥, pour les cas de charge étudiés, les
formules suivantes:

a) Moment de torsion uniformément réparti, c = p.d (fig. 27):

k(L_Z)-ShIE
O = de.[kz(L~z)‘2Sh 2 2]
2%GI, L kL
2
ol — pdL [L— 2z Shk(z- z)]
LAY 3 ShEE
@I_pdkL_l:Chk(%—z)_ 2}
Y761, sk kL
o= pdk® L Shk(z — %)
2GI, Sh%

b) Moment de torsion réparti suivant une sinusoide, avec l'origine du systéme
d’axes [].x yz en milieu de la travée ¢ = ¢, cos (%), ¢, = q()-d, ou c,=m(%) (§5):
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¢, 2L|1 kL nz kL nz T kL nz
Ou=—2 I rsin T s sk S Shkzsin ™
AT [n(z Sl L) k2L2+n2( 2 ST
kL i kL\ Shk(322) Shk (X322
s | — 2 - z_IE—E'Ch——' (2% Shk(23*)
n L T kKI*+n 2 Shk:

i kL nz 1 . &z
el = G 2L{im——(Chkz sin —E+ ¥Shkz cos L) - ;-sm 7
_ T Ch kL _Sh kz
k2 I? + 2 2 n) Sh%

Ca n kL nz kL
= GId.sz-[kJZ—LZ_—_ (Shkz sin E+ Chkz:cos S A _n_)

i kL. 1\ Chkz
=" 7 " ShA

T nz kL %4
i _ o kAL ————| Chkz-sin —+ — Shkz- — =
& GI, [k2L2+n2( S Shkeees L)

e KL 1) Shiz
B2+ 2 n) Sh%

¢) Moment de torsion réparti suivant une parabole, avec l'origine du systéme

2
d’axes [, x y z en milieu de la travée,c=co-(1—7), co=q%)d, ou - c,=m(%)
§5):
¢, 2 #2 1% BPE 8 8 472 8z
Opy=——-| k22?3 S — = - — =1} —— Shkz—
& szkz{ ? <L2 2)+ 6 D <k2L2+L2 1) Chlz + paShiz

4 kL kL 8 kL kL kL\ Chkz —1
— —4+ — ) Th—+| —Sh — —H—Ch—~-—
( ) +(k2L2 2 + 3 kL 2) Shik }

2 (472 8 4z 8
Ol = -~ -A-I:kz-(i—])-i—(l——— i)-Shkz+iChkz+

K212 I kI?
8 kL L
+( spL KL 4 ’%)Sh_k]

e 2T 3 kL ShiE:
s 2 § 422 82 kL 4 kL
L . X - N Y L h 2o
Oo=gr, l:ksz +( BPE ¢ CthJrl\c}_szZ+ 3 gt
8 hkL Chkz
K227 2 ) Shi

8§ 422 8z 4 kL 8 kL
1— "% ) shk Chikz —( Zch = 2 sp=_
Gld K KL L2) et (kL 2 " ee

_ kLY Shkz
3 Sh Sh*E

@III
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Application numérique et vérification expérimentale

Nous appliquons la théorie exposée dans les paragraphes précédents a un pont
a quatre caissons, récemment construit: le Pont de Courbevoie, sur la Seine. dont la
coupe transversale est donnée sur la fig. 28% C’est un portique ouvert a trois
travées (40 4+ 60 + 40 m). La travée étudiée est celle de 60 m.

Fig. 28

La section d'un caisson est définie sur la fig. 29. La disymétrie est créée par
la difference de longueur des porte-a-faux (e, # €,)

0,784 0,60 028 124 1,82

T 7T

L L2 026 0,80 1,322

X1 1,06

X2

0425023 295 ]

|

€2

Fig. 29

Les mesures de déformations effectuées au cours des ¢preuves de cet ouvrage ont
mis en doute les hypothéses habituelles de calcul

“Pont construit par I'entreprise Campenon Bernard. Au moment de I'étude, I'auteur était ingénieur
au Service regional de 'Equipement de la Région parisienne.



STRUCTURES EN POUTRES-CAISSONS RELIEES PAR DES DALLES 141

Au cours des épreuves, nous avons utilisé des camions de 35 t en mesurant les
fleches et rotations au milieu de chaque poutre-caisson, pour les trois cas de charge
suivants:

1° 8 files de 4 camions (toute la largeur de 26 m chargée).

2° 4 files de 4 camions (deux poutres-caissons latérales chargées).

3% 2 files de 4 camions (une seule poutre-caisson latérale chargée).

Ces trois cas de charge sont considérés dans 'application numérique.

Afin de ne pas prolonger I'exposé, nous nous bornons a4 donner les résultats
essentiels:

— de la répartition des charges entre les poutres-caissons,

— de la torsion considérée comme non uniforme.

Les lignes d’influence pour les inconnues hyperstatiques 4 mi-travée isostatique
sont données sur les fig. 30, 31, 32 et 33.

L B
=l &8 8 sl =
gl 8 R B =
= I = =3
s g B8\ B8 g =
. o R I SR
O] ® 2T TI\®T
o B2
s =8 2
=1 &
[N T L
Fig. 30
ElOEE s el = e e
1 0
sl 8 £ 8§82 8 8 g
ol &8 F & &8 & <= 9= 2@ &
[ T I S N A A B

\ o [ 4
e/

g

Fig. 31
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N
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0,428
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‘-‘0,548
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2 z\0g /
| 1 !

o ]

Fig. 33

Sur les fig. 34 et 35 sont donnés les diagrammes des bimoment et moment de
torsion fléchie pour une poutre-caisson latérale. Ces diagrammes correspondent &
la surcharge réglementaire A (1) répandue sur toute la longueur (60 m), et toute
la largeur de chaussée (26 m); les inconnues hyperstatiques étant réparties suivant
la loi sinusoidale.

Les contraintes ¢ et T dues au gauchissement empéché sont représentées sur les
fig. 36 et 37. Les valeurs entre les parenthéses correspondent au troisiéme cas de
charge d’épreuves — la charge la plus excentrée.

Les contraintes en question sont réparties suivant le contour de la section de la
méme fagon que les valeurs sectorielles [o] et T

La section considérée est celle du voisinage des appuis (z = 1,5 m ou z = 58,5 m).
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407
88

-551
=551

|
s

B

l

/ 1,50 m

H 15,3
8
- 407

1,50m

L=60,00m L=60,00m

R

Fig. 34. Diagramme du bimoment B (en Tm?). Fig. 35. Diagramme du moment
de torsion fléchie M, (en Tm).

Dans la section a mi-portée M, =0, donc 1= 0.
La valeur du bimoment B est faible. Les contraintes 6 ne dépassent pas en

valeur absolue 2 kg/cm”.

0,9848 0,8362

4,9
5,4 o
-18) : s —
52 = L7 0
(1,49
0,88
QS,Q“’L
1,5 %
(10,1
1,3766 1,5734
I
. _ Bro) o
Fig. 36. Contraintes normales o = ——en kg/em*.
Ifo]
L.0’9848 0,8352
= - — ~ 1,3
D | _ (L9)
i =14 W
(2,5 1 (=109 49
& Y 0 5 B
%‘\% 2|B i2/34 t]
0} (39) (6,8) (8,1)
QS’%?’ 0'8466‘
-2,0
(-2,8)
1,3 s -0,8
19 L 1,3766 _L 1,5734 -1.2)
e—
. - : o 5 A’fm- r 5
Fig. 37. Contraintes de cisaillement t= ———en kg/cm~.

[[,,,']' o
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Conclusions

D’une fagon générale, les résultats de cette recherche sont trés satisfaisants.

La flexion transversale des parois de caissons, prise en compte dans le calcul
des inconnues hyperstatiques, modifie sensiblement le comportement des structures,

En ce qui concerne la répartition des inconnues hyperstatiques, le long de la
travée, on peut admettre, avec une bonne approximation, que ces inconnues sont
réparties suivant une sinusoide.

C’est du point de vue de la torsion que I’étude est la plus intéressante.

Les mesures des rotations au milieu de chaque poutre-caisson donnent des
valeurs supéricures de 30% environ, comparativement a celles trouvées par la
méthode classique de calcul, et ces mesures confirment nos résultats de calcul.

La torsion est en effet non uniforme, et les principes de la théorie des barres a parois
minces sont parfaitement applicables au calcul des structures en béton précontraint
composées de poutres-caissons.

Les contraintes supplémentaires dues 4 la torsion non uniforme, ignorées dans
la méthode de calcul classique, peuvent avoir de graves conséquences sur le
comportement de ce genre de structures, et surtout-dans les ponts courbes, ot la
sollicitation a la torsion est plus accentuée.

L’importance de ce probléme devient a I'heure actuelle plus grande, du fait de
I’évolution de la préfabrication, qui conduit a la production d’é¢léments de cons-
truction ayant des parois de plus en plus minces.

Notations

section transversale.

bimoment.

moment de torsion.

moment de torsion par unité de longueur.

constanterelative aux caractéristiques sectorielles des profils composés.
module d’élasticité longitudinale.

coefficient de Poisson. : E
module d’élasticité réduit de la traction longitudinale (E, =
module d’élasticité transversale.

moment d’inertie par rapport aux axes Ox et Oy.

moment d’inertie a la torsion uniforme d’un profil: ouvert, fermé.
moment d’inertie polaire.

coefficient de gauchissement.

, &, [0] surface sectorielle d’un profil: ouvert, fermé, composé.

double de l'aire comprise & l'intérieur de la ligne moyenne d’un
profil fermé.

moment d’inertie sectoriel d’un profil: ouvert, fermé, composé.
longueur de la portée étudiée.

moment fléchissant agissant dans le plan paralléle au plan Oy, Oz.
moment de torsion fléchie.
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N effort normal.

0 centre de gravite.

O, centre de flexion.

r longueur de la perpendiculaire abaissée du centre de flexion sur la

tangente au contour.
S, S, moments statiques par rapport aux axes Ox et Oy d’un profil: ouvert,
ferme.
moment statique sectoriel d’un profil: ouvert, fermé.
abscisse curviligne d’un point de I'arc.
périmétre suivant la ligne moyenne d’un profil fermé.
effort tranchant agissant dans le plan paralléle au plan Oy, Oz.
déplacement dans la direction z.
déplacement dans la direction de la tangente au contour.
¢épaisseur de la paroi.
flux de cisaillement.
angle de torsion.
contrainte normale.
gauchissement.
fonction de gauchissement (caractérisant la torsion non uniforme).
contrainte de cisaillement.
intégrale étendue sur tout le contour d’un profil ferme.
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Considérations pratiques

Nous donnons ici quelques remarques pratiques concernant les conséquences
de la torsion non uniforme vis-a-vis du dimensionnement des armatures des ponts
a poutres-caissons en béton précontraint.

Il convient de constater que les contraintes maximales dues a la torsion non
uniforme se situent au voisinage des appuis.

Dans le cas des ponts droits, les calculs classiques ignorent ces contraintes —
de l'ordre de quelques bars — et il n’est pas prévu d’armatures passives pour les
reprendre.

Le diagramme (fig. 36) des contraintes normales conduit a renforcer les arma-
tures longitudinales dans les zones de goussets et de porte-a-faux et le diagramme
(fig. 37) des contraintes tangenticlles a renforcer les armatures transversales au
milieu des hourdis et des ames.

Pour les ponts courbes, on ne peut pas séparer les termes de flexion et de
torsion qui sont liés par la méme équation; il en résulte que les conséquences
de la torsion non uniforme sont plus importantes, puisqu’elle influe sur I’état général
des contraintes et des déformations. Ainsi les fléches mesurées en travées sont en
réalité plus importantes que celles trouvées par un calcul classique.

D’autre part, dans une poutre-caisson large a plusieurs cellules, ou I'effet de
gauchissement est important, les contraintes supplémentaires normales et tangen-
ticlles peuvent atteindre quelques dizaines de bars. Un calcul automatique tridimen-
sionnel permet de mettre en évidence I'existence de ces contraintes. Un tel tablier
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dimensionné suivant les formules habituelles manquera non seulement d’armatures
passives, mais aussi de précontrainte, d’ou risque de fissures.

Il semble que I'effet nuisible de la torsion non uniforme aussi bien dans le cas
des ponts droits que courbes pourrait étre considérablement diminué par une
différente conception des entretoises d’appui.

Une simple diminution de I’épaisseur des entretoises, voire leur suppression
dans certains cas, pourrait améliorer le comportement des ponts en béton pré-
contraint et, en plus, apporter de ’économie au projet.

Nous nous proposons de traiter ce probléme prochainement dans une étude
étendue sur plusieurs types de ponts.
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Résumé

L’¢tude concerne les systemes spatiaux élastiques rencontrés dans la construction

actuelle des ponts.

Le probléme porte principalement sur une section transversale, composée de

caissons liés entre eux par des dalles de différentes longueurs. Les structures ne
sont entretoisées que sur appuis.
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Pour la définition des inconnues hyperstatiques, on tient compte de la flexion
transversale des parois de caissons et, pour la torsion, de la fonction de gau-
chissement.

Zusammenfassung

Die Untersuchung behandelt rdumliche elastische Systeme wie sie im heutigen
Briickenbau auftreten. Das Problem bezieht sich hauptsidchlich auf einen aus Kasten
zusammengesetzten transversalen Querschnitt, die untereinander durch verschieden
lange Betonplatten verbunden sind. Das Bauwerk ist nur an den Auflagestellen
ausgesteift.

Zwecks Definition der statisch unbestimmten Unbekannten werden die trans-
versale Biegung der Kastenwiinde, sowie die Kriimmungsfunktion fiir die Torsion
beriicksichtigt. :

Summary

The study deals with spatial elastic systems in actual bridge construction.
The problem relates mainly on a transversal section composed by boxes joint
together by concrete slabs of different lengths. The structure is only stiffened on
the supports.

With a view of defining the statically undetermined unknowns the transversal
flexion of the box wall and the function of the curvature for the torsion are taken
into consideration.
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