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Analysis of Slender Reinforced Concrete Frames
Calcul des cadres en béton armé selon la théorie du 2e ordre

Berechnung von Stahlbetonrahmen nach der Theorie 2. Ordnung

K. AAS-JAKOBSEN M. GRENACHER
Dr. sc. techn., formerly, research associate Research associate

Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH),
Zurich (Switzerland)

1. Introduction

This paper outlines a method to determine the maximum load carrying
capacity of a plane frame with given cross sections and reinforcements.

The present paper based on an investigation described in [1] differs from
other investigations [2], [3], [4], [5], [6], [7], [8] in three respects:

— The frame can have an arbitrary geometry.
— An arbitrary load history can be followed.

— A displacement controlled procedure is used which allows the determination
of unstable configurations of the frame.

The two main difficulties in the analysis of slender reinforced concrete
frames are due to

— the influence of the displacements on the equilibrium of the frame, pro-
ducing a “‘geometrical’’ non-linearity;

— the non-linear stress-strain-time relations for the materials causing a
“material’’ non-linearity.

The two non-linearities are treated separately as shown schematically in
Fig. 1. The geometrical non-linearity is considered in a second order elastic
analysis. Given are loads P, bending rigidities £ I and axial rigidities £ 4 for
all elements of the frame. The moment M, the axial force N and the cor-
responding strain distribution for all sections are determined. The strain
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1. Geometrical non- linearity v :
2™ order analysis P,EI,EA = M, N, r

m
3

force
equality

strain
equality

2. Material non - linearity ]
cross sectional analysis Mi,N; <= Eni, '/

Fig. 1. Schematic illustration of the analysis.

distribution is given by two parameters. Herein, the middle strain ¢,, in the
reference axis of the members and the curvature 1/r are used.

The material non-linearity is taken into account in the cross sectional
analysis. Given are cross section, reinforcement, stress-strain-time relation for
the materials and a strain distribution (e,,;, 1/r;). The subscript “¢’’ is used for
reference to the cross sectional analysis. The moment M; and axial force N;
are determined.

The elastic and the cross sectional analysis are coupled together by the
requirement of equality of the determined forces in the elastic and the cross
sectional analysis. Similarly, equality of the strains determined in the elastic
analysis and of the strains assumed in the cross sectional analysis must be
satisfied.

The critical load of the structure corresponds to the peak on a load-deflec-
tion curve separating the stable from the unstable equilibrium configuration.
In this range a deformation controlled procedure must be used to assure con-
vergence. Hence, the deformation at some point of the structure is increased
by steps to obtain the load-displacement response.

2. Second Order Elastic Analysis

The elastic frame analysis is performed by means of the finite element
method. A frame may be visualized as an assemblage of elements inter-
connected at their ends which are referred to as nodal points or nodes. If the
force-displacement relations for each element are known, the equilibrium
configuration of the complete structure can be expressed in terms of the nodal

w‘i’Pa WG’ P6
w — e } w xl.
1,P, 47 ujw ‘ 4,P, "
Wa,P, W5, Py
2

Fig. 2. Element in local coordinates.
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displacements. The force-displacement relationship for the element shown in
Fig. 2 can be written as

[K]{w} = {P}, (1)

in which {w} is the displacement vector of the element and { P} the correspond-
ing force vector:

Wy )

W F,

_ W3 _ B
{w} - w4 s {P} - ﬂ
Wy Fy

We Fy

Applying standard finite element techniques, the stiffness matrix [K] can be
written as
[K] = [K;]+[K,],

where [K,] is the first order stiffness matrix,
[K,] is the non-linear geometrical stiffness matrix,
[K,] and [K,] are given in Fig. 3.

If the element is inclined at an angle 8 with the z-axis, as shown in Fig. 4,
the given stiffness matrix above relates to the local coordinates x;,—z;. The

-| EA _EA =
(<)== t [Kz]=N
12El| BEl | 12E1| 6El s | L N
3 |2 3| 12 50 | 10 50 |10
| |ee|2el 20| [LlL
1 Z ™1 15 10 | 30
EA ,
symmetric | L symmefric '
12E1 | 6EI 6 (.1
3 lZ 5t 10
4El 2L
1 15

Fig. 3. Local element stiffness matrix [K]=[K,]+[K,].

W3 ,Py

P

W."),P5 L

Fig. 4. Global forces and displacements.
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global stiffness matrix [K] in the -z coordinate system is then given by
[K] = [R]T[K;][R].

[K;] is the local stiffness matrix given in Fig. 3.
[R] is the transformation matrix relating local displacements {w;} and global
displacements {w}, or local loads {P;} and global loads { P} as follows:

{w} = [RB]{w}, (2)
P} = [RI{P},
[R] is given in Fig. 5.

The global element stiffness matrix [K] = [K,]+[K,] is given in Fig. 6.

[R]=]| c|s {w} = [R] {w}
s|c {r} = [rR] {P}
1
Cc S S =sine
S |1 C = coso
1
Fig. 5. Transformation matrix [R].
[k %A C2+ 1215' s? (—%——12 %)SC - %%—'— S - kyy “ky2 ki3
%‘5821-1—%—'-02 %ET' c “ki2 - ka2 k23
4 ET‘ ~kyz ~kes Z—FI‘
symmetric kg ki2 ~ky3
k22 -kas
kaz
[kg)=N 5—6,T 52 - -5§[ sC - 715 S - Ky ~ ke ks
=c? % c - k2 - k22 k23
%— - ki3 - ka3 - ':'TLG
symmetric kg kizg - Kq3
Koo ~koz
k33

S=sine C=cose

Fig. 6. Global element stiffness matrix [K] = [K,]+[K,].
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Similar to the force-displacement relationship for the element the force-
displacement relationship for the complete structure, or the complete system
of elements, can be written as

[K]{w} ={P}, (3)

in which {w} now contains all nodal displacements and {P} all nodal loads.

The system stiffness matrix for the complete structure is obtained by
superposition of the individual element stiffness matrices.

When the system stiffness matrix [K] and the load matrix {P} have been
established, the system of equations is adjusted according to the given boundary
conditions. If some displacement, for instance wj, is identical to zero, this can
be taken into account in a simple manner by replacing the diagonal stiffness
coefficient K;; by a large number, say 1050,

" The solution of the linear system of equations, Eq. (3) is most efficiently
carried out taking into account the symmetry and the banded structure of
the system stiffness matrix.

It should be noted that the axial force N must be known in order to evaluate
the element matrix [K,] in Fig. 6. The axial force is usually not known in
advance, and an iterative procedure must be used. In the first cycle N is
chosen equal to zero and the first order forces are calculated. In the second
cycle the axial forces found in the first cycle are used.

Usually the axial forces are practically not influenced by the second order
effects, such that two cycles are generally sufficient.

When the displacements have been determined, the element forces are
found by substituting {w} back into Eq. (1). It should be noted that [K] in
Eq. (1) is the local element stiffness matrix given in Fig. 3. The global dis-
placements are transformed into local displacements according to Eq. (2).

3. Cross Sectional Analysis

In the cross sectional analysis each section is divided into narrow strips
which are assumed to behave as concentrically loaded fibers.

cross section strain internal forces

Fig. 7. Cross section, strain distribution and forces.
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The resultant forces M; and N; are given by (Fig. 7)

.Mi=ZO'ZAA,

N, =>0dA4. )

The strain e, positive when in tension, is assumed to be linearly distributed
over the section. Then
1
€ = €pi (“") Z, (5)

r;

where ¢, is the axial strain in the reference axis,
1\ .
(7) is the curvature,
[3

2 is the distance from the axis.

The assumed stress-strain relationship for a virgin concrete specimen (pre-
viously not loaded) under instantaneous loading up to failure is shown in
Fig. 8. For instantaneous unloading or reloading a linear relation between
stress and strain is assumed both for steel and concrete:

oc=E(e,—¢,—¢,), (6)

where o is the stress in the considered strip,

E is the “‘elastic’’ modulus for the material,

¢; is the total strain,

€, is the “‘plastic’’ strain in the strip from the previous load history,
€

,» 1 the initial strain in the strip, for instance due to prestressing.

The ‘““plastic’’ strain ¢, is due to yielding, creep and shrinkage. At a given
time, the magnitude of the plastic strain can be determined from Eq. (6):

€ =€—0o/E—e¢,. (7)

Steel is assumed to be elasto-plastic as shown in Fig. 8. Thus, the stress
given by Eq. (6) is limited by the yield stress f,.

The concrete stress determined from Eq. (6) is assumed to be limited by
the stress-strain relationship for a virgin concrete under instantaneous loading.
Hence, the stress-strain relationship for a virgin specimen is the envelope
curve for the concrete stress-strain relations. The concrete is assumed to have
no tensile strength. Concrete shows a time-dependent increase of the plastic
strain e, due to shrinkage and creep.

At a constant sustained stress the plastic strain due to creep is assumed
to be given by

€oc = €0 P> (8)
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where ¢, is the limiting creep factor,
T is the elapsed time until half the limiting creep is reached,
o is the short-time strain given by:

€ = —0.002(1—]/@). (10)

The hyperbolic expression in Eq. (9) has been used in a number of investi-
gations and seems to be in reasonable agreement with experimental data.
Creep under variable stresses is calculated by dividing the stress history

Gs
[
fS 7 Il
/ . .
’ steel stress-strain relation
arctan Eg
— -
0010
concrete stress -strain relation
Gc (neg) £ £ 2
short-time: G, =fc[2(o—.o—o?)+ (6.60*2) ] for 02 €2 ~-0.002
-] e

/ . "
] (~———— instantaneous loading
-t instantaneous unloading

[ 2 7
X, _,%orctun E¢
creep under constant stress

arctan E¢
T 7 = € (neg)
~0.002 -0.0035
Fig. 8. Stress-strain relations.
stress history rate of creep method
6¢
|
Gc2]
6yl T

Fig. 9. Creep under variable stresses.
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into time intervals and assuming a constant stress within each interval as
indicated in Fig. 9. The “rate of creep’’ method is applied. It is assumed that
the creep under variable stresses can be obtained from creep curves for con-
stant stresses. Such curves, for two stress levels o,; and o,,, are indicated with
solid lines in Fig. 9. In the time interval 4¢=t, —¢; the increase of strain under
the stress o,, is given by

t+At t
P+ At T+t

Aecc:‘ (11)

where € = —0.002 (1 — Vl +9f33).
c

The procedure for determining the stress o,, at the end of the time interval
t+4¢ is outlined in Fig. 10. Given are the total strain e at the time ¢+4+¢, the
prior plastic strain e, the initial strain €, and the stress o, at the time {. As
an approximative solution the stress o,, is used to determine the increase of
creep strain 4e, from Eq. (11). In the case of shrinkage, the corresponding
shrinkage strain is added to 4de,. The stress o,, is determined from Eq. (6).
If o,, exceeds the short-time stress corresponding to the total strain e, the
latter stress is chosen. The plastic strain e, at the time ¢+4¢ is given by
Eq. (7).

start

given: € ,€¢c ,€p, 6¢y , 1, At

D€ ={ Eq. 11 }

Gcz = Ec (e 'Ecc—Aecc‘Ep)

G¢, inside the
nvelope curve

yes G¢, is determined from
the envelope curve

€c =€-€,-6,, /E;

finished

Fig. 10. Determination of stress and “plaétic” strain.
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4. Computation Procedure

The load carrying capacity of a frame with given cross sections and rein-
forcements is calculated in successive steps up to the maximum capacity.

Fig. 11 shows the flow-chart used for determining a point on the load-
displacement curve. The procedure starts with assumed rigidities for all ele-
ments. In a second order elastic analysis, the elastic forces M and N, and the
strain distribution expressed by middle strain ¢, and curvature (1/r) are
determined for all elements. The internal forces M; and N; are determined in

geometry of frame, loads, materials,

) ' given
cross sections, reinforcements
El, EA assumed

Y

[K] = [Ke]+ [Ke]
{w}=[x]™" (P}
M 4 , .
2"% order elastic analysis
N
f ({w})
€l’l‘\
(1/r)
M; }
'\ f (€q,1/7) cross sectional analysis
N;

Y€S one point on the load -

displacement curve

determined

no

El=-M,/ (1/r)
EA = Nl/ Sm
Y

secant rigidities

Fig. 11. Flow-chart for frame analysis.
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a cross sectional analysis based on the strain distribution found in the elastic
analysis. Thus strain equality is automatically satisfied. Force equality then
becomes the iteration criterion of the procedure *). If equality is not satisfied,
improved secant rigidities are determined from the internal forces, and the
procedure is repeated.

The maximum load capacity of slender reinforced concrete frames is
associated with instability as indicated in Fig. 12. In a load controlled proce-
dure where the external load is increased in steps poor convergence develops
near the maximum load. The unloading part of the curve cannot be calculated.
In a displacement controlled procedure, where a characteristic displacement
is increased step by step and the corresponding load is calculated, no problems
of convergence are encountered.

Load
| fmaximum load capacity, instability failure
————
-=— materia!l failure
load displacement
‘controlled§ | controlied

- Displacement

Fig. 12. Load-displacement curve for a slender reinforce:d concrete frame.

In the present study, external loads on a frame are divided into constant
and proportional loads (Fig. 13). The latter are proportional to a load factor A.
A displacement controlled procedure will be used. The displacement w is
increased in steps until the maximum value of A has been found.

For each value of the specified displacement w, the corresponding load
factor A is found iteratively as outlined in the following. First rigidities are
assumed for all elements. Then, the load factor A is increased in steps until
calculated and specified displacement coincide. New rigidities can now be
determined in the cross sectional analysis. The procedure is repeated until
assumed and calculated rigidities agree. The outlined procedure was slightly
modified in the above mentioned program in order to speed up the conver-
gence (see Fig. 13). Generally, a non-linear relation exists between the load

*) A slightly different procedure was used in the computer program [1] in order to
ensure convergence. In the cross sectional analysis the middle strain em; was determined
iteratively to satisfy the axial force equilibrium. The curvature was kept constant.
Moment and middle strain equalities become the iteration criterion in this case.
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A
elastic analysis, EA,EI,N are assumed
constant in each iteration
A=2

_~—real load-displacement curve

2 1.iteration

——

|

last iteration /

/ AP AP

Vw
17 /J Nh=1 H 1

= controlled displacement w

Fig. 13. Displacement controlled determination of a point on the real load-displacement curve.

factor and the displacements even if the rigidities are kept constant. The
reason is that the geometrical stiffness matrix [K,] (Fig. 3) depends on the
axial forces N which, in turn, depend on the load factor A. However, if the
axial forces introduced into the geometrical stiffness matrix are assumed
independent of A, a linear relation between A and the displacement results.
Hence, it is sufficient to consider two loading cases, for instance A equal to 1
and X equal to 2. The load factor corresponding to the specified displacement
w is found by linear interpolation as indicated in Fig. 13. For this new load
factor new rigidities and axial forces to be introduced in [K,] are determined.
The procedure is repeated until the calculated rigidities and axial forces agree
with the assumed ones.

Under sustained loads, specified by the long-time load factor A, and dura-
tion ¢, the displacement w can be calculated as follows:

The displacement w is increased in steps as before. For each step of w, the

" AP Ay P
i tant
Ny s constan _.+ W)
i H
g , {

N
e ]
| | |
| | [
| | I
‘ l ‘ = t{ime
o 4 Tt

Fig. 14. Displacement controlled]procedure under sustained loads.
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time is increased in increments. (Fig. 14 corresponds to one value of w; the
starting time is ¢,.) For each increment of time the corresponding load factor
A is determined as before considering the creep of concrete. When the cal-
culated load factor A is equal to the given load factor A,, the time to reach the
chosen displacement has been found. If the calculated A at the starting time
ty is less than A,, creep instability has taken place.

5. Examples
The following examples illustrate the application of the described analysis.

a) Comparison with Test Results

Three test columns under different types of loads [9] were analysed accord-
ing to the described method. The three columns had hinged ends on both sides
and were of the same length and same cross section (Fig. 15). Due to the
symmetry only one half of each column was considered. The column was
divided in 6 elements.

Column 24 was loaded in a short time test up to failure (Fig. 15). The
measured and the calculated load capacity of 24.2t agreed favourably. The
slightly overestimated middle deflection 8 can be explained with the assump-
tion of no tensile strength of the concrete.

Column 25 (Fig. 16) was loaded by a sustained load P,=16.4t during 141
days. After this time the increase of deformation was very small. Also for this
column the agreement of the measured and computed failure load in the final

P(t)

Maximum load P=24.2 ¢
20
fs= 4610kg /cm?
2.7 —
# 3.14cm? 15
314cm?
2r B
25
e oo Test
x x x Calculation. with fo = 257 kg/cm?
O T T T T T T T T T T T T -
0 5 10 3 (cm)

Fig. 15. Load-displacement curve (column 24).
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Lood‘ P(t)
Py=164- X

I
|
|
l
104 |
|
e oo Test |

X x x Colculluf on with f; = 219kg/cm?

10 Displacement (cm)

1
|
|
|
|
|
[
i
|
b
|
T
[ ]
{1
|l
I
[
L
b

S—

5 Displacement (cm)

Fig. 16. Test under sustained load and final short time test (column 25).

short time test was good (< 29,). The computed deflections both under
sustained and under short time loads are too big due to the already mentioned
reason. The relation between the middle deflection 6 and the time is shown in
the lower part of Fig. 16. The agreement of the two curves is satisfactory
considering the big scattering which usually is involved in creep problems.
Fig. 17 shows a test under sustained load. The column failed due to creep
buckling. The computed load-displacement curve is in good agreement with
the measured one. With a middle deflection 5 of 9 cm the column becomes
unstable under the constant sustained load P,=18.9t. The relation between
the deflection 6 and the time ¢ agrees well up to =61 days. The computed time
at failure is 185 days. The computation of the time depends very much on
the assumed concrete strength. To illustrate this the computed time-displace-
ment curve is also given in Fig. 17 for a concrete strength f, 109, lower than
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Load P(t)

creep failure

20
Py =189 +-- -~

BN

eeoe Test

=

20 xxx Calculation with fc= 266 kg/cm?

OO 1 2 3 4 5 10 11 12 Displacement {cm)

o
~
©
©1

I
1
|
l
|
s
|
i
|
i
|

Time(days)

180+
160+
140+
120
100+

80

x x x Calculation with fs =266 kg/cm?
000 %ql(t:ulation with 09f.=240kg/cm?
e oo Tes

0 5 16 Displacement (cm)

Fig. 17. Long time test up to creep failure (column 22).

i
gt
|H“IIIIIIII

emlg £.=200kgam? ) r ]
f5=4200kg/cm? k=0.050cmA

140, 4800cm

0
g

o

Fig. 18. System and loads.
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the corresponding f, of the test specimen. In this case the duration of time
up to creep failure (¢=68 days) is reduced to one third.

b) Arch Under Snow Loads

The arch as shown in Fig. 18 is analysed. As an extreme loading a snow
load of A-3.00t/m’ over half the span is assumed for the computation. The dead
load ¢=3.66t/m’ is constant over the whole span. Fig. 19 shows the computed
relation between the load factor A and the maximum deflection at about one
third of the span. The dotted line corresponds to a short time loading. In
addition to that this relation is also given for a combined short-time and
sustained loading. First, the load is increased up to A=0.70 and after a sus-
tained load during 300 days the load is increased up to the maximum load
capacity.

AP

g
A Ty
Oy

bl

9
A 1
|

1.2-

104

08+

061

04

02

0 T U T T o
O 10 20 30 40  Splem

Fig. 19. Load-deflection behavior of an arch under ghort time and sustained loads.

Notation
M  moment
N  axial force
“4>”  subscript ‘4’ is used for reference to the cross

sectional analysis
{P} external loads
P,  sustained load
A load factor for proportional loads



16 K. AAS-JAKOBSEN - M. GRENACHER

A load factor for sustained loads
[K] stiffness matrix

[K;] first order stiffness matrix
[K,] non linear geometrical stiffness matrix
[R] transformation matrix

{w} nodal displacements

E  modulus of elasticity

A area of cross section

l length of element

EI Dbending rigidity

E A axial rigidity

o stress

fs yiel stress of steel

fe cylinder strength of concrete
€ total strain

€ “plastic’’ strain

initial strain (e.g. due to prestressing)

€ short-time strain

¢ limiting creep factor

7 time

T elapsed time until half of the limiting creep is reached
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Summary

An approach to analyse reinforced concrete frames is outlined. The effects
of second order and non linear material behavior are considered. The com-
putational process described is based on the finite element method. The effec-
tive stiffnesses for each state of loading are determined by iteration. The
influence of creep and shrinkage are taken into account. Two examples are
given to demonstrate the possibilities of the proposed analysis.

Résumé

L’objet de ce rapport est la déscription d’une méthode de calcul selon le
2e ordre pour les structures composées de barres inélastiques. La méthode des
éléments finis est & la base de ce calcul. Les rigidités flexionnelles sont calcu-
lées pour chaque état de charge par itérations. Les éffets du fluage et du retrait
peuvent étre considerés. On montre a 1’aide de deux exemples les possibilités
de cette méthode.

Zusammenfassung

Es wird eine Methode zur Berechnung von Rahmentragwerken aus Stahl-
beton beschrieben. Dabei wird der Theorie 2. Ordnung, wie auch dem nicht
linearen Materialverhalten, Rechnung getragen. Der beschriebene Rechnungs-
gang basiert auf der Methode der finiten Elemente. Die effektiven Biege-
steifigkeiten fiir jeden Belastungszustand werden iterativ ermittelt. Langzeit-
effekte, wie Kriechen und Schwinden, kénnen beriicksichtigt werden. Anhand
von zwei Beispielen werden die Moglichkeiten des Rechenverfahrens gezeigt.



Leere Seite
Blank page
Page vide



	Analysis of slender reinforced concrete frames

