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Quelques applications de la méthode des bandes finies
Einige Anwendungen der Finite-Strip-Methode

Some Applications of the Finite Strip Method

P

GY. SZILAGYI

Premier assistant, Université Technique de Budapest, Hongrie. Année académique
19721973, assistant boursier, Faculté Polytechnique de Mons, Belgique

1. Introduction

Pendant les derniéres années, plusieurs méthodes aptes au calcul des struc-
tures a I’aide des ordinateurs ont été élaborées. Les méthodes ou les propriétés
particulieres des structures sont prises en considération sont plus économiques
du point de vue de la capacité et du temps de machine que les méthodes
générales. En revanche, plus une méthode est spécialisée moins son domaine
d’application est vaste. Il faut done considérer simultanément ces deux aspects
quand on choisit la méthode de calcul.

Parmi les méthodes de calcul élastique des structures particulieres, la
méthode des bandes finies est 1’'une des plus connues; son domaine d’applica-
tion est relativement large surtout dans le calcul des ponts et des toitures. On
peut résumer 1’essentiel de cette méthode comme suit. La structure est divisée
en bandes par un ensemble de lignes paralléles que nous appellerons «lignes
nodales». Les déplacements de chaque bande sont exprimées a 1’aide d’une
fonction contenant des constantes inconnues et qui satisfont les conditions:

a) aux limites aux extrémités de la bande;
b) de compatibilité et d’équilibre & 'intérieur de la bande;
c) de compatibilité entre les bandes, c’est-a-dire sur les lignes nodales; ces

dernieres conditions peuvent étre satisfaites partiellement, comme c’est le
cas dans la méthode des éléments finis.

En exprimant les conditions d’équilibre des lignes nodales, on obtient un
systeme d’équations linéaires contenant les constantes inconnues des fonetions
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de déplacement des bandes. Un choix avantageux de ’expression de ces fonc-
tions simplifie considérablement le systéme d’équations qui peut étre décom-
posé en plusieurs sous-systémes simples.

La méthode des bandes finies est done la combinaison d’une méthode ana-
lytique et de la méthode des éléments finis du type déplacement.

Jusqu’a présent, la méthode des bandes finies a été élaborée pour les types
de bandes suivantes:

1. Bandes de plaque et bandes de disque!) de forme rectangulaire [1], [2].

o

Bandes de plaque et bandes de disque de forme de segment circulaire [3],
[4]. A propos de ces bandes, il faut mentionner que, dans les calculs numé-
riques, les coques minces peuvent étre décomposées en éléments plans qui
se comportent a la fois comme des plaques et des disques.

3. Bande de coques de la forme d’une partie de la surface latérale d’un cone
tronqué [4].

Les conditions d’appui aux extrémités des types de bandes cités ci-dessus
sont les suivantes: les plaques sont simplement appuyées et les disques sont
supportés par des diaphragmes infiniment rigides dans leur plan et infiniment
souples perpendiculairement a leur plan. ’

Comme on le comprendra dans la suite de 1’article, on peut, a I’aide de ces
bandes, calculer les structures orthotropes dont une projection perpendiculaire
aux lignes nodales est un rectangle ou un segment circulaire, et dont les bords
paralléles aux lignes nodales peuvent étre appuyés de fagon quelconque. De
telles structures sont, hormis des plaques et des disques, certains ponts en
caisson, voiles plissés et coques cylindriques que nous appelons structures
«plaque-disque».

La méthode des bandes finies est développée pour des structures qui ont,
outre les appuis d’extrémités, des appuis élastiques, intermédiaires ou ponc-
tuels et qui peuvent étre raidies par des diaphragmes élastiques intermé-
diaires [5a)].

Dans cette publication, nous proposons, pour les structures continues, une
nouvelle solution plus économique qui donne la possibilité de calculer les struc-
tures dont les conditions d’appui aux extrémités sont différentes de celles
qui sont citées ci-dessus. En outre, nous traitons I’application de la méthode
des bandes finies dans le cas des déformations initiales (changement de tem-
pératures, précontrainte, etc.). Nous employons les notations du calcul
matriciel.

1) Dans la présente publication, les plaques minces fléchies qui sont chargées perpen-
diculairement & leur plan sont appelées « plaques » et les plaques minces qui sont chargées
dans leur plan «disques».
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2. Calcul des structures continues et encastrées

Dans ce paragraphe, nous traitons le calcul des structures continues en
considérant d’abord le cas des plaques, des disques, et, pour terminer, celui
des structures a plaques-disques. Par raison de simplicité, nous exposerons
toujours la méthode dans le cas simple d’une structure & deux portées.
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Fig. 1.

A la fig. 1a, on peut voir une plaque continue rapportée au systéme de
coordonnées (X, Y) et divisée en g bandes. Cette plaque est encastrée & 1’extré-
mité X =0, continue au-dessus d’un appui simple en X =a, et simplement
appuyée a l'extrémité X =a,+a,. Les bords Y = const. peuvent avoir des
conditions aux limites quelconques. -

Nous résolvons la structure par la méthode aux forces & 1’aide du systéeme
de référence composé de plaques & une portée simplement appuyées aux
extrémités X = const. (fig. 1b); les inconnues hyperstatiques sont des couples
répartis que nous pouvons remplacer par des systemes de couples uniformé-
ment répartis par bande si ces derniéres sont suffisamment étroites. Nous
montrons la ii®me bande du systéme de référence & la fig. 1c; & Dextrémité
x =0, I'inconnue hyperstatique est le systéme de couples uniformément répar-
tis &; et a 'extrémité x =a, celui des paires de couples £,,; (1b et 1c).

Le systeme d’équations de compatibilité exprime la nullité des déplace-
ments a 1’endroit des coupures:

A® . £ 4+ aP =0. (1)
(29, 29) (29,1) (2¢,1)
Le vecteur § est composé des inconnues dont le nombre est 2¢g pour notre

probleme si la plaque est divisée en g bandes. Les termes a,;, de la matrice
AW et af) du vecteur ay’ désignent respectivement le déplacement & 1’endroit
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de la it®me coupure di & la ki®me inconnue hyperstatique unitaire et le déplace-
ment d aux charges extérieures. Ces déplacements sont des rotations absolues
& ’endroit X =0 et des rotations relatives & ’endroit X =a,. Toutes ces rota-
tions varient selon la largeur de chaque bande; cependant si ces derniéres sont
suffissamment étroites, nous pouvons nous limiter & calculer la valeur moyenne
par bande. Les indices supérieurs (p) font allusion au fait qu’il s’agit d’un
probléme de plaque.
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Fig. 2.

A la fig. 2a, nous montrons un disque continu divisé en g bandes. Nous
supposons que, par portée, la résultante de la charge dans la direction X est
égale & zéro. Nous verrons au paragraphe 4 que cette hypothése est nécessaire;
rappelons que cette restriction est acceptable dans la plupart des problémes
pratiques. Dans le cas des ponts, elle correspond aux problémes ou il n’y a
pas de forces de freinage.

L’extrémité X =0 du disque est supportée par un diaphragme infiniment
rigide & la fois dans son plan et perpendiculairement & celui-ci et dont la trans-
lation n’est empéchée que dans la direction Y. Les réactions de direction X
doivent donc étre nulles et 'extrémité X =0 du disque doit rester droite. Aux
abscisses X =a, et X=a,+a,, le disque est supporté par des diaphragmes
infiniment rigides dans leur plan mais infiniment souples perpendiculairement
a celui-ci; en X =a,, le disque est continu. Les bords Y = const. peuvent
avoir des conditions d’appui quelconques. | ‘

Pour la solution par la méthode aux forces, nous prenons un systéme de
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référence qui est composé de disques & une portée. Ces disques sont supportés
par des diaphragmes infiniment rigides dans leur plan et infiniment souples
perpendiculairement a celui-ci. En conséquence de la supposition relative aux
forces extérieures dans la direction X, les inconnues hyperstatiques doivent,
elles aussi, constituer des systemes dont la résultante dans la direction X est
égale a zéro. On peut imaginer plusieurs types d’inconnues qui satisfont a
cette condition. Pour garder la répartition uniforme des forces selon la largeur
de chaque bande, comme nous l’avons fait dans le cas des plaques, nous
utilisons des forces hyperstatiques généralisées qu’on peut voir a la fig. 2b.
Chacune d’elles agit sur deux bandes & la fois. La 71®me inconnue agit & ’extré-
mité X =0 de la si®me ot de la i+ 1itme bande et son intensité par bande est
7;/b; et 1;/b; 1 si b; et b, sont les largeurs des bandes en question. La résul-
tante de cette inconnue est un couple composé de deux forces de grandeur 7.
A Vextrémité X =a, des bandes ¢ et ¢+ 1 agit la (g — 1 +14)i¢me inconnue dont
la résultante est une paire de couple. Puisqu’a ’endroit de chaque coupure
X = const. de la structure, il y a ¢g—1 inconnues hypersta.tiques'pour notre
probléme, le systéme d’équations de compatibilité a la forme suivante:

A@D . n +  a@ =0. (2)
(29—2,29-2) (29—-2,1) (29-2,1)

Si les bandes sont suffisamment étroites, nous pouvons toujours calculer
a 1’aide de la valeur moyenne des déplacements dans la direction X des extré-
mités des bandes.

Le vecteur 77 est composé des inconnues. La signification des termes de la
matrice A@ et du vecteur a® est semblable & celle de la formule (1). Le déplace-
ment & «I’endroit ¢» est la différence de la translation absolue de 'extrémité
de la ¢i*me et de la ¢+ 1i®me bande, si 4 est plus petit que g (c’est le cas de
l'extrémité X =0) tandis qu’il est la différence de la translation relative de
Pextrémité de la ¢itme et de la 7+ 1i¢me bande, si ¢ est plus grand que g—1.
Nous entendons par translation relative de la ii®me bande la translation de
Pextrémité de la bande dans la 2¢ portée par rapport a I’extrémité de la méme
bande dans la premiere portée.

Dans le cas ou les sections perpendiculaires & 1’axe X sont celles de la fig. 3,
on peut idéaliser la structure par des bandes chargées dans leur plan et per-
pendiculairement & celui-ci, ¢’est-a-dire par des bandes de coque mince, simul-
tanément bandes de disque et de plaque. Si la vue en plan de ces structures
est la méme qu’aux fig. 1a et 2a et comporte g bandes le nombre des inconnues

T ¢ ) N

Fig. 3.

Q)
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et la dimension de la matrice carrée A est 4g — 2. Cette derniére est une matrice
pleine parce que les couples ¢; causent, eux aussi, des différences de translation
relative a@ et que les couples 7, causent des rotations a®.

Si I'on peut résoudre les structures de référence ci-dessus dans le cas des
charges et des forces hyperstatiques, 1’analyse des structures continues et
encastrées (fig. 1, 2) est possible par la méthode aux forces.

Dans les chapitres suivants, nous traitons les bandes rectangulaires de
plaque et de disque soumises aux charges, aux déformations initiales et aux
forces agissant aux extrémités de la bande. Nous rappelons que les publica-
tions précédentes ne traitent que les bandes soumises aux charges qui agissent
sur intérieur de la bande ou sur ses bords, c¢’est-a-dire sur les lignes.

3. Bandes de plaques rectangulaires

A la fig. 4, nous considérons la iime bande d’une plaque limitée par les
lignes nodales ¢z et ¢4+ 1 et dont la longueur, la largeur et I’épaisseur sont
respectivement a, b et h. Le systéme de coordonnées locales est (z, y, 2).

~

& €a

T
©
[T

e

A4}

* ' Fig. 4.

Les hypothéses de calcul sont les suivantes:

1. Le matériau de la plaque est linéairement élastique, orthotrope; les plans
de symétrie d’élasticité sont perpendiculaires aux axes x, y et z respective-
ment.

2. Les caractéristiques du matériau sont constantes par bandes.

3.. Les hypotheses de la théorie des plaques minces avec petites déformations
sont valables.

4. Les charges et les déformations initiales ne varient pas selon la largeur de
la bande; cette supposition simplifie le calcul et donne une bonne approxi-
mation si la largeur de la bande est suffisamment petite. Remarquons qu’on
pourrait établir toute la méthode de calcul sans faire cette approximation.
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Les conditions aux limites citées au premier paragraphe s’écrivent comme
ceci:

>*w
enx=0oux=a w=0 et W=O, (3)
w
en y =0, w=w;(x) et — =0,(x),
oy
Jw (4)
en y = b, w = w;(x) et 7y = 0; (x)

ou w=uw (x,y) est la fleche de la bande, son sens positif étant celui de 1’axe z;
wy (x) et 0, (x), w;(x) et 0;(x) sont les fleches et les rotations paralléles &
Paxe z de la iitme et de la ji®me ligne respectivement.

La fonction de fléche de la ii¢me bande est supposée de la forme suivante:

M

w=c* > w,sink,z, (5)
m=1
_wim_
N * mr gim
ou . | C == [Ll, Lz, L3, L4], km = —-—ZI/———, wm = w]m
- gjm
32 243
avec Iy = 1—~b—z~+b—z,
2y Y
Lo=y=7+
3y 2y°
Ly =35~ 35
vy
La=ta =

M étant le nombre des coefficients de Fourier pris en considération.

Les termes du vecteur w,, sont des inconnues dont la signification physique
est amplitude du mi®me harmonique de la fonction de fleche et de rotation
des lignes adjacentes a la bande.

La fonction (5) satisfait les conditions (3) et (4). 1l ne reste a satisfaire que
les conditions d’équilibre des lignes dont on peut déterminer les constantes
inconnues qui se trouvent dans la formule (5). Pour appliquer la condition
d’équilibre générale des systémes élastiques, c’est-a-dire le principe du mini-
mum de ’'énergie potentielle totale en fonction du vecteur w,, des inconnues,
il est nécessaire d’introduire les formules suivantes.

Dans la théorie des plaques minces, on utilise les courbures dans deux
directions orthogonales et la distorsion en tant que déformations généralisées.
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Les déformations totales @4 sont toujours composées de déformations initiales
(p-e. effet thermique) et élastiques

Or = Qo+ 0. (6)
Les déformations totales exprimées a 1’aide de la fonction de fleche (5)

s’écrivent:

.
g2
> w
QT o yz (;n:) m ¥m m ( )
o, Pw
owoy |
Dans cette expression
S, = (sink,x, sink, x, cosk,, x)?), Q, = k%, -1, -2k,),
- o
A =|c* Les signes prime et seconde signifient la premiére et
- y la, deuxiéme dérivée selon .
c

Pour faire 1’addition selon la formule (6), on doit développer les courbures
initiales en séries de Fourier sinusoidales et les distrosions initiales en série
cosinusoidale comme suit:

QO = (;)stOm' (8)

Le vecteur g,,, contient les coefficients de Fourier des fonctions de défor-
mations initiales.

A Taide des déformations élastiques, on peut exprimer les moments par
unité de longueur que nous utilisons comme contraintes généralisées:

m = Dop. (9)

Le vecteur m est composé des moments fléchissants et du moment de
torsion .

_ mxy._

tandis que la matrice D est égale a la matrice de rigidité de la loi de Hooke
du matériau orthotrope en état plan de contraintes, multipliée par A3/12.

La charge qui agit a la surface de la bande doit étre développée en série
sinusoidale:

@) = X pysink,o. (10)

(m)

2) Par le symbole ( ) nous désignons les matrices diagonales.
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Il en est de méme du vecteur des charges linéiques agissant sur les lignes:

q=gq,snk,x (11)
_(Zi (x) _Qim-
n; () Nim
avec q= %, (2) , q, = .
7 (.’L‘) . Rim

g (x) et n(x) sont les forces réparties et les couples répartis dont le plan est
perpendiculaire a 1’axe x, les indices ¢ ou j désignent la ligne ou la charge agit.
Les coefficients de Fourier sont désignés par 1’indice m. Le vecteur des déplace-
ments correspondants a celui des charges ¢ s’écrit:

i (2)

w; (
b; (x)

w, () (12)
(

6.

j (@)

Les systéemes de couples uniformément répartis qui agissent sur les extré-
mités x =0 et x=a de la bande (voir & la fig. 4 leur sens positif) sont désignés
par 50 et fa‘

Les rotations des extrémités x =0 et x=a de la bande s’expriment & partir
de la fonction de fleche (5) selon:

(‘Do(y) =C*Zwmkm= @a(y) =C*Zwmkm(_1)m' (13)
(m) (m)

Aprés ces formules, on peut exprimer 1’énergie potentielle totale de la

jitme hande:
ba ba a b
I = %Ojg m*gdxdy~6fgwpdxdy—0fe* qu—oj(goﬁﬁo—fa@a)dy. (14)

Les valeurs des inconnues qui satisfont la condition d’équilibre minimisent

I’énergie potentielle. Le systéeme

oI _ o m=1,2...00) (15)

*
ow,

contient 4 M équations. Cependant, si I’on exécute les opérations de la formule
(14) en employant les formules (5) a (13), grace a 1’orthogonalité des séries de
Fourier, le systéme (15) se décompose en systémes d’équation dont le mitme
ne contient que les quatre inconnues du vecteur w,,. La forme de ces systéemes
a quatre inconnues est la suivante:

KD w, +t0) =0, (16)

ou K, est la matrice de rigidité de la 7i¢me bande,
t?) est le vecteur de charges



158 GY. SZILAGYI

que 'on peut calculer comme suit:

b
K. =[A*Q,DQ,Ady, (17)
0

b b 2 b
tgg) = “({Ady Qm DQOm—pmJCdy_ qm—akm{go_"fa(* 1)}G"Cdy (18)

A D’aide de la formule (16) de chaque bande, on peut établir le systéme
d’équation pour toute la plaque. Si le nombre de lignes nodales est f, on doit
M fois résoudre un systeme a 2 f inconnues. |

Nous remarquons que l’addition des termes qui contiennent les couples ¢
dans les formules (14), (18) influence la valeur des inconnues du vecteur w,,
de la méme facon que si I’on ajoutait a la fonction de fleche (15) développée
en série de Fourier une autre série de Fourier dont la deuxiéme dérivée selon x
converge aux endroits infiniment proches des extrémités x =0 et z=a, vers ¢,
et £, lorsque M tend vers l'infini. La méme idée a été utilisée dans les publi-
cations [8] et [9].

4. Bandes de disques rectangulaires

A la fig. 5, nous considérons la i1®me bande d’un disque. Les notations sont
semblables a celles de la fig. 4.

YA
[i+1]
— ) =
ury= =—1 "o
= ° 71 © —] xu
a
7o *h - T Fig. 5.

Nous conservons la premiére et la deuxiéme hypothése citée au début du
troisiéme paragraphe et nous leur ajoutons les deux autres hypothéses supplé-
mentaires suivantes:

3. Les contraintes et les déformations ne varient pas selon l’épaisseur de la
bande.

4. Quant aux charges et aux déformations initiales, nous reprenons I’hypo-
thése 4 du troisiéme paragraphe moyennant le complément suivant. Dans
la publication [2], la charge longitudinale (direction x) qui agit sur chaque
bande est supposée étre en équilibre; le traitement du présent paragraphe
donne la possibilité de calculer 'influence des charges longitudinales qui
sont en équilibre sur tout le disque et qui ne seraient pas en équilibre bande
par bande.
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La loi de Hooke du matériau orthotrope en état plan de contraintes s’écrit:

c=Be¢ (19)
ou plus en détail:
- - E E, 10
Hoty 1—pepy
o = py By B, 0 €
g 1= Mg [y 1- g Ly v
- Tag| _ 0 0 G_  Vay|

Gy, 0,06 T, sont les contraintes normales et de cisaillement,

€ €, 66y, sont les dilatations et le glissement,

E,., E, et p,,u, sont les modules d’élasticité et les coefficients de Poisson
dans les directions x et y,

G est le module de cisaillement.

Les conditions aux limites citées au premier paragraphe sont:

enx=0oux=a, v=0 et o,=¢,+u,e, =0, (20)
en y =0, u=u, et v=uov,

Y i i (21)
en y =b, u=u; et v=uv,,

ol u=u(x,y) et v=v(x,y) sont les fonctions de translation de la bande dans
les directions x et y,
g, v; e u;, v; sont celles des lignes nodales ¢ et j.

Les fonctions de translation de la ¢i¢me bande sont supposées de la forme

suivante:
7

<
I
Mg

(Ay s + Ay uy,,) cosk,, x, (22)
0

li

m:=

74

<
Il
Mez

(A v+ Ay vy,) sink,, @ (23)

m=1

I

avec A

(=

=1—-—g et Ay, =

Sl

Uim s Wim s Vim > Vjm SONt des inconnues dont la signification physique est 1’ampli-
tude du mi®me harmonique des fonctions de translation des lignes adjacentes
a la bande.

Pour atteindre 1’objectif avancé dans I’hypothese 4, il faut prendre en con-
sidération le zéroi®me terme des séries de Fourier cosinusoidales, comme indiqué
dans la formule (22). On en trouvera la preuve dans l’analyse des formules.
(28) et (34). Pour les séries sinusoidales, ce terme est identiquement nul.
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Les fonctions (22) et (23) peuvent aussi s’écrire sous forme matricielle:

M .
u= ) G,Ne, (24)
m=0 .
_ [u (2, y) _/ .
avec u = _v(x,y)] ) G, = \_cos k_mx, sink,,x),
Uim
(A4, 0 A, O Vim
N=10 4, 0/12]’ m =, |
_Yim_

L4

Les déformations totales sont la somme des déformations initiales et

élastiques:

Les déformations totales exprimées a 1’aide des fonctions de translations

s’écrivent: _
M .

-k, 4, 0 —k,4, 0
si H, = 0 A, 0 A,
Ak, Ay Ay kyd,

De méme que précédemment dans le paragraphe 3, les déformations initiales
&y, le vecteur p des charges agissant sur la surface de la bande et le vecteur »
des charges linéiques agissant sur les lignes doivent étre développés en séries
de Fourier selon

M
80 = Z SmEOm (27)
m=0
€zom qui est le vecteur des coefficients
avec Eom = | €om |> de Fourier des fonctions de défor-
Yayom mations initiales,
2 (x)] i
= = S 6. p., 28
P [py ()| = 2, CnPn (28)
. Dam est composé de coefficients de Fourier
ot Pm = des foncti
Bom es fonctions de charges,
M
= >T,%,, (29)
m=0 _
Qiam
ou r, - " et » =
" [ 0 Gm " Qjacm
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Dans les termes du vecteur %,,, le premier indice désigne la ligne ou la charge
agit, le deuxiéme indice donne sa direction et le troisieme indique qu’il s’agit
de coefficients de Fourier. Pour ’expression (28), la formule donnant le zéroi¢me
coefficient de Fourier cosinusoidal s’écrit::

1 a
Pro = afpw(w)dx

0

et montre que ce coefficient est nul si le systéme p, est en équilibre.
Le vecteur des translations qui correspond au vecteur des charges » est:

1

u

U; - 3
B=1,1 (30)

J

v

w Jh

Les forces uniformément réparties qui agissent sur les extrémités x =0, et
x=a de la bande (fig. 5) sont désignées par 7, et 7,,.

On peut calculer la translation dans la direction x des extrémités x=0 et
x=a de la bande selon les formules

oM
o (¥) = mgo (A Ui+ Ay uy,)
M (31)

’lLa(y) = Z (Aluim+/12ujm)(—1)m.

m=90

L’énergie potentielle totale de la iiéme bande s’exprime par:

0 0

b a b a a b
H=gffa*edxdy—ffu*pdxdy—fﬁ*%dx—f(nouo—naua)dy. (32)
0 0 00

La condition d’équilibre s’écrit:
oIl _ 0

2e*
oer

et conduit aux sytémes d’équations & quatre inconnues:

K@e, +1D =0, (34)
b
ol Kgg>=hbe;,§BHmdy,
.
; b b b 0
£ =—h({H,;’;dyBem—gN*dypm—%m—g[no—na(—1)’"] 1l



162 GY. SZILAGYI

Si m =0, 1’équation (34) montre que v, et v;, sont identiquement égaux a

zéro et devient:
11 =1 fug, tizo| _ [0 5
th [_1 1] [ujo] * [tjxo] B [0 . (35)

La matrice des coefficients de cette équation est singuliére. Cependant, on
peut la transformer de telle fagon qu’elle contienne les translations relatives

Adu; = u;9—ujq. (36)

Si nous introduisons la notation

hi G,

?

vi=p (37)

pour la ¢i®me hande, le zéroitme gystéme d’équation d’un disque composé de g
bandes prend la forme suivante:

71 Adu, [t 20 0
—%Y1 VY2 Au, tazo 0
— e A4 \ ¢ 0
Ya ?/3 :u3 o 3.1‘0 — ) . (38)
Yo—1 4 Uy 1 t(yvl)xo 0
_. “Yg-1 Vg __A U, Llyzo 0]

A laide des translations relatives 4u;, on peut simplement calculer les
déplacements figurant dans 1’équation (2).

5. Algorithme des structures plaque-disque

A T’aide des équations (16) et (34) on peut établir le systéme d’équations
de la bande «plaque-disque» en tenant compte du fait que le comportement
de la bande en tant que plaque est indépendant de son comportement en tant
que disque comme il résulte de la théorie des plaques minces.

Le systéme d’équations d’équilibre de la bande «plaque-disque» peut

s’écrire:
(4
0 K| lw, oA
ou dans une forme plus concise:

Km dm+tm =0 (39)

Dans le cas des structures «plaque-disque», on a quatre inconnues par
ligne nodale.

En ce qui concerne la construction de 1’équation d’ordre zéro du type (38),
remarquons que s’il y a une ou plusieurs parties fermées dans la section (fig. 3a),
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il faut compléter le systeme par des équations qui expriment la continuité des
déformations des parties fermées.

Les étapes de notre programme pour le calcul des structures continues
sont les suivantes:

1. Entrée des données et calculs préliminaires.

2. Calcul du systéeme de référence (§ 2) par portée.

2.1. Composition du vecteur des charges (les cas de charges sont soit les
charges extérieures soit les forces «hyperstatiques» unitaires).

2.2. Composition de la matrice de rigidité de la portée considérée de la
structure.

2.3. Résolution du systéme d’équations.

2.4. Calcul des déplacements des extrémités des bandes.

2.5. Composition et résolution du systéme d’équations d’ordre zéro (for-
mule (38)).

2.6. Calcul des coefficients pour la méthode aux forces (équations (1) et

(21)).

3. Résolution du systéme d’équations de la méthode aux forces.

4. Calcul du systéme de référence par portée; chaque portée est sollicitée
simultanément par les charges extérieures et les «forces» hyperstatiques.

4.1. Composition du vecteur de charges.

4.2. Composition de la matrice de rigidité de la portée.

4.3. Résolution du systéme d’équation.

4.4. Calcul des déplacements et des éléments de réduction souhaités.

[}

. Impressions.

6. Exemples numériques

Dans ce paragraphe, nous traitons quelques exemples numériques et nous
les comparons aux résultats de la littérature.

6.1. Le premier probléme est une plaque carrée de dimensions 10x 10 m,
simplement appuyée au contour (fig. 6). On a un changement de température
variant linéairement selon 1’épaisseur de la plaque; la différence entre la tem-
pérature des surfaces inférieure et supérieure étant 20°C, la répartition de
température est uniforme dans les directions X et Y. Les autres données sont
les suivantes:

Epaisseur #=0,3 m, coefficient de Poisson u=1/6, rigidité £ A3/12 (1 —u2) =
6400 tm, coefficient de dilatation thermique « = 0,000012.

Nous divisons la plaque en dix bandes dans la direction Y. Dans le tableau 1,
nous donnons la comparaison de nos résultats avec ceux de MAULBETSCH [6].
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\Y

® 10,0
50
® 0,225352
" X
20 @ ®
5,0
100 Fig. 6.
Tableau 1
MAULBETSCH A B C D
1 My — 2,4889 —2,4925 —2,4925 —2,4940 —2,4940
My —2,4889 —2,3527 —2,4316 —2,4409 —2,4673
5 My —4,7908 — — —4,7848 —4,7889
My —0,1870 — — —0,1180 —0,1445
3 My —4,9778 —4,8003 —4,8855 —4,8939 —4,9200
4 My —4,9778 —4,6810 —4,8240 —4,8354 —4,8796
My —3,23 —3,1151 —3,1316 —3,1334 —3,1360

Dans les solutions 4 et B, chaque bande a la méme largeur, tandis que dans
C et D les bandes de bords sont plus étroites que les autres et elles ont une
largeur de 0,225352 m. Le nombre des termes de Fourier pris en considération
est 20 dans la solution 4, 40 dans la B et C, 60 dans D?3). On voit que dans les
problémes de déformations initiales, il faut beaucoup plus de termes de Fourier
(40 & 60) que dans le cas des charges extérieures [1], [2] et que la solution avec
des bandes de bords plus étroites est plus précise (cf. solutions B et C, toutes
les deux avec 40 termes de Fourier). En outre, on peut remarquer que le calcul
avec le méme nombre de termes de Fourier donne de meilleurs résultats pour
certains éléments de réductions (p.e. m, aux points 1 ou 2) que pour d’autres
(p.e. m, au point 1, m,, au point 4). Cette constation est applicable au cas
des charges extérieures.

6.2. Le deuxiéme probléme est une plaque continue & deux portées. On
peut voir les dimensions et les cas de charges aux figures 7a et 8a. Les autres
données sont les suivantes: épaisseur 2 =0,2 m, coefficient de Poisson u=1/5,
rigidité £ A3/12 (1 —u2) = 10000 tm.

3) Grace a la symétrie du probléme, les termes pairs sont nuls.
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Nous avons divisé la plaque en six bandes de méme largeur, car les expé-
riences du calcul montrent que les systéme d’équations (1) de la méthode aux
forces donne de meilleurs résultats, si les bandes ont la méme largeur ou si la
différence entre les largeurs de deux bandes voisines n’est pas importante.

Aux figures 7 et 8, les résultats des deux cas de charges sont comparés avec
ceux de SCHLEICHER et WEGENER [7]. ;

Examinons d’abord le cas de la charge uniformément répartie. Dans la
section B— B, il n’y a que de trés petites différences entre les moments m,
obtenus avec 20 et 40 termes de Fourier, et ils sont trés proches de ceux de
SCHLEICHER. Dans la section 4 — A4, la différence des résultats obtenus avec
20 et 40 termes est plus grande, mais elle reste partout inférieure a 29%,. Les
moments de la méthode des bandes finies sont de 2 & 59, plus grands que
ceux de SCHLEICHER, calculés par la méthode des différences finies.

6.3. Le troisieme probléme est un pont en caisson & deux portées. Les
dimensions de la structure, la charge et la division en bandes, sont montrées
aux figures 9a et 9b, le coefficient de Poisson est u=1/6, et le module d’élas-
ticité £ = 4000000 1b. ft.—2.

a) 1t 1ft
Ib b
T 2000 g5 2000 ¢
g-‘ ———————————— L — e — — —ZH* — — Diaphragmes
”rl 20# ot 3ot ot
b) Ib
ligneg nodales 200053
. ‘ / \\\
1 " n
Tosarr 1 , T 0,5t
0,6667-1= , -
26l O 2,51t
¥ 0,4583 1 !
! T
] 93333 bo3333 3x 3,111 1
i 1

0 @
ft2
T 1
uslNEEEE =) B
735 -643 1983 -1757 \9204 [Fozza @)
87.9 ‘)/ -77,0 1987 / -1760 __{\-55a.6 ‘ﬁ
— - 1
-1275,0
, 703
, 0.3 203,7
206,2 9591
M=20: [918,5] Loo-Cusens : 959,! 987,0
M =40: Scordelis  : 987,0

Fig. 9.
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Le méme probléme, avec la méme division en bandes, a été calculé par
Loo et Cusgexns [5a] a l’aide d’une autre version de la méthode des bandes
finies. Ils ont comparé leurs résultats avec ceux de Scordelis. A la fig. 9¢, nous
donnons la comparaison des contraintes longitudinales o, de la section chargée
en y ajoutant nos résultats obtenus avec 20 et 40 termes de Fourier. Ces deux
derniers ne différent sensiblement qu’a proximité de la charge; par conséquent,
plus loin de la charge nous ne donnons que les résultats obtenus avec 20 termes.
On voit que nos résultats sont généralement plus proches des résultats ana-
lytiques de Scordelis que ceux de Loo et Cusens , bien que ces derniers aient
pris en considération 100 termes de Fourier dont la moitié était nuls & cause
de la symétrie du probléme.

7. Conclusions

Une méthode de calcul par bandes finies a été proposée pour les structures
du type «plaque-disque. Cette méthode est plus économique que celle de la
publication [5a], mais elle ne permet pas de prendre en considération des
appuis verticaux élastiques ou des appuis ponctuels.

En outre la présente publication traite le calcul des structures «plaque-
disque» soumises aux déformations initiales, comme p.e. I’effet thermique ou
la précontrainte.

En utilisant les mémes principes que ceux exposés ci-avant, on pourrait
généraliser la méthode au calcul des structures continues courbes «plaque-
disque».
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Résumé

L’auteur traite le développement de la méthode des bandes finies pour le
calcul des structures continues et encastrées dont les éléments sont chargés
dans leur plan et perpendiculairement & celui-ci (voiles plissés, voiles cylin-
driques, ponts en caisson, etc.). En outre, il donne 1’application de la méthode
dans le cas des déformations initiales (p.e. changement de température, pré-
contrainte). Des exemples numériques illustrent la précision de la méthode
développée qui se montre plus efficace que les versions proposées jusque
maintenant.

Zusammenfassung

Der Autor behandelt die Entwicklung der Finite-Strip-Methode zur Berech-
nung durchlaufender und eingespannter Konstruktionen, deren Elemente in
ihrer Ebene und senkrecht zu dieser belastet sind (Faltwerke, zylindrische
Schalen, Kastentrigerbriicken usw.). Ausserdem zeigt er die Anwendung
der Methode fiir den Fall von Anfangsdeformationen (z. B. Temperatur-
anderung, Vorspannung). Numerische Beispiele erldutern die Genauigkeit der
Methode, die sich erfolgreicher erweist als die bisher vorgeschlagenen Versionen.

Summary

The author deals with the development of the Finite strip method for the
calculation of continuous and encastred structures the elements of which are
loaded in their plane and vertically to it (folded plates, cylindrical shells, box
girder bridges, etc.). Moreover he shows the application of the method for
the case of initial deformations (e.g. temperature change, prestressing).
Numerical examples illustrate the precision of the method which proves more
efficient than the until now proposed versions.



	Quelques applications de la méthode des bandes finies

