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Quelques applications de la methode des bandes finies

Einige Anwendungen der Finite-Strip-Methode

Some Applications of the Finite Strip Method

GY. SZILAGYI
Premier assistant, Universite Technique de Budapest, Hongrie. Annee academique

1972-1973, assistant boursier, Faculte Polytechnique de Mons, Belgique

1. Introduction

Pendant les dernieres annees, plusieurs methodes aptes au calcul des structures

ä l'aide des ordinateurs ont ete elaborees. Les methodes oü les proprietes
particulieres des structures sont prises en consideration sont plus economiques
du point de vue de la capacite et du temps de machine que les methodes
generales. En revanche, plus une methode est specialisee moins son domaine
d'application est vaste. II faut donc considerer simultanement ces deux aspects
quand on choisit la methode de calcul.

Parmi les methodes de calcul elastique des structures particulieres, la
methode des bandes finies est l'une des plus connues; son domaine d'application

est relativement large surtout dans le calcul des ponts et des toitures. On

peut resumer l'essentiel de cette methode comme suit. La structure est divisee
en bandes par un ensemble de lignes paralleles que nous appellerons «lignes
nodales». Les deplacements de chaque bände sont exprimees ä l'aide d'une
fonction contenant des constantes inconnues et qui satisfont les conditions:

a) aux limites aux extremites de la bände;

b) de compatibilite et d'equilibre a l'interieur de la bände;

c) de compatibilite entre les bandes, c'est-ä-dire sur les lignes nodales; ces
dernieres conditions peuvent etre satisfaites partiellement, comme c'est le
cas dans la methode des elements finis.

En exprimant les conditions d'equilibre des lignes nodales, on obtient un
Systeme d'equations lineaires contenant les constantes inconnues des fonctions
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de deplacement des bandes. Un choix avantageux de 1'expression de ces fonctions

simplifie considerablement le Systeme d'equations qui peut etre decom-

pose en plusieurs sous-systemes simples.
La methode des bandes finies est donc la combinaison d'une methode ana-

lytique et de la methode des elements finis du type deplacement.
Jusqu'ä present, la methode des bandes finies a ete elaboree pour les types

de bandes suivantes:

1. Bandes de plaque et bandes de disque1) de forme rectangulaire [1], [2].

2. Bandes de plaque et bandes de disque de forme de segment circulaire [3],
[4]. A propos de ces bandes, il faut mentionner que, dans les calculs
numeriques, les coques minces peuvent etre decomposees en elements plans qui
se comportent ä la fois comme des plaques et des disques.

3. Bande de coques de la forme d'une partie de la surface laterale d'un cöne

tronque [4].

Les conditions d'appui aux extremites des types de bandes cites ci-dessus

sont les suivantes: les plaques sont simplement appuyees et les disques sont

Supportes par des diaphragmes infiniment rigides dans leur plan et infiniment
souples perpendiculairement ä leur plan.

Comme on le comprendra dans la suite de l'article, on peut, ä l'aide de ces

bandes, calculer les structures orthotropes dont une projection perpendiculaire
aux lignes nodales est un rectangle ou un segment circulaire, et dont les bords

paralleles aux lignes nodales peuvent etre appuyes de facon quelconque. De
telles structures sont, hormis des plaques et des disques, certains ponts en

caisson, voiles plisses et coques cylindriques que nous appelons structures
« plaque-disque ».

La methode des bandes finies est developpee pour des structures qui ont,
outre les appuis d'extremites, des appuis elastiques, intermediaires ou ponc-
tuels et qui peuvent etre raidies par des diaphragmes elastiques intermediaires

[5a].
Dans cette publication, nous proposons, pour les structures continues, une

nouvelle Solution plus economique qui donne la possibilite de calculer les structures

dont les conditions d'appui aux extremites sont differentes de Celles

qui sont citees ci-dessus. En outre, nous traitons 1'application de la methode
des bandes finies dans le cas des deformations initiales (changement de tem-
peratures, precontrainte, etc.). Nous employons les notations du calcul
matriciel.

*) Dans la presente publication, les plaques minces flechies qui sont chargees
perpendiculairement ä leur plan sont appelees «plaques» et les plaques minces qui sont chargees
dans leur plan «disques».
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2. Calcul des structures continues et encastrees

Dans ce paragraphe, nous traitons le calcul des structures continues en
considerant d'abord le cas des plaques, des disques, et, pour terminer, celui
des structures ä plaques-disques. Par raison de simplicite, nous exposerons
toujours la methode dans le cas simple d'une structure ä deux portees.
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A la fig. la, on peut voir une plaque continue rapportee au Systeme de
coordonnees (X, Y) et divisee en g bandes. Cette plaque est encastree ä l'extremite

X 0, continue au-dessus d'un appui simple en X a1 et simplement
appuyee ä l'extremite X ax + a2. Les bords Y const. peuvent avoir des
conditions aux limites quelconques.

Nous resolvons la structure par la methode aux forces ä l'aide du Systeme
de reference compose de plaques ä une portee simplement appuyees aux
extremites X const. (fig. lb); les inconnues hyperstatiques sont des couples
repartis que nous pouvons remplacer par des systemes de couples uniformement

repartis par bände si ces dernieres sont suffisamment etroites. Nous
montrons la iieme bände du Systeme de reference ä la fig. lc; ä l'extremite
x 0, l'inconnue hyperstatique est le Systeme de couples uniformement repartis

it et ä l'extremite x ax celui des paires de couples £g+i (lb et lc).
Le Systeme d'equations de compatibilite exprime la nullite des deplacements

ä l'endroit des coupures:

A<p> • § +
(2g, 2g) (2g, 1) (2g, l)

0. (1)

Le vecteur § est compose des inconnues dont le nombre est 2 g pour notre
probleme si la plaque est divisee en g bandes. Les termes aik de la matrice
A(p) et af^ du vecteur a(P designent respectivement le deplacement ä l'endroit
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de la iieme coupure du ä la kihme inconnue hyperstatique unitaire et le deplacement

du aux charges exterieures. Ces deplacements sont des rotations absolues
ä l'endroit X 0 et des rotations relatives ä l'endroit X a1. Toutes ces
rotations varient selon la largeur de chaque bände; cependant si ces dernieres sont
suffisamment etroites, nous pouvons nous limiter ä calculer la valeur moyenne
par bände. Les indices superieurs (p) fönt allusion au fait qu'il s'agit d'un
probleme de plaque.
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Fig. 2.

A la fig. 2 a, nous montrons un disque continu divise en g bandes. Nous

supposons que, par portee, la resultante de la charge dans la direction X est
egale ä zero. Nous verrons au paragraphe 4 que cette hypothese est necessaire;
rappelons que cette restriction est acceptable dans la plupart des problemes
pratiques. Dans le cas des ponts, eile correspond aux problemes oü il n'y a

pas de forces de freinage.
L'extremite X 0 du disque est supportee par un diaphragme infiniment

rigide ä la fois dans son plan et perpendiculairement ä celui-ci et dont la trans-
lation n'est empechee que dans la direction Y. Les reactions de direction X
doivent donc etre nulles et l'extremite X 0 du disque doit rester droite. Aux
abscisses X ax et X a± + a2, le disque est supporte par des diaphragmes
infiniment rigides dans leur plan mais infiniment souples perpendiculairement
ä celui-ci; en X a±, le disque est continu. Les bords Y const. peuvent
avoir des conditions d'appui quelconques.

Pour la Solution par la methode aux forces, nous prenons un Systeme de
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reference qui est compose de disques ä une portee. Ces disques sont Supportes
par des diaphragmes infiniment rigides dans leur plan et infiniment souples
perpendiculairement ä celui-ci. En consequence de la supposition relative aux
forces exterieures dans la direction X, les inconnues hyperstatiques doivent,
elles aussi, constituer des systemes dont la resultante dans la direction X est
egale ä zero. On peut imaginer plusieurs types d'inconnues qui satisfont ä
cette condition. Pour garder la repartition uniforme des forces selon la largeur
de chaque bände, comme nous 1'avons fait dans le cas des plaques, nous
utilisons des forces hyperstatiques generalisees qu'on peut voir ä la fig. 2b.
Chacune d'elles agit sur deux bandes ä la fois. La i^me inconnue agit ä l'extremite

X 0 de la ^me et de la ^-f-11®1116 bände et son intensite par bände est
r\i\bi et T7^/^+1; si bt et bi+1 sont les largeurs des bandes en question. La resultante

de cette inconnue est un couple compose de deux forces de grandeur 7]t.
A l'extremite X a1 des bandes i et i+ 1 agit la (g—l + ^)ifeme inconnue dont
la resultante est une paire de couple. Puisqu'ä l'endroit de chaque coupure
X const. de la structure, il y a g — 1 inconnues hyperstatiques pour notre
probleme, le Systeme d'equations de compatibilite a la forme suivante:

A<*> • t] + a(d) =0. (2)

(20-2,2flr-2) (20-2,1) (20-2,1)
Si les bandes sont suffisamment etroites, nous pouvons toujours calculer

ä l'aide de la valeur moyenne des deplacements dans la direction X des extremites

des bandes.
Le vecteur r\ est compose des inconnues. La signification des termes de la

matrice A(d) et du vecteur d^ est semblable ä celle de la formule (1). Le deplacement

ä «l'endroit i» est la difference de la translation absolue de l'extremite
de la iihme et de la i+ l^me bände, si i est plus petit que g (c'est le cas de
l'extremite X 0) tandis qu'il est la difference de la translation relative de
l'extremite de la i^me et de la i + libme bände, si i est plus grand que 0—1.
Nous entendons par translation relative de la iifeme bände la translation de
l'extremite de la bände dans la 2e portee par rapport ä l'extremite de la meme
bände dans la premiere portee.

Dans le cas oü les sections perpendiculaires ä Taxe X sont Celles de la fig. 3,

on peut idealiser la structure par des bandes chargees dans leur plan et
perpendiculairement ä celui-ci, c'est-ä-dire par des bandes de coque mince, simul-
tanement bandes de disque et de plaque. Si la vue en plan de ces structures
est la meme qu'aux fig. 1 a et 2 a et comporte g bandes le nombre des inconnues

a)

\TTJ
Fig. 3.
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et la dimension de la matrice carree A est 40 — 2. Cette derniere est une matrice
pleine parce que les couples ^ causent, eux aussi, des differences de translation
relative a^d) et que les couples rji causent des rotations a(p).

Si l'on peut resoudre les structures de reference ci-dessus dans le cas des

charges et des forces hyperstatiques, l'analyse des structures continues et
encastrees (fig. 1, 2) est possible par la methode aux forces.

Dans les chapitres suivants, nous traitons les bandes rectangulaires de

plaque et de disque soumises aux charges, aux deformations initiales et aux
forces agissant aux extremites de la bände. Nous rappelons que les publications

precedentes ne traitent que les bandes soumises aux charges qui agissent
sur l'interieur de la bände ou sur ses bords, c'est-ä-dire sur les lignes.

3. Bandes de plaques rectangulaires

A la fig. 4, nous considerons la iifeme bände d'une plaque limitee par les

lignes nodales i et i+1 et dont la longueur, la largeur et l'epaisseur sont
respectivement a, b et h. Le Systeme de coordonnees locales est (x, y, z).

iiy

n+ii

b

>

© Ca
X

Q ^

Q—± 3
Fig. 4.

Les hypotheses de calcul sont les suivantes:

1. Le materiau de la plaque est lineairement elastique, orthotrope; les plans
de symetrie d'elasticite sont perpendiculaires aux axes x, y et z respectivement.

2. Les caracteristiques du materiau sont constantes par bandes.

3. Les hypotheses de la theorie des plaques minces avec petites deformations
sont valables.

4. Les charges et les deformations initiales ne varient pas selon la largeur de

la bände; cette supposition simplifie le calcul et donne une bonne approximation

si la largeur de la bände est suffisamment petite. Remarquons qu'on
pourrait etablir toute la methode de calcul sans faire cette approximation.
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Les conditions aux limites citees au premier paragraphe s'ecrivent comme
ceci:

d2w
en x 0 ou x a, w 0 et 0, (3)

en y 0,

en y b,

w w, (x) et —— öy (x),1 dy n

w Wa (x) et —— 0. (#)
dy

<*)

oü w w(x,y) est la fleche de la bände, son sens positif etant celui de l'axe z;
wi(x) et 0i(x), Wj(x) et 6j(x) sont les fleches et les rotations paralleles ä
l'axe x de la iifeme e^ de la ^me ligne respectivement.

La fonction de fleche de la iihme bände est supposee de la forme suivante:

w c* 2 wmsinkmx,

OU

avec

j* [Ll9 L2, L3, i4], lcm —-, ti?m
a

w

Wjm
ü

2y2 y3

_3y*_2y*
3 ~~

62 63 '

^4 - 62 b
•

(5)

JkT etant le nombre des coefficients de Fourier pris en consideration.
Les termes du vecteur wm sont des inconnues dont la signification physique

est 1'amplitude du mieme harmonique de la fonction de fleche et de rotation
des lignes adjacentes ä la bände.

La fonction (5) satisfait les conditions (3) et (4). II ne reste ä satisfaire que
les conditions d'equilibre des lignes dont on peut determiner les constantes
inconnues qui se trouvent dans la formule (5). Pour appliquer la condition
d'equilibre generale des systemes elastiques, c'est-ä-dire le principe du minimum

de l'energie potentielle totale en fonction du vecteur wm des inconnues,
il est necessaire d'introduire les formules suivantes.

Dans la theorie des plaques minces, on utilise les courbures dans deux
directions orthogonales et la distorsion en tant que deformations generalisees.
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Les deformations totales qt sont toujours composees de deformations initiales
(p. e. effet thermique) et elastiques

Qt Qo + Q- (6)

Les deformations totales exprimees ä l'aide de la fonction de fleche (5)
s'ecrivent:

d2w

Qt

dx2

d2w

2
Pw

dwdy _

2 Sm Qm A wn
(m)

Dans cette expression

Sm (sm km x, sm fem x, cos fem x) (fem, — 1, —2 km)

Les signes prime et seconde signifient la premiere et
la deuxieme derivee selon y.

Pour faire 1'addition selon la formule (6), on doit developper les courbures
initiales en series de Fourier sinusoidales et les distrosions initiales en serie
cosinusoüdale comme suit:

Qo= Z$mQom' (8)
im)

Le vecteur Q0m contient les coefficients de Fourier des fonctions de
deformations initiales.

A l'aide des deformations elastiques, on peut exprimer les moments par
unite de longueur que nous utilisons comme contraintes generalisees:

m Dg. (9)

Le vecteur m est compose des moments flechissants et du moment de

torsion

m m„
m^

tandis que la matrice D est egale ä la matrice de rigidite de la loi de Hooke
du materiau orthotrope en etat plan de contraintes, multipliee par hzj\2.

La charge qui agit ä la surface de la bände doit etre developpee en serie
sinusoi'dale:

p(x) 2pmsinfcma;. (10)
(m)

2) Par le Symbole nous designons les matrices diagonales.
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II en est de meme du vecteur des charges lineiques agissant sur les lignes:

q qmsin}cmx (11)

~9i (x)~

avec q
nt(x)
qj (x)

Uj (x)_ \_njm_

q(x) et n(x) sont les forces reparties et les couples repartis dont le plan est
perpendiculaire ä l'axe x, les indices i ou j designent la ligne oü la charge agit.
Les coefficients de Fourier sont designes par l'indice m. Le vecteur des deplacements

correspondants ä celui des charges q s'ecrit:

Oi(x)

Wj (x)
(12)

Les systemes de couples uniformement repartis qui agissent sur les extremites

x 0 et x a de la bände (voir ä la fig. 4 leur sens positif) sont designes

par £0et £a.
Les rotations des extremites x 0 et x a de la bände s'expriment ä partir

de la fonction de fleche (5) selon:

*o(y) c 2j wm ^m '
(m) (m)

(13)

Apres ces formules, on peut exprimer l'energie potentielle totale de la
^ieme bände:

b a b a a b

n \li™*Qdxdy-U™fdxdy--$e*qdx-$(^<I><i-£a<I>a)dy.
0 0 0 0 0 0

(14)

Les valeurs des inconnues qui satisfont la condition d'equilibre minimisent
l'energie potentielle. Le Systeme

S <> (m=l,2...Jf) (15)

contient 4 M equations. Cependant, si l'on execute les Operations de la formule
(14) en employant les formules (5) ä (13), gräce ä l'orthogonalite des series de

Fourier, le Systeme (15) se decompose en systemes d'equation dont le mihme

ne contient que les quatre inconnues du vecteur wm. La forme de ces systemes
ä quatre inconnues est la suivante:

K(P) w + tfP) o

oü Km est la matrice de rigidite de la i^me bände,
t(£] est le vecteur de charges

(16)
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que l'on peut calculer comme suit:

K£> /A*QmDQJBAdy, (17)
0

b h 2 b

lgj> =-$AdyQmDQ0m-pmScdy-qm--km{£0-£a(-l)}$cdy. (18)
0 0 a 0

A l'aide de la formule (16) de chaque bände, on peut etablir le Systeme
d'equation pour toute la plaque. Si le nombre de lignes nodales est /, on doit
M fois resoudre un Systeme ä 2 / inconnues.

Nous remarquons que 1'addition des termes qui contiennent les couples £

dans les formules (14), (18) influence la valeur des inconnues du vecteur wm
de la meme facon que si l'on ajoutait ä la fonction de fleche (15) developpee
en serie de Fourier une autre serie de Fourier dont la deuxieme derivee selon x

converge aux endroits infiniment proches des extremites x 0 et x a, vers £0

et ga lorsque M tend vers l'infini. La meme idee a ete utilisee dans les
publications [8] et [9].

4. Bandes de disques rectangulaires

A la fig. 5, nous considerons la iihmQ bände d'un disque. Les notations sont
semblables ä Celles de la fig. 4.

Vo

,y,v

ri
i m o Va

XU

_«i
3

Vo Fig. 5.

Nous conservons la premiere et la deuxieme hypothese citee au debut du
troisieme paragraphe et nous leur ajoutons les deux autres hypotheses supple-
mentaires suivantes:

3. Les contraintes et les deformations ne varient pas selon l'epaisseur de la
bände.

4. Quant aux charges et aux deformations initiales, nous reprenons l'hypothese

4 du troisieme paragraphe moyennant le complement suivant. Dans
la publication [2], la charge longitudinale (direction x) qui agit sur chaque
bände est supposee etre en equilibre; le traitement du present paragraphe
donne la possibilite de calculer l'influence des charges longitudinales qui
sont en equilibre sur töut le disque et qui ne seraient pas en equilibre bände

par bände.
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La loi de Hooke du materiau orthotrope en etat plan de contraintes s'ecrit:

a B€ (19)

ou plus en detail:

®x Px Ex

l-Px^y l-PxVy
VyEy Ey

0

l-t*xVy l~^x^y
0 0 G

*y

yxy.

ax, ox et rxy
€z> €y et Yxy

sont les contraintes normales et de cisaillement,
sont les dilatations et le glissement,

Ex, Ey et /jlx, \Ly sont les modules d'elasticite et les coefficients de Poisson
dans les directions x et y,

G est le module de cisaillement.

Les conditions aux limites citees au premier paragraphe sont:

en x 0 ou x — a, v 0 et ax ex + fix €y 0,

en y 0, u ut et v vt,
en y b, u Uj et v Vj,

(20)

(21)

oü u — u (x, y) et v — v (x, y) sont les fonctions de translation de la bände dans
les directions x et y,

ui, vi et Uj, Vj sont Celles des lignes nodales i et j.

Les fonctions de translation de la iikme bände sont supposees de la forme
suivante:

M
U= 2 (AUim + Ä2Ujm)C°sKiX>

ra-=0

M
V 2 (A Vim + A2 Vjm) sin KX

(22)

(23)

avec Ax=l et A9 b'

vim, vjm sont des inconnues dont la signification physique est 1'amplitude

du mihme harmonique des fonctions de translation des lignes adjacentes
ä la bände.

Pour atteindre l'objectif avance dans l'hypothese 4, il faut prendre en
consideration le zeYoieme terme des series de Fourier cosinusoidales, comme indique
dans la formule (22). On en trouvera la preuve dans l'analyse des formules.
(28) et (34). Pour les series sinuso'idales, ce terme est identiquement nul.
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Les fonctions (22) et (23) peuvent aussi s'ecrire sous forme matricielle:

M
u= Z GmNe„

m=0
(24)

avec lv(x,y)\9

Mx 0 A2 0]
[0 Ax 0 A2y

/{cos&mx, sinkmx),

Uin

»in

Uly,

Les deformations totales sont la somme des deformations initiales et
elastiques:

cT e0 + €. (25)

Les deformations totales exprimees ä l'aide des fonctions de translations
s'ecrivent:

M
£T Z SmHmem, (26)

m 0

~-krnA1 0

si Hm 0 Ax 0

_ ^ &mA 42

De meme que precedemment dans le paragraphe 3, les deformations initiales
£0, le vecteur p des charges agissant sur la surface de la bände et le vecteur x
des charges lineiques agissant sur les lignes doivent etre developpes en series
de Fourier selon

M
eQ Z Sm£0m (27)

- kmA2 0

kmA2_

m=0

avec "Ora

€x0m

€y0m

_Yxy0m_

P

qui est le vecteur des coefficients
de Fourier des fonctions de
deformations initiales,

ou [Pxm
I

PymJ

**m Pm' (28)

est compose de coefficients de Fourier
des fonctions de charges,

M

ou

m=0

Qixm

et xm
Qiym

Qjxm

Jljym.

(29)
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Dans les termes du vecteur xm, le premier indice designe la ligne oü la charge
agit, le deuxieme indice donne sa direction et le troisieme indique qu'il s'agit
de coefficients de Fourier. Pour 1'expression (28), la formule donnant le zeroiöme

coefficient de Fourier cosinusoidal s'ecrit:

a

Vxo =-\Px(x)dx

et montre que ce coefficient est nul si le Systeme px est en equilibre.
Le vecteur des translations qui correspond au vecteur des charges x est:

ß
u4

(30)

Les forces uniformement reparties qui agissent sur les extremites x 0, et
x a de la bände (fig. 5) sont designees par rj0 et rja.

On peut calculer la translation dans la direction x des extremites x 0 et
x a de la bände selon les formules

M
U0(y) Z (Aluim + A2ujm)>

ra=0
M (31)

Ua(y)= Z (A^m + ^2^J(~1)m-
m=0

L'energie potentielle totale de la iibm^ bände s'exprime par:
b a b a a b

TI -\ \o*€dxdy—\ \ u*pdxdy— \ ß*xdx— \ (r]0u0 — r]aua)dy. (32)

0 0 0 0

La condition d'equilibre s'ecrit:

de*
0 (m 0,1,2... M) (33)

et conduit aux sytemes d'equations ä quatre inconnues:

oü KW MH*BHm%,

«jf =-hjH*dyBe0m-fti*dypm-xm-^[r)0~Va(-ir]

(34)
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Si m 0, l'equation (34) montre que vim et vjm sont identiquement egaux ä

zero et devient:
1

Äffi -i 1JK0J L^oJ Loj * (35)

La matrice des coefficients de cette equation est singuliere. Cependant, on

peut la transformer de teile facon qu'elle contienne les translations relatives

¦u4a. (36)Aut =ui0- jo-

Si nous introduisons la notation

Yi
hiGt (37)

pour la iifeme bände, le zeroifeme Systeme d'equation d'un disque compose de g

bandes prend la forme suivante:

7i
~Yi 72

~72 73

'Aux ^1x0 "0"
Au2 ^2z0 0

Auz +
^3x0 0

Aug_x k(j-l)x0 0

-Au« _ -gxO _0_

(38)

Yff-i

-Yg-i Ya.

A l'aide des translations relatives Aui, on peut simplement calculer les

deplacements figurant dans l'equation (2).

5. Algorithme des structures plaque-disque

A l'aide des equations (16) et (34) on peut etablir le Systeme d'equations
de la bände «plaque-disque» en tenant compte du fait que le comportement
de la bände en tant que plaque est independant de son comportement en tant
que disque comme il resulte de la theorie des plaques minces.

Le Systeme d'equations d'equilibre de la bände «plaque-disque» peut
s'ecrire:

Kfi? OlfeJ [ei 0
0 KS'JLwJ L^J

ou dans une forme plus concise:

Km dm + tm — 0 (39)

Dans le cas des structures «plaque-disque», on a quatre inconnues par
ligne nodale.

En ce qui concerne la construction de l'equation d'ordre zero du type (38),

remarquons que s'il y a une ou plusieurs parties fermees dans la section (fig. 3a),



QUELQUES APPLICATIONS DE LA METHODE DES BANDES FINIES 163

il faut completer le Systeme par des equations qui expriment la continuite des

deformations des parties fermees.
Les etapes de notre programme pour le calcul des structures continues

sont les suivantes:

1. Entree des donnees et calculs preliminaires.

2. Calcul du Systeme de reference (§2) par portee.
2.1. Composition du vecteur des charges (les cas de charges sont soit les

charges exterieures soit les forces «hyperstatiques» unitaires).
2.2. Composition de la matrice de rigidite de la portee consideree de la

structure.
2.3. Resolution du Systeme d'equations.
2.4. Calcul des deplacements des extremites des bandes.
2.5. Composition et resolution du Systeme d'equations d'ordre zero (for¬

mule (38)).
2.6. Calcul des coefficients pour la methode aux forces (equations (1) et

(21)).

3. Resolution du Systeme d'equations de la methode aux forces.

4. Calcul du Systeme de reference par portee; chaque portee est sollicitee
simultanement par les charges exterieures et les «forces» hyperstatiques.
4.1. Composition du vecteur de charges.
4.2. Composition de la matrice de rigidite de la portee.
4.3. Resolution du Systeme d'equation.
4.4. Calcul des deplacements et des elements de reduction souhaites.

5. Impressions.

6. Exemples numeriques

Dans ce paragraphe, nous traitons quelques exemples numeriques et nous
les comparons aux resultats de la litterature.

6.1. Le premier probleme est une plaque carree de dimensions 10x10 m,
simplement appuyee au contour (fig. 6). On a un changement de temperature
variant lineairement selon l'epaisseur de la plaque; la difference entre la
temperature des surfaces inferieure et superieure etant 20° C, la repartition de

temperature est uniforme dans les directions X et Y. Les autres donnees sont
les suivantes:

Epaisseur h 0,3 m, coefficient de Poisson /x 1/6, rigidite Eh*j\2(\ — ju2)

6400 tm, coefficient de dilatation thermique a 0,000012.
Nous divisons la plaque en dix bandes dans la direction Y. Dans le tableau 1,

nous donnons la comparaison de nos resultats avec ceux de Maulbetsch [6].
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lY

f0
5,0

10,0

-5
,(D 0,225352

* X

2,0
©

5,0

(D

10,0 Fig. 6.

Tableau 1

Matjlbetsch A B C D

1 mx
my

— 2,4889
-2,4889

-2,4925
-2,3527

-2,4925
-2,4316

-2,4940
-2,4409

-2,4940
-2,4673

2 mx
my

-4,7908
-0,1870 — —

-4,7848
-0,1180

-4,7889
-0,1445

3 mx -4,9778 -4,8003 -4,8855 -4,8939 -4,9200

4 mx
mxy

-4,9778
-3,23

-4,6810
-3,1151

-4,8240
-3,1316

-4,8354
-3,1334

-4,8796
-3,1360

Dans les Solutions A et B, chaque bände a la meme largeur, tandis que dans
C et D les bandes de bords sont plus etroites que les autres et elles ont une
largeur de 0,225352 m. Le nombre des termes de Fourier pris en consideration
est 20 dans la Solution A, 40 dans la B et C, 60 dans D3). On voit que dans les

problemes de deformations initiales, il faut beaucoup plus de termes de Fourier
(40 ä 60) que dans le cas des charges exterieures [1], [2] et que la Solution avec
des bandes de bords plus etroites est plus precise (cf. Solutions B et C, toutes
les deux avec 40 termes de Fourier). En outre, on peut remarquer que le calcul
avec le meme nombre de termes de Fourier donne de meilleurs resultats pour
certains elements de reductions (p.e. mx aux points 1 ou 2) que pour d'autres
(p.e. my au point 1, mxy au point 4). Cette constation est applicable au cas
des charges exterieures.

6.2. Le deuxieme probleme est une plaque continue ä deux portees. On
peut voir les dimensions et les cas de charges aux figures 7 a et 8 a. Les autres
donnees sont les suivantes: epaisseur 7^ 0,2 m, coefficient de Poisson ^ 1/5,
rigidite Eh3ll2(l -fi2) 10000 tm.

3) Gräce ä la symetrie du probleme, les termes pairs sont nuls.
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Nous avons divise la plaque en six bandes de meme largeur, car les expe-
riences du calcul montrent que les Systeme d'equations (1) de la methode aux
forces donne de meilleurs resultats, si les bandes ont la meme largeur ou si la
difference entre les largeurs de deux bandes voisines n'est pas importante.

Aux figures 7 et 8, les resultats des deux cas de charges sont compares avec
ceux de Schleicher et Wegener [7].

Examinons d'abord le cas de la charge uniformement repartie. Dans la
section B — B, il n'y a que de tres petites differences entre les moments mx
obtenus avec 20 et 40 termes de Fourier, et ils sont tres proches de ceux de

Schleicher. Dans la section A—A, la difference des resultats obtenus avec
20 et 40 termes est plus grande, mais eile reste partout inferieure ä 2%. Les
moments de la methode des bandes finies sont de 2 ä 5% plus grands que
ceux de Schleicher, calcules par la methode des differences finies.

6.3. Le troisieme probleme est un pont en caisson ä deux portees. Les
dimensions de la structure, la charge et la division en bandes, sont montrees
aux figures 9a et 9b, le coefficient de Poisson est /x 1/6, et le module d'elasticite

E 4000000 lb.ft.-2.

a)

2000 j

A
"? 30 ft 30 ft

=3=
30 ft

=i- Diaphragmes

30 ft ™

b)

0,6667-«

9,3333

hgneg^ nodales 2000ff2

0,5417

0,4583

f 9,3333

2,6111 0,5

4-
3x3,1111

85776] (984J)©feic
942.4

173^8]sraR34.4] 112,7-179,5
-182,1

64,820.9
-86.6-45.2

psi EU
73,5
87,9

[-6751 [1883

-64,3 198,3

-77.0 1987

94.71 Wt,169

-175.720,8
44,6

27,0 ^ 920,4

-1067,0

-1275,0

±H 176,0 94,654,1

17851
27,2

74,3
|9i875[ (949£)

959,1

987,0

203.754,9 90.3
206,2

M 20 : |9I8,5|

M=40: @)
Loo-Cusens 959,

Scordelis : 987,0

Fig. 9.
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Le meme probleme, avec la meme division en bandes, a ete calcule par
Loo et Cusens [5a] ä l'aide d'une autre version de la methode des bandes
finies. Ils ont compare leurs resultats avec ceux de Scordelis. A la fig. 9 c, nous
donnons la comparaison des contraintes longitudinales ax de la section chargee
en y ajoutant nos resultats obtenus avec 20 et 40 termes de Fourier. Ces deux
derniers ne different sensiblement qu'ä proximite de la charge; par consequent,
plus loin de la charge nous ne donnons que les resultats obtenus avec 20 termes.
On voit que nos resultats sont generalement plus proches des resultats ana-
lytiques de Scordelis que ceux de Loo et Cusens bien que ces derniers aient
pris en consideration 100 termes de Fourier dont la moitie etait nuls ä cause
de la symetrie du probleme.

7. Conclusions

Une methode de calcul par bandes finies a ete proposee pour les structures
du type «plaque-disque. Cette methode est plus economique que celle de la
publication [5 a], mais eile ne permet pas de prendre en consideration des
appuis verticaux elastiques ou des appuis ponctuels.

En outre la presente publication traite le calcul des structures «plaque-
disque» soumises aux deformations initiales, comme p.e. l'effet thermique ou
la precontrainte.

En utilisant les memes principes que ceux exposes ci-avant, on pourrait
generaliser la methode au calcul des structures continues courbes «plaque-
disque ».
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Resume

L'auteur traite le developpement de la methode des bandes finies pour le
calcul des structures continues et encastrees dont les elements sont charges
dans leur plan et perpendiculairement ä celui-ci (voiles plisses, voiles
cylindriques, ponts en caisson, etc.). En outre, il donne l'application de la methode
dans le cas des deformations initiales (p.e. changement de temperature, pre-
contrainte). Des exemples numeriques illustrent la precision de la methode
developpee qui se montre plus efficace que les versions proposees jusque
maintenant.

Zusammenfassung

Der Autor behandelt die Entwicklung der Finite-Strip-Methode zur Berechnung

durchlaufender und eingespannter Konstruktionen, deren Elemente in
ihrer Ebene und senkrecht zu dieser belastet sind (Faltwerke, zylindrische
Schalen, Kastenträgerbrücken usw.). Ausserdem zeigt er die Anwendung
der Methode für den Fall von Anfangsdeformationen (z. B. Temperaturänderung,

Vorspannung). Numerische Beispiele erläutern die Genauigkeit der
Methode, die sich erfolgreicher erweist als die bisher vorgeschlagenen Versionen.

Summary

The author deals with the development of the Finite strip method for the
calculation of continuous and encastred structures the elements of which are
loaded in their plane and vertically to it (folded plates, cylindrical shells, box
girder bridges, etc.). Moreover he shows the application of the method for
the case of initial deformations (e. g. temperature change, prestressing).
Numerical examples illustrate the precision of the method which proves more
efficient than the until now proposed versions.
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