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On Finite Strip Analysis of Continuous Plates
Analyse par bandes finies de plagques continues

Uber die Finite-Streifen- Berechnung von Platten

A. GHALI G. S. TADROS
M. ASCE, Professor of Civil Engineering, Post-doctoral Fellow,
The University of Calgary, Calgary, Alberta, Canada

Introduction

Semi-analytical finite element procedures have been used to reduce drasti-
cally the number of equations and solution cost for two-dimensional and three-
dimensional situations. In the application of these procedures to plates in
bending, long elements or strips are used (Fig. 1a and b) and the transverse
deflection of a strip is expressed in the form
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Fig. 1. Finite Strip Idealization.
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wt= 3 uwf= 3 @Y, 1)

where f () is a polynomial of x only and Y,, are basic functions satisfying the
end conditions in the y direction. When a third degree polynomial is used for
f(x), the unknown displacement parameters are two for each nodal line and
for each term of the series: w,,, and 6,,,, where 8 = — (0w/dx). This is the finite
strip method, first developed by CHEUNG, for the analysis of simply-supported
slabs [1] and later by CHEUNG and others for other structures idealized into
strips subjected to in-plane as well as to bending forces. For the simply-
supported slab, the basic function is a trigonometric series:

mmy
T

Y, =sin (2)

Applied loads must also be resolved into series similar to the displacement
function, and a load vector {F*} is then related to the nodal parameters. For
the strip in Fig. 1b, this relation takes the form:

[S*HD*} = {F*}, (3)

where [S*] is a square matrix of order 4r representing the stiffness of the
strip, and the displacement vector

{D*} = {{D*}1,{D*},, .. ..{D*},}, (4)
where {D*},, = {w;, 0,,w;,0},,. (5)

The stiffness matrix of the strip can be partitioned into rXxr submatrices
[S*],. corresponding to each term of the series. Due to the orthogonality of
the chosen function Y,, and its derivatives, it can be shown that the sub-
matrix [S*],,, = [0] when m £n. Thus, Eq. (3) will actually uncouple, and for
each term of the series we can write for one strip

For each term of the series, a stiffness matrix of the plate [S],, of order s xs
(where s is twice the number of nodal lines) is assembled from the stiffness
matrices [S*],,, of the individual strips. Adding the forces on each nodal line
from the two adjacent strips, we obtain a load vector {#7}, . Solution of the

equation

gives the s displacement parameters for the mth term of the series. Thus, the
uncoupling makes it necessary to solve r sets of s equations instead of one set
of r X s equations. The half-band width of the matrix is reduced by a factor 7;
thus, the reduction in computer time due to uncoupling can be quite con-
siderable.
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CHEUNG [2] used the finite strip method with the basic function Y, other
than trigonometric, to analyze plates with two other end conditions: simply-
supported-clamped and clamped-clamped. Unfortunately, with these func-
tions the uncoupling described above can not occur.

The object of the present paper is to use the trigonometric basic function
of Eq. (2) for all the three boundary conditions described above. The effect
of the fixing moment at the clamped edge is accounted for by superposition.
Thus, in all cases benefit is obtained from the uncoupling of the equations.
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Fig. 2. Continuous plates in Bending.

Any of the plates of Fig. 2 continuous over a number of panels can be
analyzed by the proposed method. Each panel is first analyzed with its two
edges parallel to the x axis simply supported, then the compatibility of rota-
tion at these edges is satisfied by the application of couples and the final
result is obtained by superposition.

CHEUNG et al. [3] analyzed continuous bridges similar to the plate in Fig. 2a
by solving a simply supported plate of span equals (/;+1,), and superposing
the effect of concentrated transverse forces to bring the deflections at the
intermediate support back to zero (force method of analysis). This approach
may result in ill-conditioned equations when the plate is continuous over a
number of spans and a large number of strips is used.

Procedure

The finite strip method for analysis of plates in bending is given in the
references mentioned above and in more detail with simplified example in
Ref. [4]. For this reason, the derivation of some of the equations which is
available in these references is deleted from the following presentation.
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The deflection of a strip (Eq. (1)) can be expressed in terms of the nodal
parameters for its sides ¢ and j. A general term of the series is

wo = [L*],{D*},,, (8)

where

3x2 243 2x2 a3\ | [3a2 2x%\|[x2 ¥
%k — R e _ R - o
(2790 = (1= 5 5 (== b)!(bz i) (5 )| T @

Define a system of four coordinates for each strip: The rotation (dw/dy) at the
ends y =0 and y =I of its nodal lines (Fig. 1c¢).

% X *k k
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Substitution of Eq. (8) into Eq. (10) gives

{a*}m = [C*]m{D*}m’ (11)
where [C'*],, is the strip displacement transformation matrix for the mth term
[H], [0] ]
C*), = " 12
N 42
m 1 0
and [ = E [eosmw O] ) (13)

The edge bending moment normal to the short sides of the strip is assumed
to vary linearly between nodal lines. Define a vector {@*} of the four values
of the moment (per unit length) at the ends of the nodal lines. The edge
bending moments can be expressed in a form of trigonometric series of a
transverse load of intensity '

q =-ZQm Lo (14)
h _2malb—zx|b-x x| x Q0 ‘ 15
where In =g |~ | cOSMT|p|pcosmm {Q@*}. (15)
The load vector (see Eq. (20.108) of Ref. [4]).
1b
{F*} = .({O[L]£Qm Y, dedy = [G*],{@*}. (16)

Substitution of Eqgs. (9) and (15) in Eq. (16) gives the force transformation
matrix

20 0 cosmm 20 90 3T
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For the assembled structure two vectors are derived: {«},, and {@}, each
of order s. An element of {@} corresponding to one end of a nodal line is
obtained by adding @* for the strips at its left and its right. In a similar way
a transformation matrix [(G],, of the structure (of order s X s) can be assembled
from the transformation matrices [G*],, of the individual strips. Thus, for the
assembled structure Eq. (16) becomes

{Fn = [G1.{Q}- (18)

The rotation vector of the assembled structure is related to the nodal dis-
placement parameter by the equation

{a}m = [O]m {D}m s (19)
[H],, N
where [C],, = _ (20)
m | submatrices ‘

| not shown are null [H],, |

Combining Eq. (7) with Eqgs. (19) and (18)

{otn = [Cl [ST5 {F 1 (21)
and {a}m = [f]m{Q}a (22)
where (fln = [Cln ST G- (23)

[f1,, represents the contribution of the mth term to the “flexibility matrix
relating {«},, and {@}. The ‘“flexibility’’ matrix relating {«} and {@Q} is

/1= mZI[O]m (STt [G - (24)

For an example of application of the above equations consider a one panel
plate with the edges parallel to the x axis clamped. The bending moment
normal to the clamped edges is of intensities {¢} at the nodal lines ends. For
compatibility the rotations due to {@} on a simply-supported slab (=[f]{@})
must be equal and opposite to the rotations {«} = > {«},, due to actual loading;
thus, combining this condition with Eq. (21) gives

{Q} = - [f]_lmz_l{a}m = [f]—l le[O]m [S]EI{F}m (25)
It is to be noted that the above equation satisfies the compatibility condition
(0w[oy)=0 only at the ends of the nodal lines. The error resulting from this
approximation is negligible and decreases as the width of the strips is decreased.
(When b — 0, the compatibility condition is satisfied at all points.)

The clamped plate can now be analyzed as a simply-supported one, sub-
jected to the combined load {F}, and {Q}. The contribution of the mth term
to the displacement parameters (see Egs. (7) and (18)) for the clamped plate
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(D = (ST Fh+ 3 (815461, 4@}- (26)

Choosing p=r, Eq. (26) becomes
(D}, = [STH F Y (27)
where {F = {F}+ 610 {Q}. (28)

Thus, the analysis of a clamped plate is reduced to that of a simply-supported
plate with the load vector {#'},, replaced by {F},,.

Examples

To check the method of analysis for the effect of edge moments derived
above, consider isotropic plates simply supported on four sides and subjected
to uniform moment M, per unit length normal to the two sides A B and C'D
(see Fig. 1a and Table 1). Due to symmetry, half the plate is analyzed with
a/2 divided into five strips. Table 2 gives the results of plates as in the first
example but subjected to uniform load and the edges A B and C'D clamped
instead of simply supported. Poisson’s ratio in both examples equals 0.3.

A study of convergence is made in Table 3 for one of the plats in Table 2
with //a=1.0. Odd terms only contribute to the results. A somewhat large
number of terms is required if high accuracy is desired. However, for the
values considered the contribution of any two consecutive odd terms are of
opposite signs, and the average of the answers with two consecutive odd terms
is close to the exact solution. The results in Tables 1 and 2 are averages of
solutions using 7 and 9 terms. For further study of convergence, see Ref. 6.

Table 1. Analysis of Plates Simply Supported on Four Sides and Subjected to Moments M,
on Hdges AB and CD (Fig. 1a)

la Central Central Central P
Deflection M, My
2.0 1.746 0.156 —0.005 F. 8.
’ 1.740 0.153 -0.010 Exact [5]
L5 2.800 0.267 0.052 F.S.
: 2.800 0.264 0.046 Exact
1.0 3.685 0.397 0.262 F.S.
: 3.680 0.394 0.256 Exact
0.75 6.199 0.425 0.482 F. 8.
: 6.200 0.424 0.476 Exact
0.50 9.647 0.385 0.775 F.S.
’ 9.640 0.387 0.770 Exact
Multiplier | Mg £2/(100N)*) My Mg

*) £ is the smallest value of [ and a.
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Table 2. Analysis of Plates Clamped on Sides AB and C D, Simply Supported on the Two

Other Sides Subjected to Uniform Load of Intensity q (Fig. 1a)

la Central Central Central My at A
Deflection M, M, Middle of A B

0.5 0.00253 0.0135 0.0410 —-0.0852 F.S.

) 0.00260 0.0142 0.0420 —0.0842 Exact [5]
1.0 0.00186 0.0239 0.0325 —-0.0718 F.S.

’ 0.00192 0.0244 0.0332 —-0.0697 Exact
2.0 0.00834 | 0.0862 0.0475 —-0.1269 F.S.

) 0.00844 ‘ 0.0869 0.0474 -0.1191 Exact
3.0 0.001162 0.1144 0.0421 ~0.1370 F. 8.

) 0.001168 0.1144 0.0419 ~0.1246 Exact

Multiplier q &H/N*) q¢&° q¢&* q¢ ;

Table 3. Study

*) £ is the smallest value of 7 and a.

of Convergence. Uniformly Loaded Square Plate Clamped on Sides A B and
O D, Simply Supported on the Two Other Sides (Fig. 1a)

\
. Average of Two
Number Central Deflection Central M, Consecut{gve Solutions
of Terms -
in Series Sum of | Contribution | Sum of | Contribution Central Central
Terms of Last Term Terms of Last Term Deflection M,
!
1 16.713 ! 16.713 | 1.837 1.837
l 17.898 2.264
3 19.083 3.770 2.691 0.854
18.756 2.423
5 18.428 -0.655 2.155 -0.536
18.554 2.348
7 18.681 0.253 2.541 0.386
18.620 2.391
9 18.559 -0.122 2.240 -0.301
18.593 2.364
11 18.627 0.068 2.487 0.247
18.606 2.382
13 18.585 | -0.042 2.277 -0.210
| | 18.599 2.368
15 18.612 0.027 2.459 | 0.182
! 18.603 2.379
17 18.594 -0.018 2.299 | —0.160
; ‘ 18.600 2.371
19 18.607 0.013 ’ 2.442 | 0.143
, | 18.602 2.377
21 18.597 ~0.010 l 2.312 i -0.130
39 18.602 0.001 E 2.408 0.070
18.602 2.375
41 18.601 -0.001 2.342 -0.066
| !
Multiplier 10-4q 4/N ; 10-2¢ P2 10-* q I*|N 10-2¢g 12
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Conclusion

The solution of plates simply supported on two opposite sides when analyzed
by the finite strip requires solution of a small number of equations because of
the orthogonal properties of the trigonometric basic functions used. If other
functions are used to satisfy boundary conditions other than simply supported,
the orthogonality does not occur and both the number of simultaneous equa-
tions to be solved and their half-band width are much increased. The method
presented allows the use of trigonometric functions for all cases of clamped
or continuous plates. The analysis is done for simply-supported panels and
the compatibility of rotation at the clamped or continuous edges is achieved
by the application of unknown “connecting’’ moments determined by the
force method. The accuracy of the proposed method is demonstrated by
examples.

Notation

[C] = transformation matrix.

{D} = displacement parameters.

{F} = load vector.

[f] = flexibility matrix.

{@} = intensity of end moment normal to the short sides of the strip. The
positive directions of the end moments are the same as the directions
of {«}.

[S] = stiffness matrix.

{o«} = nodal line end rotation.

a = width of the plate.

b = width of the strip.

I = length of the strip.

N = flexural rigidity.

r = number of terms.

s = twice the number of the nodal lines.

Y, = basic function.

w = transverse deflection.

Note: A star used as superscript refers to the strip while the absence of a
star means that the symbol refers to the assemblage of strips.
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Summary

The finite strip solution for rectangular plates in bending is a semi-analytic
procedure which reduces drastically the number of equations involved com-
pared with the finite element method. This is particularly true in the case of
a plate having two of its opposite edges simply supported, and the deflection
variation perpendicular to these edges is expressed as a sum of basic trigono-
metric series. With other edge conditions, other basic functions must be used,
which lack the orthogonality of the trigonometric functions and result in a
large increase in the number of simultaneous equations and their half-band
width. An alternative finite strip procedure is presented, in which using super-
position, the trigonometric basic functions can be maintained for all edge
conditions including clamped or continuous.

Résumé

La résolution par la méthode des bandes finies du probléme des plaques
rectangulaires soumises a la flexion est un procédé semi-analytique qui réduit
considérablement le nombre des équations nécessaires comparé a la méthode
des éléments finis. Ceci est particuliérement valable dans le cas de plaques
dont deux c6tés opposés sont simplement appuyés, et dont la variation de la
fléeche perpendiculairement & ces cOtés est exprimée sous forme de somme de
séries trigonométriques. Pour d’autres conditions aux limites, on devra utiliser
d’autres fonctions de base, qui nuisent a 1’orthogonalité des fonctions trigono-
métriques et impliquent une augmentation du nombre d’équations simultanées
et de la largeur de leurs demi-bandes. On présente une méthode basée sur les
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bandes finies alternatives pour lesquelles, par superposition, on peut conserver
les fonctions trigonométriques de base pour toutes les conditions aux limites,
y compris les encastrements ou les appuis continus.

Zusammenfassung

Die Finite-Streifen-Losung fiir rechteckige Platten unter Biegung ist eine
halbanalytische Methode, die die Anzahl Gleichungen, verglichen mit der
Methode der finiten Elemente, wesentlich reduziert. Dies trifft besonders fiir
den Fall einer Platte mit zwei entgegengesetzten frei aufliegenden Réndern zu,
wo die Variation der Durchbiegung senkrecht zu diesen Ridndern durch eine
Summe fundamentaler trigonometrischer Reihen dargestellt werden kann.
Andere Randbedingungen erfordern andere Grundfunktionen, die die Ortho-
gonalitdt der trigonometrischen Funktionen nicht besitzen, und aus denen
eine grosse Zunahme der Anzahl simultaner Gleichungen und deren Band-
breiten resultiert.

Alternativ wird eine andere mogliche Finite-Streifen-Methode beschrieben,
bei der, durch Gebrauch von Superposition, die fundamentalen trigonometri-
schen Funktionen fiir alle Randbedingungen einschliesslich Einspannung und
Auskragung beibehalten werden konnen.
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