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Introduction

The application of classical flexural theory for elastic thin plate of homo-
geneous orthotropic material to the problem of orthogonally stiffened plates
was first suggested by HUBER [1]. In the analysis, a reinforced concrete slab
with different reinforcement in two orthogonal directions is represented by an
equivalent orthotropic plate having the same stiffness characteristics. There
are two phases to the analysis of stiffened plates by treating the equivalent
orthotropic plates. The first phase is the determination of the equivalent stiff-
nesses and hence the governing differential equations in terms of the trans-
verse displacement. The second is the solution of the governing equations.
This latter problem for the so-called Huber equation has been dealt with in
the literature for many combinations of boundary and loading conditions and
will not be considered further in the following discussions.

The orthotropic plate theory based on Huber equation has since then been
applied by many investigators to the analysis of grid systems and orthogonally
stiffened plates. GuYoN [2] was the first to apply the theory to the analysis
of grid systems in which he considered only the bending rigidities. MASSONNET
[3] extended the analysis of Guyon by introducing the effect of St. Venant
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torsion. The eccentrically stiffened slab commonly used in the construction
of bridge decks was analysed by BARES and MASSONNET [4]. In their analysis
the bending rigidities were determined by considering the full interaction
between the slab and the stiffening grid system. However, this interaction
was not taken into consideration in the evaluation of the torsional rigidity,
which was taken as the simple sum of the St. Venant torsional rigidities of the
slab and the grid system. As will be shown later, this is true only if the in-
plane shear rigidity of the stiffening grid system is negligibly small.

In deriving the bending rigidities and hence the moment curvature rela-
tions, Bares and Massonnet assumed that the Poisson’s ratio vanishes. Conse-
quently the location of the neutral surface of the bending stresses becomes a
cross-sectional constant and the complexity arising as a result of the unknown
location of the neutral surface was thereby avoided. TimossENKO and
WoiNOoWSKY-KRIEGER [5] derived the moment curvature relations by con-
sidering a biaxial state of stresses for the slab and the analysis was limited to
plates stiffened symmetrically. Therefore the complexity due to the unknown
location of the neutral surface was similarly avoided. GIENCKE [6] considered
the same influence of Poisson’s ratio not only for the slab but also for the
stiffening grid system. The unknown location of the neutral surface was con-
sidered in his derivation of the bending rigidities. Noting that, in the grid
system, a biaxial state of stress exists only at the intersections, CUSENS,
ZEAN and PAamA [7] modified the expressions of Giencke by considering the
coupling influence through Poisson’s ratio only at these intersections for the
grid system.

Since no consideration is given to the interaction between the slab and the
stiffening grid system in the determination of the torsional rigidity, the
existing orthotropic plate theory of stiffened plates based on Huber equation
is subject to an error, excepting the case where the in-plane shear rigidity of
the grid system is negligibly small in comparison with that of the plate. The
existence of this error can be readily demonstrated by considering an hypo-
thetical stiffened plate consisting of two identical plates, perfectly bonded at
the interface, one representing the slab and the other the stiffening grid system.
While the bending rigidities suggested in the literature, when applied to the
hypothetical plate, coincide with that for the single plate which is twice as
thick, the torsional rigidity of the former, which is the sum of the torsional
rigidities of each plate, amounts to only one fourth of that of the latter.

A theory which considers the extensibility of the middle plane of the plate
which introduced additional shear stresses was first formulated by PFLUGER
[8] for the treatment of buckling problems of stiffened plates. This theory
was later applied to orthotropic plate problems by TRENKS [9], MASSONNET
[10] and CriFTON, CHANG and AU [11]. The governing differential equations
are expressed in terms of the in-plane as well as transverse displacement
components of the middle plane of the plate. The theory compensates to a
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certain extent the discrepancy in the torsional rigidities discussed above
through the additional shear strain at the middle plane. However, the extent
of this compensation depends on the geometry of the structure and the loading
and boundary conditions. For example, consider the same hypothetical stiffened
plate mentioned previously under the action of self-equilibriating anticlastic
corner forces which subject the plate to a pure torsional stress field. It can be
easily shown [12] that vanishing in-plane displacements and anticlastic trans-
verse displacement satisfy all the governing equations and boundary con-
ditions. The transverse displacements, which are inversely proportional to
St. Venant torsional rigidity computed for the two perfectly bonded identical
plates according to the equations given by MassoNNET and CLIFTON, CHANG
and Au, the latter for plates with open stiffeners, are respectively four and
eight times that for the single plate which is twice as thick.

In the following, orthotropic plates with orthogonally placed eccentric
open stiffeners are studied, taking into account the full interaction between
the plate and the stiffening system. The equivalent bending and torsional
stiffnesses to be used in Huber equation are determined for plates with stif-
feners placed only on one side of the slab. The resulting torsional rigidity is
much larger than those presented in the literature. The corresponding result
for the hypothetical stiffened plate consisting of two perfectly bonded iden-
tical plates coincides with that for the single plate which is twice as thick.

Stress Resultant-Displacement Relations

Torston

Consider the typical element of a plate which is monolithic with two ortho-
gonal systems of closely spaced stiffeners shown in Fig. 1. The dimensions of
the element in x and y directions, @ and b respectively, are assumed to be
very small in comparison with the widths of the entire orthotropic plate. In
order to analyze the behavior of the element under the action of twisting
moment, it is first separated into two individual parts, the plate and the
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Fig. 1. Typical Element of : L_ /“/

Eccentrically Stiffened Plates. _—
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stiffening grid system. The two parts, under suitable loading conditions, are
then combined to form a monolithic structure by observing the continuity
condition at the interface. '

Allowing in-plane deformation of the middle surface, the small displace-
ment theory of thin plates under Navier-Bernoulli hypothesis implies the shear
strain distribution

v 2w
R T ®
where y = shear strain; =z,y,z = cartesian coordinates with the xy-plane
located on the undeformed middle surface of the plate shown in Fig. 1; u,v,w=
displacements in «, y and z directions respectively; and p = subscript denoting
the plate. The shear strain at the bottom of the plate is given by

ouw, Jv 2w
oo = (T2 + 52) by )
where A = thickness of the plate.

Under the action of torsional moment, the shear strain in the stiffener of
narrow. rectangular cross section is considerable only on planes parallel its
middle plane [13]; hence for relatively deep open stiffeners as shown in Fig. 1,
the shear strain at the top surface of the stiffening grid system is assumed to
vanish. Hence the shear strain distribution on horizontal sections of the
stiffener is constant regardless of the depth z, excepting the vicinity of the
bottom edge which can be approximately corrected and the shear strain of
the grid system on any horizontal section is given by

ou, Jv,

where u,,v, = displacements % and v of the centroidal axes of the stiffeners
in y and x directions respectively.
Equating Eqgs. (2) and (3), the continuity condition at the interface is
expressed by
8up+8vp_ ?w _ o u 3@8.
oy  ox dxdy Jdy Oz

(4)

This continuity condition is satisfied by the presence of suitable indeterminate
forces which cause in-plane deformation of the middle surfaces of the plate
and the grid system. Rearranging Eq. (4) and noting that 02 w/dz 0y is regarded
as constant in each element, it is obvious that (u, —u,) and (v, —v,) are linear
functions of y and x respectively. Thus Eq. (4) can be satisfied only when the
indeterminate forces subject both the plate and the grid system to pure shear
fields. The indeterminate forces acting on the plate, therefore, are uniformly
distributed shear stresses while those acting on the grid system take the form
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Fig. 2. Indeterminate Distributed N/
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of edge shears and self-equilibrating uniformly distributed moments acting
along the centroidal axis of the stiffeners as shown in Fig. 2. The presence of
these uniformly distributed moments is necessary in order for the grid members
to remain straight, i.e. to be free from bending moments. The latter is realized if

V,—m, =0, V,~m, =0, (5)
where m,,m, = uniformly distributed moments per unit length about z-axis
acting on stiffeners in # and y directions respectively; and V,,V, = shear

forces acting on the stiffeners in # and y directions respectively. Since only
twisting moments are applied to the monolithic structure, the equilibrium of
forces in x and y directions require respectively that

V,+7hb =0,  V,+7ha =0, (6)

which in turn leads to

Vea—V,b=0. (7)

Eqs. (5) and (7) imply that the uniformly distributed moments m, and m, are
in self equilibrium.
The stress-strain relation for an elastic material is given by

=G0y, (8)

where G = shear modulus. Since the grid elements are subjected to a pure
shear field, the shear deformation leads to the force displacement relations

— KVy +u
us—GAyay s0>

(9)

«V,

Ys T GA,b

X+v50,

where Ax,Ay = cross sectional areas of individual stiffeners in z- and y-direc-
tions per unit width along y and x axes, respectively; x = a numerical factor
depending on cross sectional shape, being 1.2 for rectangular section [14]; and
Ugps Vsg = displacements u, and v, at y=0 and x=0, respectively. For the
plate, the stress-displacement relation is
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ou,  0v, T
hilhes RIS 1
oy  ox G (10)

Solving Egs. (4), (6), (9) and (10) yields the indeterminate shears in term
of the transverse displacement w,

e 02w
T dx oy’
Bt H u¢+A)
_ 2
y - Gbh 02w (11)
L ( + )8x8y
h Az Ay
Vo —Gah Pw
U—}_i_ ox oy
B (Ax““Ay)

The total twisting moment acting on the element shown in Fig. 1 is con-
tributed by the plate, the stiffener and the indeterminate distributed forces
acting at the middle surface of the plate and at the mid-depth of each stiffener.
In view of Egs. (1), (8) and (11) and St. Venant torsion of the stiffeners [13],
the twisting moment-displacement relations are given by

otw
Mov = ~Pargazy 12
y 2w (12)
v = —Dyxa—x—é—y,
hs+h
3 h 7
where ny=GZ‘6—+‘g+ (12 ) :
- —+Ku4+A)
oY (13)
s 3 ( hy+ h) -
Dy = Q=+~ 2 ,
b6 a 1 Yk ( 1 + 1 )
3 4,
J, =Kbih,, J,=Ka3h,,
in which M,,, M,, = torsional moments about x and y axes per unit width in

y- and x- dlrectlons respectively, positive as shown in Fig. 3; h,,b, = depth

/T "
/ f:_Mx,

My' Fig. 3. Positive Directions
/ of Stress Resultants.
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and width of stiffeners in z-direction; %,,a, = depth and width of stiffener in
y-direction; J,,J, = St. Venant torsional constants of individual stiffeners in
z- and y-directions respectively; and K is the coefficient of the torsional con-
stant of a rectangular section [13]. In order to approximate the continuity
between the slab and the stiffener, the coefficient for a section twice the depth
of the stiffeners below the slab may be used.

It should be noted that no indeterminate torsional moment develops for
plates siffened in only one direction. Hence for this type of structures the
third term in the bracket of Eq. (13) vanishes. This can be easily seen in Eq. (7)
by equating the shear force corresponding to the non-existing stiffener equal
to zero or by considering the limiting case of either 4, or 4, approaching zero
in Eq. (13).

It is of interest to note that, in view of Eq. (3), no indeterminate torsional
moments develop for a hypothetical structure consisting of two identical grid
systems which are perfectly bonded together. Hence the torsional rigidity is
given by the sum of the rigidities of each system. On the other hand, for a
hypothetical structure consisting of two plates with thicknesses h; and A,
bonded together, the torsional rigidity is

B3 A3 hy+h
D,, = G[gl»+-ég+h1h2( 12 2)] (14)

The torsional rigidities of these two hypothetical structures are limiting cases
of Eq. (13).

Bending

Consider the element shown in Fig. 1 under the action of bending moments.
The stress-strain relations for the plate are

(ex+vey),
(15)

€,+ve,),

in which £ = modulus of elasticity; o,,0, = normal stresses in z- and y-direc-

tions respectively; €,, e, = normal strains in x- and y-directions respectively;

{_ 7z ij . O'x bs
rg..z -
Fig. 4. Forces and Displacements "*‘7‘Ab=£(g_!_l)__bso-")
of Stiffeners. / 2\E bE
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and v = Poisson’s ratio. The state of stress in the stiffeners are assumed to be
biaxial at the joint between two intersecting stiffeners, and uniaxial elsewhere.
Fig. 4 shows a horizontal slice of the typical element of the stiffeners of unit
depth. If the stiffeners are subjected to axial forces resulting in uniformly
distributed stresses o, and o,, the average strains in z- and y-directions are
given by

o, o,
“=F R
(16)
_ 9y Oz
%"_7§_Vﬁjf’

where a=ag/a and f=0b,/b. In the following analysis, it is arbitrarily assumed
that h,=h,. In view of Eq. (16), the stress-strain relations for the stiffeners
are, for h/2<2=<h/2+h,,

o, = ﬁ B(e +vae,),
(17)
oy=m(ey+vﬁex)
and, for %+ h, <2<+,
o, = FEe,. (18)

Adopting the usual assumptions of small displacement and no shear defor-
mation during bending, the normal strains are related to w by

3w
€, = Ga;o—za—xi,
1
Pw (19)
€ = Gyo—z—é':;—z—,

where €,4,¢,9 = ¢, and ¢, at z = 0 respectively.
The equilibrium of normal forces at the edges of the element requires that

[o,d4 =0, fo,d4 = 0. (20)
In view of Egs. (15) through (19), solving Eq. (20) for €,, and ¢,, yields
rw > w
€x0 = ea:a_wz—vexya_yz,
2w 2w (21)
€y0 = ey'—a?é—veymw,
1 2
where e, Z*[t Sp—viB(t, +oatyq)s,],
| (22)

1
x?l ;1_[ y+“(tx18y—ty8a:1)]’
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1
€y - = Z—[txsy—vgoc(tp +Btyl)8a:1]’
(4

1
yxr T I[tpsx-l_ﬁ(tylsx—tzsy)]:

e

Ae = txty_vz(tp+°‘txl);(tp +Bty1)’
h
by = 1—2"
zl h, 1—v2aﬁ’
L
2k, 1—12af’ (22)
t = Ay

tx = tp+tm1+tﬂc2’

h—kk
Sacl “txl P ’
h+h, +h
Sxo = tsz—u’
Sg = Sp1tSz2,
h+h
Sy =t1/1 é y.

It should be noted that ¢,, and ¢,, are functions of both ¢?w/dx? and
*w/oy? and, in view of Eqs. (19) and (21), the location of the neutral surface
does not remain fixed but depends on displacement w, hence on the loading
and boundary conditions. Since no axial force is present, the bending moments
per unit width can be defined about any reference axis along z coordinate.
Selecting this reference axis at z=0, the bending moments are then given by

Mx=—blfawsz, My=zllfaysz, (23)
In view of Eqgs. (15) through (19) anu (21), Eq. (23) yield the moment-curva-

ture relations
w 82 w
Dx ox 2 1 ayz ’

= (n:
(D D)

%E

(24)

,,g

252 T Y oy?
where —Sye,+vias, e,,),
( —8,e,+v Bsyexy),
( proal, +s.e,,—as, e,),

5y = (L, +B1, +s,e,,—Bs,e,)

8

<

(25)

[

O OO 5
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A3
and Ip =m;
= bshy h% h+hu 2
le—b(l—vzaﬁ)[ﬁ_*-( 2 ) ’

_ by(hy—hy) F(hx—hy)2+(h+hy+hz)2
2T h(1-v2aB)| 12 2 ’
Ia: =Ip+Ia:1+Im2’

1

(26)

_ah, B (h+h,\
In =izt 72 |
Iy =Ip+Iﬂ1'

When the width of the stiffeners are very small compared with the spacing
of the stiffeners, the influence of biaxial state of stress at the intersection of
.the stiffeners may be neglected. The coefficients in the moment-curvature
relations are then obtained by substituting « =8=0 in Egs. (22), (25) and (26).

Discussions and Conciusions

The equilibrium of forces in z-direction is prescribed by [5]

oM, oM, *M, &M, _

- P)
ox? = oxoy oxdy = Oy g (27)

where ¢ = intensity of distributed load. Substituting Eqs. (12) and (24) into
Eq. (27) yields the governing differential equation for orthotropic plates with

eccentric stiffeners,

ot w otw atw .

where 2H=D,,+D,,+D+D,. (29)

The boundary conditions are the same as those given in References [3], [4], [5]
for Huber equation and are omitted here for the sake of brevity. The bending
moments and twisting moments are given by Eqs. (24) and (12) respectively,
and the shearing stress resultants are determined, as usual, from the equi-
librium conditions

0 M M, |

YT dx oy ’ -

o — M, oM, )
v oy ox ’

where @, and @, are the shearing forces per unit width in y- and z-directions
respectively as shown in Fig. 3.
As pointed out earlier, the uncertainty in using Huber equation to analyse
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orthotropic plates with eccentric stiffeners arises mainly in the evaluation of
D,, and D,,. A comparison of the proposed expressions for (D,,+D,,) and
2 H with those suggested by other investigators [3], [4], [5], [6]. [7] may be of
interest. For this purpose, three eccentrically stiffened slabs are chosen as
examples. The spacing and depth of the stiffeners are varied while the thick-
ness of the slab and the width of the stiffeners are kept constant. The values
of (D,,+D,,) and 2 H for a =10k are plotted in terms of the torsional rigidity

Legend :
Proposed 2 H
—— o Proposed (ny + Dyx )

— e (ny +Dyx) Withouf
interaction

5- a=10h ag=bs=h

[P | a3
(Dxy + Dyx)/3Gh" or 2H/3Gh

Fig. 5. Torsional Rigidity Plotted
Against Arguments of a/b.

of the top slab against arguments of the aspect ratio a/b as shown in Fig. 5 for
stiffener depth to slab thickness ratio of 1, 3 and 5 respectively. It is seen that
the values of (D,,+D,,) obtained by summing the St. Venant terms of the
stiffeners and slab only are far below the values computed by means of the
proposed theory. The difference increases with increasing stiffener depth.

In Eq. (28), the term 2 H includes the bending terms D, and D,. To examine
the contribution of the latter, the values of 2 H are also plotted in Fig. 5 which
shows that in some instances the contribution of D, and D, is greater than the
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St. Venant terms. It should be mentioned however that the contributions of’
(D, +D,,) and (D;+D,) are quite different depending on the loading and
boundary conditions. For anticlastic loading, for example, D, and.D, play
no role whatsoever. The load distribution characteristics of orthotropic plates
are influenced as much by D,, and D, if not more so in same instances, as
by D, and D,.

A theoretical analysis has been presented for orthotropic plates with eccentric
stiffeners resulting in Huber type governing equation. The extensibility of the
middle surface of the plate as well as the monolithic action of the plate and
the stiffeners are taken into account in evaluating the elastic rigidities of the
structures. It has been reported [9], [10], [15], [16] that Huber equation yields
only approximate solution for the problem due to the fact that the influence
of the stretching of the middle surface of the slab was neglected in evaluating
the elastic rigidities and that the problem may be more rigorously described
by three simultaneous differential equations of equilibrium of forces in three
orthogonal directions. The solution of the latter requires very laborious cal-
culations. The Huber type equation with the proposed rigidities derived in
this study overcomes this difficulty and the proposed torsional rigidities which
incorporate the interaction between the plate and the stiffeners remove, at
least in part, the uncertainty [10] with regard to the torsional behavior of
orthotropic plates with eccentric stiffeners.
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Summary

An analysis of orthotropic plates with eccentric stiffeners which leads to
Huber type governing equation is presented. The extensibility of the middle
surface of the plate as well as the interaction between the plate and the stif-
feners in torsion are taken into account in evaluating the elastic rigidities of
the structures. The proposed torsional rigidities are much larger than those
currently accepted for use in design practice.

Résumé

La contribution traite une analyse de plaques orthotropes avec raidisse-
ments excentriques ce qui méne & 1’équation selon M. T. Huber. L’extensibilité
de la surface moyenne de la plaque ainsi que l’interaction entre la plaque et
les raidissements sous torsion sont prises en considération en évaluant les
rigidités élastiques des structures. Les rigidités torsionnelles proposées sont
beaucoup plus élevées que celles prévues en général dans les projets.

Zusammenfassung

Der Beitrag behandelt eine Berechnung orthotroper Platten mit exzentri-
schen Versteifungen, welche zur Gleichung nach M. T. Huber fiihrt. Die Aus-
dehnbarkeit der mittleren Oberfliche der Platte sowie die Wechselwirkung
zwischen der Platte und den Versteifungen unter Torsion werden durch die
elastischen Steifigkeiten der Konstruktion abgeschitzt. Die vorgeschlagenen
Torsionssteifigkeiten sind weit hoher als die im Entwurf fir die Praxis im
allgemeinen angenommenen.
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