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Analysis of Slender Reinforced Concrete Frames

Calcul des cadres en beton arme selon la theorie du 2e ordre

Berechnung von Stahlbetonrahmen nach der Theorie 2. Ordnung

K. AAS-JAKOBSEN M. GRENACHER
Dr. sc. techn., formerly, research associate Research associate

Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH),
Zürich (Switzerland)

1. Introduction

This paper outlines a method to determine the maximum load carrying
capacity of a plane frame with given cross sections and reinforcements.

The present paper based on an investigation described in [1] differs from
other investigations [2], [3], [4], [5], [6], [7], [8] in three respects:

— The frame can have an arbitrary geometry.

— An arbitrary load history can be followed.

— A displacement controlled procedure is used which allows the determination
of unstable configurations of the frame.

The two main difficulties in the analysis of slender reinforced concrete
frames are due to

— the influence of the displacements on the equilibrium of the frame,
producing a "geometrical'' non-linearity;

— the non-linear stress-strain-time relations for the materials causing a
"material" non-linearity.

The two non-linearities are treated separately as shown schematically in
Fig. 1. The geometrical non-linearity is considered in a second order elastic
analysis. Given are loads P, bending rigidities EI and axial rigidities EA for
all elements of the frame. The moment M, the axial force N and the
corresponding strain distribution for all sections are determined. The strain



K. AAS-JAKOBSEN

1. Geometrical non-linearity
2nd order analysis

2. Material non-linearity
cross sectional analysis

Fig. 1. Schematic illustration of the analysis.
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distribution is given by two parameters. Herein, the middle strain em in the
reference axis of the members and the curvature 1/r are used.

The material non-linearity is taken into aecount in the cross sectional

analysis. Given are cross section, reinforcement, stress-strain-time relation for
the materials and a strain distribution (emi, l/rt). The subscript "i" is used for
reference to the cross sectional analysis. The moment Mi and axial force Nt
are determined.

The elastic and the cross sectional analysis are coupled together by the

requirement of equality of the determined forces in the elastic and the cross
sectional analysis. Similarly, equality of the strains determined in the elastic

analysis and of the strains assumed in the cross sectional analysis must be

satisfied.
The critical load of the structure corresponds to the peak on a load-deflection

curve separating the stable from the unstable equilibrium configuration.
In this ränge a deformation controlled procedure must be used to assure

convergence. Hence, the deformation at some point of the structure is increased

by steps to obtain the load-displacement response.

2. Second Order Elastic Analysis

The elastic frame analysis is performed by means of the finite element
method. A frame may be visualized as an assemblage of elements inter-
connected at their ends which are referred to as nodal points or nodes. If the
force-displacement relations for each element are known, the equilibrium
configuration of the complete structure can be expressed in terms of the nodal

wi,pr
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W5,PW2,P2

Fig. 2. Element in local coordinates.
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displacements. The force-displacement relationship for the element shown in
Fig. 2 can be written as

[K){w} {P], (1)

in which {w} is the displacement vector of the element and {P} the corresponding
force vector:

{«,}

Applying Standard finite element techniques, the stiffness matrix [K] can be
written as

[K] [K1] + [K,],
where [iTx] is the first order stiffness matrix,

[if2] is the non-linear geometrical stiffness matrix,
[ÜTJ and [K2] are given in Fig. 3.

If the element is inclined at an angle 6 with the #-axis, as shown in Fig. 4,
the given stiffness matrix above relates to the local coordinates xl — zl. The
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Fig. 3. Local element stiffness matrix [K] [K1}-{-[K2].
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Fig. 4. Global forces and displacements.
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global stiffness matrix [K] in the x-z coordinate system is then given by

[Ä]-[jj]r[jr,][Ä].
[K{\ is the local stiffness matrix given in Fig. 3.

[B] is the transformation matrix relating local displacements {w^ and global
displacements {w}, or local loads {Pz} and global loads {P} as follows:

{«%} [B]{w},
{P,} [Ä]{P};
[B] is given in Fig. 5.

The global element stiffness matrix [K] [K-^ + [K2] is given in Fig. 6.

(2)

[R]. c s
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c s

-s c
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{pJ • [R] {P}

s sin e
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Fig. 5. Transformation matrix [i?].
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Fig. 6. Global element stiffness matrix [K] [Xx] + [XJ.
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Similar to the force-displacement relationship for the element the force-
displacement relationship for the complete structure, or the complete system
of elements, can be written as

[K]{w} {P}, (3)

in which {w} now contains all nodal displacements and {P} all nodal loads.
The system stiffness matrix for the complete structure is obtained by

superposition of the individual element stiffness matrices.
When the system stiffness matrix [K] and the load matrix {P} have been

established, the system of equations is adjusted according to the given boundary
conditions. If some displacement, for instance Wj, is identical to zero, this can
be taken into account in a simple manner by replacing the diagonal stiffness
coefficient K^ by a large number, say IO50.

The Solution of the linear system of equations, Eq. (3) is most efneiently
carried out taking into account the symmetry and the banded structure of
the system stiffness matrix.

It should be noted that the axial force N must be known in order to evaluate
the element matrix [K2] in Fig. 6. The axial force is usually not known in
advance, and an iterative procedure must be used. In the first cycle N is
chosen equal to zero and the first order forces are calculated. In the second
cycle the axial forces found in the first cycle are used.

Usually the axial forces are practically not influenced by the second order
effects, such that two cycles are generally sufficient.

When the displacements have been determined, the element forces are
found by substituting {w} back into Eq. (1). It should be noted that [K] in
Eq. (1) is the local element stiffness matrix given in Fig. 3. The global
displacements are transformed into local displacements according to Eq. (2).

3. Cross Sectional Analysis

In the cross sectional analysis each section is divided into narrow strips
which are assumed to behave as concentrically loaded fibers.

cross section strain

AA£/sssssssss;;;;;;;;* —l

internol forces

MVr.)

Fig. 7. Cross section, strain distribution and forces.
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The resultant forces Mi and Nt are given by (Fig. 7)

Mt ^azAA,
N< =Z°AA.

The strain e, positive when in tension, is assumed to be linearly distributed
over the section. Then

¦Gl* (5)

where emi is the axial strain in the reference axis,

I—I is the curvature,

z is the distance from the axis.

The assumed stress-strain relationship for a virgin concrete specimen
(previously not loaded) under instantaneous loading up to failure is shown in
Fig. 8. For instantaneous unloading or reloading a linear relation between
stress and strain is assumed both for steel and concrete:

a E(ei-ec-€p), (6)

where er is the stress in the considered strip,
E is the "elastic" modulus for the material,
et is the total strain,
ec is the "plastic" strain in the strip from the previous load history,
ep is the initial strain in the strip, for instance due to prestressing.

The "plastic" strain ec is due to yielding, creep and shrinkage. At a given
time, the magnitude of the plastic strain can be determined from Eq. (6):

ec e-*/E-ep. (7)

Steel is assumed to be elasto-plastic as shown in Fig. 8. Thus, the stress

given by Eq. (6) is limited by the yield stress fs.
The concrete stress determined from Eq. (6) is assumed to be limited by

the stress-strain relationship for a virgin concrete under instantaneous loading.
Hence, the stress-strain relationship for a virgin specimen is the envelope
curve for the concrete stress-strain relations. The concrete is assumed to have
no tensile strength. Concrete shows a time-dependent increase of the plastic
strain ecc due to shrinkage and creep.

At a constant sustained stress the plastic strain due to creep is assumed
to be given by

9 v«>Y+t' ^
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where y^ is the limiting creep factor,
T is the elapsed time until half the limiting creep is reached,
€0 is the short-time strain given by:

0.002 H-?)- (10)

The hyperbolic expression in Eq. (9) has been used in a number of investigations

and seems to be in reasonable agreement with experimental data.
Creep under variable stresses is calculated by dividing the stress history

steel stress-stroin relation

arctan E$

-i——6
0.010

G"c (neg)

fÄ- sspe

f-~x/£3arctan Ec

arctan E

concrete stress-strain relation

6 \21rshort-time: Sc =^[2(5^) + (^) ] for 0>£> -0.002

instantaneous loading
instantaneous unloading

creep under constant stress

£ (neg)
-0.002 -0.0035

Fig. 8. Stress-strain relations.
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Fig. 9. Creep under variable stresses.
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into time intervals and assuming a constant stress within each interval as

indicated in Fig. 9. The "rate of creep" method is applied. It is assumed that
the creep under variable stresses can be obtained from creep curves for
constant stresses. Such curves, for two stress levels crcl and orc2, are indicated with
solid lines in Fig. 9. In the time interval A t
the stress ac2 is given by

tY + At
Aen eo9

where -0.002

T + t±'T + ti + At

H c2l+~

-t2 — tx the increase of strain under

(ii)

The procedure for determining the stress crc2 at the end of the time interval
t + A tis outlined in Fig. 10. Given are the total strain € at the time t + At, the
prior plastic strain ecc, the initial strain ep and the stress acl at the time t. As
an approximative Solution the stress acl is used to determine the increase of
creep strain A ecc from Eq. (11). In the case of shrinkage, the corresponding
shrinkage strain is added to Aecc. The stress ac2 is determined from Eq. (6).

If ac2 exceeds the short-time stress corresponding to the total strain e, the
latter stress is chosen. The plastic strain ecc at the time t + At is given by
Eq. (7).

Starti
given: £ ,£cc £p, 6"C1 ,t,At

1 '

A£cc {Eq. 11}

<^-^bC2 inside the^^-^ no
^^^em/elope curvej^--^

' '

yes 6TC2 is determined from
the envelope curve

i r

^CC ^ ~~ ^p " ^C2 ' '-C

finished

Fig. 10. Determination of stress and "plastic" strain.
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4. Computation Procedure

The load carrying capacity of a frame with given cross sections and rein-
forcements is calculated in successive steps up to the maximum capacity.

Fig. 11 shows the flow-chart used for determining a point on the load-
displacement curve. The procedure starts with assumed rigidities for all
elements. In a second order elastic analysis, the elastic forces M and N, and the
strain distribution expressed by middle strain em and curvature (1/r) are
determined for all elements. The internal forces M4 and N* are determined in

geometry of frame, loads, materials,

cross sections, reinforcements
given

El, EA

w

[k]= [k,] + [k2]

{w}-[K]"-{P}
M

N
¦ < ({»})

(1/r) J

v

i

ML ]

/^ |M - Mi 1 < A M^».
"\. |N-Ni|<AN ^^

Tno

El - Mi / (1/r)

EA= NL/£m

assumed

2nd order elastic analysis

cross sectional analysis

yeJ_ one point on the load -

displacement curve

determined

secant rigidities

Fig. 11. Flow-chart for frame analysis.
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a cross sectional analysis based on the strain distribution found in the elastic
analysis. Thus strain equality is automatically satisfied. Force equality then
becomes the iteration criterion of the procedure *). If equality is not satisfied,
improved secant rigidities are determined from the internal forces, and the
procedure is repeated.

The maximum load capacity of slender reinforced concrete frames is
associated with instability as indicated in Fig. 12. In a load controlled procedure

where the external load is increased in steps poor convergence develops
near the maximum load. The unloading part of the curve cannot be calculated.
In a displacement controlled procedure, where a characteristic displacement
is increased step by step and the corresponding load is calculated, no problems
of convergence are encountered.

Load

I f displacementload
controlled! controlled

r-maximum load capacity, instability failure

-*- material failure

Displacement

Fig. 12. Load-displacement curve for a slender reinforced concrete frame.

In the present study, external loads on a frame are divided into constant
and proportional loads (Fig. 13). The latter are proportional to a load factor A.

A displacement controlled procedure will be used. The displacement w is
increased in steps until the maximum value of A has been found.

For each value of the specified displacement w, the corresponding load
factor A is found iteratively as outlined in the following. First rigidities are
assumed for all elements. Then, the load factor A is increased in steps until
calculated and specified displacement coincide. New rigidities can now be
determined in the cross sectional analysis. The procedure is repeated until
assumed and calculated rigidities agree. The outlined procedure was slightly
modified in the above mentioned program in order to speed up the convergence

(see Fig. 13). Generally, a non-linear relation exists between the load

*) A slightly different procedure was used in the Computer program [1] in order to
ensure convergence. In the cross sectional analysis the middle strain €mi was determined
iteratively to satisfy the axial force equilibrium. The curvature was kept constant.
Moment and middle strain equalities become the iteration criterion in this case.
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2- 1. Iteration /
last iteration / /

^X=1

elastic analysis, EA, El, N are assumed
constant in each iteration
X=2

¦real load-displacement curve

X-P X-P

•j.

»~ controlled displacement w

Fig. 13. Displacement controlled determination of a point on the real load-displacement curve.

factor and the displacements even if the rigidities are kept constant. The
reason is that the geometrical stiffness matrix [K2] (Fig. 3) depends on the
axial forces N which, in turn, depend on the load factor A. However, if the
axial forces introduced into the geometrical stiffness matrix are assumed
independent of A, a linear relation between A and the displacement results.
Hence, it is sufficient to consider two loading cases, for instance A equal to 1

and A equal to 2. The load factor corresponding to the specified displacement
w is found by linear interpolation as indicated in Fig. 13. For this new load
factor new rigidities and axial forces to be introduced in [K2] are determined.
The procedure is repeated until the calculated rigidities and axial forces agree
with the assumed ones.

Under sustained loads, specified by the long-time load factor As and dura-
tion t, the displacement w can be calculated as follows:

The displacement w is increased in steps as before. For each step of w, the

w is constant/
Xs-P

time
to U

T h
Fig. 14. Displacement controlledjprocedure'underjäustained loads.
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time is increased in increments. (Fig. 14 corresponds to one value of w; the
starting time is t0.) For each increment of time the corresponding load factor
A is determined as before considering the creep of concrete. When the
calculated load factor A is equal to the given load factor Xs, the time to reach the
chosen displacement has been found. If the calculated A at the starting time
t0 is less than Xs, creep instability has taken place.

5. Examples

The following examples illustrate the application of the described analysis.

a) Comparison with Test Besults

Three test columns under different types of loads [9] were analysed according

to the described method. The three columns had hinged ends on both sides
and were of the same length and same cross section (Fig. 15). Due to the
symmetry only one half of each column was considered. The column was
divided in 6 elements.

Column 24 was loaded in a short time test up to failure (Fig. 15). The
measured and the calculated load capacity of 24.2 t agreed favourably. The
slightly overestimated middle deflection 8 can be explained with the assumption

of no tensile strength of the concrete.
Column 25 (Fig. 16) was loaded by a sustained load Ps~ 16.4t during 141

days. After this time the increase of deformation was very small. Also for this
column the agreement of the measured and computed failure load in the final

Maximum load P=24.2 t

Plt)

"^

20
3.75cm

TVfc~ fs=4610kg/cm
2.7*=

3.14cm2
3.14cm2

£
27*=10 25

S P

• • • Test

xxx Calculation with fc * 257 kg/cm2

_ —>—i—i—i—i—i—i—i—i 1—i—»¦*-
0 5 10 8 (cm)

Fig. 15. Load-displacement curve (column 24).
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Load P(t)

20-

Po=164

10

Pmax ;ia9t Pmax 19-2t

• • • Test

xxx, Colculati

-i—i—
5

ion with fc 219kg/cm2

t 1 r-
10 Displacement (cm)

Time (days)

140-

120-

100

80
60-

40-

20-

5 Displacement (cm)

Fig. 16. Test under sustained load and final short time test (column 25).

short time test was good (< 2%). The computed deflections both under
sustained and under short time loads are too big due to the already mentioned
reason. The relation between the middle deflection S and the time is shown in
the lower part of Fig. 16. The agreement of the two curves is satisfactory
considering the big scattering which usually is involved in creep problems.

Fig. 17 shows a test under sustained load. The column failed due to creep
buckling. The computed load-displacement curve is in good agreement with
the measured one. With a middle deflection 8 of 9 cm the column becomes
unstable under the constant sustained load Ps= 18.9t. The relation between
the deflection § and the time t agrees well up to t= 61 days. The computed time
at failure is 185 days. The computation of the time depends very much on
the assumed concrete strength. To illustrate this the computed time-displace-
ment curve is also given in Fig. 17 for a concrete strength fc 10% lower than
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Load P(t)

20
Prs =18.9

20

0-1

A
creep failure

¦*?

• •• Test

xxx Calculation witf

0 1 2 3 4 5 6 7 8

Time (days)

180-

160-

140-

120-

100-

80
OO-

60-

40
20-

fc= 266 kg/cm2

—i—i 1 -^10 11 12 Displacement (cm)

xxx Calculation with fc =266 kg/cm2
000 Calculation with 0.9 fc=240 kg/cm2
• • • Test

10 Displacement (cm)

Fig. 17. Long time test up to creep failure (column 22).

p=3.00t/m

®® '

®g=3£6t
®

®
® »fe31crrS

fc=200kg/tmt|,
fs=4200kg/cm2

4800cm

k =0.050 cm/to±il=
m

Fig. 18. System and loads.
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the corresponding fc of the test specimen. In this case the duration of time
up to creep failure (£ 68 days) is reduced to one third.

b) Arch Under Snow Loads

The arch as shown in Fig. 18 is analysed. As an extreme loading a snow
load of A • 3.00 t/m' over half the span is assumed for the computation. The dead
load 0 3.66 t/m' is constant over the whole span. Fig. 19 shows the computed
relation between the load factor A and the maximum deflection at about one
third of the span. The dotted line corresponds to a short time loading. In
addition to that this relation is also given for a combined short-time and
sustained loading. First, the load is increased up to A 0.70 and after a
sustained load during 300 days the load is increased up to the maximum load
capacity.

X p

g

X
- i

1.2-

1.0-

ttI.10

/ /
rl.01

0.8- / /l—r
0.6-

04-

I
1

30O

/feoo-

/ 100-

t (doys)
ij02-

0-

/ ' - t/

max

0 10 20 30 40 Smaxta")

Fig. 19. Load-deflection behavior of an arch under short time and sustained loads.

Notation

M
N

{P}
Ps

A

moment
axial force
subscript "i" is used for reference to the cross
sectional analysis
external loads
sustained load
load factor for proportional loads
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K load factor for sustained loads

m stiffness matrix

t*j first order stiffness matrix
[*d non linear geometrical stiffness matrix
[R] transformation matrix
{w} nodal displacements
E modulus of elasticity
A area of cross section
l length of element

EI bending rigidity
EA axial rigidity
a stress

fs yiel stress of steel
fc cylinder strength of concrete
€ total strain
€C '"plastic" strain
€P initial strain (e. g. due to prestressing)
€0 short-time strain
<?oo limiting creep factor
t time
T elapsed time until half of the limiting creep is reached

Acknowledgement

The study is based on results obtained in the course of a research project
on the inelastic behavior of reinforced concrete columns under the direction
of Prof. B. Thürlimann. The project was supported by the Swiss National
Science Foundation (Schweizerischer National-Fonds).

References

1. Aas-Jakobsen, K. und Grenacher, M.: Berechnung unelastischer Rahmen nach der
Theorie 2. Ordnung. Bericht Nr. 45, Institut für Baustatik, ETH Zürich.

2. von Karman, T. V.: Untersuchung über Knickfestigkeit. Mitteilung über Forschungsarbeiten

auf dem Gebiet des Ingenieurwesens, No. 81, Berlin 1910.
3. Baumann, O.: Die Knickung der Eisenbeton-Säulen. Eidg. Materialprufungsanstalt

an der ETH in Zürich. Bericht Nr. 89, Zürich, Dezember 1934.
4. Broms, B.: Ultimate Strength of Long Reinforced Concrete Columns. Department

of Theoretical and Applied Mechanics, University of Illinois, June 1956.
5. Pfrang, E. O. and Siess, C. P.: Analytical Study of the Behavior of Long Restrained

Concrete Columns Subjected to Eccentric Loads. Civil Engineering Studies, Structural
Research Series No. 215, University of Illinois, June 1961.

6. Breen, J. E.: The Restrained Long Concrete Column as a Part of a Rectangular
Frame. Ph. D. Dissertation, University of Texas, Austin, Texas, 1962.



ANALYSIS OF SLENDER REINFORCED CONCRETE FRAMES 17

7. Manuel, R. F. and Mac Gregor, J. G.: The Behavior of Restrained Reinforced
Concrete Column under Sustained Load. Ph. D. Dissertation, Department of Civil
Engineering, The University of Alberta, Canada, 1966.

8. Blaawendraad, J.: Realistic Analysis of Reinforced Framed Structures. Heron,
Vol. 18, No. 4, 1972.

9. Ramu, P., Grenacher, M., Baumann, M., Thürlimann, B.: Versuche an gelenkig
gelagerten Stahlbetonstützen unter Dauerlast. Bericht Nr. 6418-1, Institut für
Baustatik, ETH Zürich, Mai 1969.

Summary

An approach to analyse reinforced concrete frames is outlined. The effects
of second order and non linear material behavior are considered. The com-
putational process described is based on the finite element method. The effective

stiffnesses for each state of loading are determined by iteration. The
influence of creep and shrinkage are taken into account. Two examples are
given to demonstrate the possibilities of the proposed analysis.

Resume

L'objet de ce rapport est la description d'une methode de calcul selon le
2e ordre pour les structures composees de barres inelastiques. La methode des

elements finis est ä la base de ce calcul. Les rigidites flexionnelles sont calculees

pour chaque etat de charge par iterations. Les effets du fluage et du retrait
peuvent etre consideres. On montre ä l'aide de deux exemples les possibilites
de cette methode.

Zusammenfassung

Es wird eine Methode zur Berechnung von Rahmentragwerken aus Stahlbeton

beschrieben. Dabei wird der Theorie 2. Ordnung, wie auch dem nicht
linearen Materialverhalten, Rechnung getragen. Der beschriebene Rechnungsgang

basiert auf der Methode der finiten Elemente. Die effektiven Biege-
steifigkeiten für jeden Belastungszustand werden iterativ ermittelt. Langzeiteffekte,

wie Kriechen und Schwinden, können berücksichtigt werden. Anhand
von zwei Beispielen werden die Möglichkeiten des RechenVerfahrens gezeigt.
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