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Research Scholar, Department of Civil
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1. Introduction

The analysis of curved slab-beam Systems has received the attention of
structural analysts for more than a decade particularly with reference to
curved girder bridges. However, a realistic analysis of curved slabs monolithic
with eccentric beams in circumferential and radial directions has become
possible only with the development of modern analytical techniques requiring
the use of digital Computers.

Four essentially different approximate techniques have been used. The
first approach due to Sawko [1] replaces the plate and beam structure by an
equivalent grillage of intersecting beams whose stiffnesses are adjusted to
approximate those of the slab and beams. The second approach, used by
Heins and Halls [2], treats the curved plate-beam system as an equivalent
polar orthotropic plate. However, the determination of the torsional rigidity
of the equivalent orthotropic plate and the evaluation of plate and beam
forces in the final results remain the major problems in this approach. The
third approach is the application of the slope-deflection Fourier series method,
as used by Bell and Heins [3], to analyse continuous orthotropic slabs on
flexible curved girders.

A fourth approach is to analyse the curved slab-beam system as a curved
thin-walled beam of open section [4]. However, this approach cannot be
generally used as it is based on the assumption that the cross-section as a
whole retains its original shape during deformation. In the first three ap-
proaches it is difficult to separate the slab and beam forces when the beams
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are integral with and eccentric to the slab, and the shear lag effect is not
considered. The determination of the effective flange width of the composite
beams also requires considerable judgement when the beams are not closely
spaced. The need for the use of a more efficient and realistic method like the
finite element technique has been discussed by Gustafson and Wbight [5]
who applied this technique to straight and skewed composite girder bridges.
Davies et al. [6] later applied the finite element method to curved girder
bridges. The added advantage of the finite element method is that it can be

applied to a curved slab-beam system in general, not necessarily a bridge,
with any boundary conditions. The aim of this paper is to report the develop-
ments and application of an equally efficient method to curved slab-beam

Systems.
The development of a discrete energy approach for polar orthotropic curved

plates has been earlier reported by Bubagohain [7]. The same approach is

extended to curved slab-beam Systems considering both bending and in-plane
forces and displacements. The total potential energy of the slab is discretized
into energy due to extension and bending and energy due to shear and twisting,
contributed by corresponding tributary elements, and the minimization
procedure yields the corresponding element matrices. Similar formulations are
obtained for the eccentric circumferential and radial beams. For the particular
case of repetitive radial beams closely spaced at equal intervals, an orthotropic
plate formulation is presented in which the stiffnesses of the slab and radial
beams are merged together with due consideration of the eccentricity of the
beams.

Results are presented for three numerical examples consisting of a straight
five girder composite I-beam bridge, a curved slab model with four
longitudinal and eleven radial beams, and a two span two girder curved bridge
model.

2. Method of Analysis

A section of a curved slab-beam system is shown in Fig. 1, wherein the
forces and displacements at the middle plane of the slab and at the centroidal
axes of the longitudinal and radial beams are indicated along with the
coordinate directions (r,&,z). The discrete energy formulation for the slab-beam

system is presented in three parts: for slab, for longitudinal beams, and for
radial beams.

2.1. Polar Orthotropic Slab Analysis

A segment of the curved slab between any two longitudinal beams is
discretized using a modified finite difference scheine, shown in Fig. 2, separately
into two sets of tributary areas, designated as Class A and Class B elements,
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for considering energy due to extension and bending and energy due to shear
and twisting respectively. Fig. 3 shows these two classes of elements with
reference to the nodal layout. The potential energy ira for Class A elements
and 7rb for Class B elements are considered separately.

Class A elements: The strain vector {esa} for class A elements of the slab
consists of the membrane strains esr and e^ and the curvatures kf. and k8^ at
the slab middle surface, given by:

du
dr

dv

{«•«} hs

0

u
r r 30
d2w
dr2

(1
dw d2w \

r~Tr+ r2d02j

Referring to Fig. 3a, Eq. (1) may be expressed in finite difference form as:
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(4)

and {8^} is the element displacement vector, given by

\°af ~ \um, j Um-\, j vi, n vi, n-1 wi, j wi+l, j wi-l, jwi,j+l Wi,j-l}- (5)



DISCBETE ANALYSIS OF CUBVED SLAB-BEAM SYSTEMS 23

The stress resultants {N^} for class A elements at slab middle surface
consist of the in-plane forces Nsr and N^ and the bending moments M% and M^
in radial and tangential directions respectively. Using polar orthotropic theory,
the stress resultants may be expressed in terms of the strain components as:

{NÜ
N>0
M-.

M-

m]{e°a} [D°a][B°a]{8°a}, (6)

in which ra

0

0rrt Cr0t 0 0

C<prt C@&t 0 0

0 rr t Cr@t
12

0

0

12

(y0rt 000 t
12 12

In Eq. (7), t is the thickness of the slab, and if Er, /xr and Eq, p0 are the
modulii of elasticity and Poisson's ratios associated with the coordinate
directions, then

Ev „ Eq
Crr —

Cr<p

^00 ~l-flrfl09
P<& Er

l-prfi0 l-p,r^0

1-prp&
prE0

(8)
C,0r-

For an isotropic slab, Er E0 E and fjir p,0 p.
The potential energy 77* of the class A element of the slab is then obtained

as:

< f0fk*sa}T[BirmnB%m}-mT{Q}rdrd<p
(9)

o o

H^}T[Bsar[Daa][BsaWa}RaArA0-{Sftr{Q}RaArA^,
in which

{Q}T {0000^0000}
and pz uniformly distributed load intensity in z direction.

(10)

Class B elements: The strain vector {eg} for class B elements of the slab
consists of the membrane shearing strain yfo and the twisting curvature ksr0

given by:
du dv v

«>-{&- r d 0 dr r

i- d2w dw
drd0 r2d0

(11)
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Referring to Fig. 3b, Eq. (11) may be expressed in finite difference form as:

{4}

Um,j+1 Um,j Vi+1,n ^i,n _ Vi+1,n~^vi,n
RbA0 + Ar 2Rh

(wo I -i+lJ+I ~ wi+l,i + wi,j ~ wt,3+l _ wi+l,j+l + wi,j+l j. wi+l,; + w:

2JR£/I<£ 2Ä2J0^
or symbolically, {eg } [J3g ] {8g },

in which {8g} is the element displacement vector, given by

l°ö } \um, j+1 um, j vi+l, n vi, n wi+l, j+1 wi, j wi+l, j wi, j+1)
and

[Psb] BbA0 BbA0 (c-d) (-c-d)
0 0 0

in which c —r~, d ^ ^Ar 2Rb
e

0 (e-f) (-e-f) (f-e) (e + /)_

and /R%A® RbArA®'

(12)

(13)

(14)

(15)

(16)

The stress resultants {^g} for class B elements at slab middle surface consist
of the membrane shear force Nfo and the twisting moment Mfe, which can
be expressed using polar orthotropic theory as:

in which

im {^} rata} im imm,
Gr0t 0

im 0
12

(17)

(18)

in which Or0 shear modulus of elasticity.
The potential energy 77g for class B elements of the slab is then given by:

K rfm}T{Bir{DUVBl-\{hl}-{HY{P}rdrd®
0 0

m}T[Bir[Di}[B*M}RbArA<P-{hiy{P}RbArA®,

in which {P}T j|r|r^^000 0l

(19)

(20)

and pr and P0 are uniformly distributed surface load intensities in r and 0
directions respectively.

Overall Stiffness Matrix: The total potential energy for the slab is obtained
as:

^ 2< + 5>l> (21)

in which na and nb denote the number of class A and class B elements respectively.
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Substituting Eqs. (9) and (19) in Eq. (21), the condition St7s 0 yields:

T,(Pa^rA0[BsaYVD8a}[B%}m-RaArA0{Q})
na (22)

+ Z(BhArA0[BlF[I)t][Bl]{Si}-BbArA0{P}) O.
nb

Eq. (22) may be symbolically represented in a more familiär form as:

[*•] {S*} {/«}, (23)

in which {Ss} overall displacement vector, [Ks] overall stiffness matrix,
given by

lK>]=Z[K*a]+Z[Kl] (24)
na nb

and {/s} overall load vector, given by

{/s} E{/sJ+2m}+{/?}- (25)
na nb

In Eq. (24), [K%\ and [üTg] are respectively the class A and class B element
matrices, given by

[Za Ä0Jr-d<P[5ar[^][5S], [Kl] RbArA0[Bi^[Dl][Bt]. (26)

In Eq. (25), {/*} and {/g} are respectively the class A and class £ element load
vectors, given by

{f%} RaArA®{Q}, {fl} RbArA®{P} (27)

and {/*} load vector due to concentrated loads corresponding to appropriate
nodal displacements.

Boundary Elements: Depending on its position along the boundaries, the
class A element has eight other forms, denoted by A2 through A9, as shown
in Fig. 4, when the pivotal node (i,j) lies on the boundary. In order to express
the strains {e*} in terms of displacements within the region, the displacement

u and the rotation al=-^—I are introduced at node (i,j) at the boundary

r constant, and the displacement v and the rotation ßl=~-A are

introduced at node (i,j) at the boudary 0 constant. Table 1 gives the finite
difference expressions for the various terms in {esa} required for the boundary
elements A2 through A9. The relation matrix [Bsa] and the element displacement

vector {8sa} are modified accordingly. The elemental area RaArA0 is

changed into RaArA0j2 for elements A2, A3, A± and A5 and into RaA rA0/4,
for elements A6, A7, A8 and A9.

Stress Resultants: Once the overall displacement vector {8S} is obtained
from the Solution of Eq. (23), the element displacement vector {Ssa} or {Sg} can
be formed for each class A or class B element. The appropriate stress resultants

are then computed at nodes (i,j) for class A elements and at nodes

(m,n) for class B elements using Eqs. (6) and (17).
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Fig. 4. Boundary elements and boundary nodes.

Table 1. Finite Difference Expressions for Different Terms of Strain Components Modified
for Boundary Elements (see Fig. 4)

Terms Finite difference expressions

du

elements A2, A6 A8 *) elements A3, A1, A9 x)

^ \ui, 3 um-\, 2(um,j — ut>j)
dr Ar Ar
d2w 2 (A r oci, j — Wif 3-j-wt-lf 3) 2(wl+1,j — wttJ — Arai,j)
dr2 Ar2 Ar2

dw
rdr

dv

Ra
&l,3
Ra

elements A±, A6, A9 *) elements Ab A7, A8 x)

2(Vi,j — Vi,n-i) 2(Vi,n— Vlt])
rd0 EaA0 RaA0
d2w 2(RaA0 ßttj — m,j+ w%,j-i) 2(wlfj+1 — wltJ — RaA0ßltj)

r2d02

u
r

n\A02 R\A02

elements A2, Az, A6, A7, A8, A9

uhl
*a

2) For elements not mentioned agamst a term, the expression for the term is the same as
used in equation (2).
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2.2. Eccentric Curved Beam

It is assumed that both radial and curved beams act monolithically with
the slab and the breadth of the curved beam is assumed to be small in
comparison with the radius. The junction of the slab with a longitudinal beam is
taken as a boundary for the slab. Hence the displacements considered at the
junction at the level of slab middle surface have to be related to the
corresponding displacements at the centroid of the beam.

Element Discretization: The nodal breakdown for a curved beam is shown
in Fig. 5a. The class A and class B beam elements are shown in Figs. 5 b
and 5 c.

+i n-i J-in+i n-z r,u

u,wt oc NODES

V NODES
z,w

a) Nodal layout

• U,V,W,oc,^ NODE

d) Boundary elements

Fig. 5. Nodal layout and elements for longitudinal beam.

Class A elements: The displacements at the junction of slab and beam at
the level of slab middle-surface are u, v, w and a, which are related to the
displacements at the centroid of the beam as (see Fig. 1):

o 8w
u\ u-eL-jy u-eLoc,

l (28>
o dw 0v\ v — eT .„ ^^, vn w,L LRd0 L

in which R is the radius of the curved beam.
The strain vector {ej} for class A elements of the longitudinal curved beams

consists of the axial strain e^ and curvatures in the vertical and horizontal
planes, k^ and k% respectively, given by
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dv\

tä}=i
1.0^H J

R ' Rd®
d2w

R2 d®2)

d2uj
R2d®2

(a
d2w \

~R + R2d®2)

_/<
\R2

(29)

Using the relations of Eq. (28), Eq. (29) may be written as:

{€l}=, _IJL+ d*w
1 "' > \R R2d®2J

(U
d2U \ / <x

~R* + R2d®2)+eL\R2

u dv
~R + R~ä®

a. d2w

Ji + Wd^2
d2w

(30)

\R2 R2d®2} ^\R2 R2d®2)

Referring to Fig. 5b, Eq. (30) may be represented using finite difference as:

R+ RA® L\R^ R2A®2 I

{&

~R

\R^ R2A®2

ut uj+1-2uj + ui_1\
R2^ R2A®2 L\R2\R2 R2A®2 }

or symbolically

in which

(31)

(32)

(33)

and

i
~R

0

0 Od —d 2ceL —ceL —ceL

0 0 0 0 2c -c -c

R
1

(2c--^) -c -c 0 0 0 0 0 (_2ce£ + ||)

0 0

0 0

cer ce.

in which
R2A®2'

d
1

RA®'

(34)

(35)

In Eq. (33), the displacement vector represents displacements at the slab
middle surface.

If warping restraint is considered for the curved longitudinal beam, the
torsion-bending curvature
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-(¦
d2oc d2w

R*d02 R*d02t

is added as a fourth component in the strain vector {efy and expressed in
finite difference form in Eq. (31).

The stress resultants {N^} for class A beam element at the beam centroidal
axis consist of the axial force NQL, the tangential moment M°L and the
horizontal moment M°H and are expressed in terms of the strain components as:

TO
f ^£1
Ml [££]{«£} PJ][£f] {8£},

in which [J>£]

ELAL
0

0 0

0

0

(36)

(37)

In Eq. (37), EL modulus of elasticity for the beam, 1% and 1% are the
moments of inertia about the beam centroidal axes in r and z directions respectively,

and AL is the cross-sectional area.
For considering warping, the torsion-bending bimoment is added as a

fourth term in Eq. (36) and the warping rigidity ELIW in Eq. (37), Iw being
the sectorial moment of inertia for the beam.

Class B elements: For the class B beam element, the strain vector {ef}
consists only of the twisting curvature k^, given by:

doc dw
{«& {*&} {] l (38)\Rd® R2d®)

Referring to Fig. 5c, Eq. (38) may be expressed in terms of displacements as:

(39)^> {^?-^?} ™^>'R2A®

in which the displacement vector is

{8^}T ={wj+1WjOij+1ocj}

and ™ [wT®W2 l
R2A® RA® RAy-

(40)

(41)

The twisting moment TL is the only stress resultant and is related to
{4} »s

TO {TL} [D£] {4} [Df] mi m}, (42)

in which [D^] [0LJL]. (43)

In Eq. (43), 0L is the modulus of rigidity and JL is the St. Venant torsional
constant for the longitudinal beam.
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Following the procedure described for the slab, the class A beam element
matrix [K%] and the class B beam element matrix [Kfr] are obtained as:

[Kfi BA0[BfiT[Dj;UBfi, [Jtf] i?Jtf|W [/#][££]. (44)

These matrices for all class A and class B beam elements are added to the
appropriate places of the overall stiffness matrix of the slab before solving
the matrix Eq. (23). The stress resultants for the beam centroidal axes are
obtained using Eqs. (36) and (43).

Boundary elements for beam: There will be two boundary elements for the
beam as shown in Fig. 5d, when the pivotal node j lies on the boundary.

Displacement v and rotation ß(= w^) are introduced at the boundary nodes

and the procedure followed is similar to that in the case of slab. In order to

express the strain component k%r, two additional rotations d1l= R
1 and

621 d^I have to be introduced at the boundary node thus making a total
of seven displacements at the node. However, except in the case of free

boundary, the introduction of additional displacements may be avoided by
using actual boundary conditions for the beam. For instance, for simply
supported conditions, {€«} for the boundary elements.

2.3. Closely Spaced Eccentric Radial Beams

The formulation developed for the longitudinal beams may be followed
also for the radial beams with the additional assumption that the radial beams

are perfectly flexible normal to their planes. In this case, the junction of the
radial beam with the slab will be treated as a boundary for the slab thus
introducing additional displacements at these junctions. This can be avoided
if the radial beams are of identical sections and are closely and equally spaced,
in which case, the slab together with the radial beams is treated as a polar
orthotropic slab in which the effect of eccentricity is duly considered. In this
case, only the longitudinal beams form additional boundaries for the slab
besides the four outer boundaries. Additional stiffnesses are then contributed
by the radial beams to the class A and class B slab elements.

Class A element: Referring to Fig. 1, the displacements and strains at the
centroid of the radial beams may be expressed in terms of the corresponding
quantities at slab middle surface as:

dw

€sr + erksr (45)
WI V I v i -

and

v$ W, < : u — er- dr '

6°
du% du d2w

e*cr dr
32w°r

dr
d2w

cy

LO — — ks.r dr2 "fr2^ nsr.
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In matrix form

31

(e?) p 0 er 0]
\k»\ L° ° 1 °J Ls

ti/j,

Jc% j

[£,¦]{«•«}• (46)

The forces in the radial beam at the level of centroidal axes are:

{$} - [V ,'i-J {%) - ™{|| MWKO. <«>

in which, 2£,. is the modulus of elasticity, Ar is the cross-sectional area and
1^ is the moment of inertia about the centroidal horizontal axis for the radial
beam. Transferring the centroidal forces of the beam to the level of the slab
middle surface, and denoting these transferred forces as Nrr and Mrr,

Nrr N°r, Mrr erN»+M°. (48)

Denoting by {Nra} the stress-resultants at slab middle surface due to the radial
beams, for class A elements,

m
f Nr 1

XT j.
1 0

N% 0 0

M*r er 1

[^01 0 0_

{w>\ WT{M}\ IZrViD'J tz,]«}. (49)

If the radial beams are uniformly spaced at angular interval 0S, the total
internal forces per unit length {Na} at the level of (r,0,z) reference due to
both slab and radial beams acting together will be:

{NJ {#.}+{#£ [DJta} [Da] [Büm,Ba®s

in which [Da] [D%] +
Ba®s

[Zrr[Dra][Zr].

(50)

(51)

The expression for the class A element matrix in Eq. (26) is then modified as:

[Ka] RaArA® [B%r [Da] [£»]. (52)

Class B elements: The twist ß and the twisting curvature krr0 of the radial
beam are related to the corresponding quantities at the slab middle surface as:

ß
dw

krr0 —
dß _

d2w dw
_ 1 uJrJ^'r2!^^^'0rd09 "w dr r

and the twisting moment Tr of the radial beam is given by

Tr OrJrkrr0 \GrJrk8r0,

(53)

(54)
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in which Gr and Jr denote respectively the modulus of rigidity and the
St. Venant torsional constant for the radial beam. The twisting moment due

to radial beam equivalent to the slab twisting moment Msr0 may be denoted
as Mrr0. Since Tr represents twisting in one direction only, whereas both Mr0
and M0r for the slab are represented by Msr0,

M^=\Tr ^kU,. (55)

The total forces per unit length due to both slab and radial beams taken
together are denoted as {Nb}, given by

{Nb} [DM) [Db] [Bl]{8b}, (56)

Gr0t 0

in which [D5]
0 /Cr01* GrJr \

\ 12 ^±Rb0,l
(57)

The expression for the class B eiement matrix in Eq. (26) is then modified as:

[Kb] RbArA®[Btr[Db][Bl]. (58)

If the strains at the slab middle surface are known at a radial beam location,

the forces at the centroid of the beam may be obtained using Eqs. (47)
and (54).

3. Numerical Examples

The discrete energy method presented herein has been applied to three
numerical examples and the results are compared with available theoretical
and experimental values. Solutions for several mesh patterns for the same
example, generally used to establish convergence, are not presented here; but
it has been shown earlier [7] that the method generally gives upperbound
values of deflections which converge towards the true Solutions with finer
discretizations.

Example 1: The first example is a 60 ft. span composite I-beam bridge, the
cross-sectional properties of which are shown in Fig. 6. The Solutions for this
straight bridge are obtained by using infinite radius (R= 1010 ft.) in the
present method. Moment coefficients Cm, given by M CmPa, where M is the
longitudinal moment in a composite beam, P is the applied load and "a" is
the span, are compared with two sets of available Solution and shown in Table 2.

The first set of results was obtained by Vitols et al. [8] by the exact Solution
of differential equations for a refined orthotropic theory in which the beam
eccentricity is taken into account but the beam stiffnesses are uniformly
spread over the slab. The second set is a more realistic Solution by Gustafson
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Fig. 6. Composite I-beam bridge. Example 1.

Table 2. Comparison of Moment Coefficients, Cm, for 60 ft. Span Composite I-Beam Bridge.
Example 1

Basis of Load at Moment Beam
comparison midspan of at x A B C D E

Beam A a/4 0.0709 0.0625 0.0067 -0.0091 -0.0060
aß 0.1754 0.0870 0.0089 -0.0128 -0.0085

Vitols et al. [8] Beam B a/4:
aß

0.0364
0.0543

0.0463
0.1324

0.0354
0.0540

0.0102
0.0139

-0.0033
-0.0046

Beam C a/4 0.0072 0.0353 0.0400
aß 0.0097 0.0539 0.1228

Beam A

Beam B

Beam C

a/4 0.0875 0.0400 0.0066 -0.0042 -0.0047

Finite element
[5]
(10 x 16 mesh)

aß
a/4

0.1951
0.0405

0.0592
0.0412

0.0085
0.0350

-0.0058
0.0122

-0.0066
-0.0037

aß
a/4

0.0598
0.0070

0.1255
0.0352

0.0536
0.0408

0.0163 -0.0051

aß 0.0090 0.0540 0.1238

Beam A

Beam B

a/4: 0.0880 0.0403 0.0072 -0.0031 -0.0040

Discrete energy
(R IO10 ft)
(16x8 mesh)

aß
a/4:
aß

0.1961

0.0405
0.0611

0.0607
0.0418
0.1255

0.0093
0.0351
0.0552

-0.0045
0.0122
0.0169

-0.0051
-0.0035
-0.0044

Beam C a/4 0.0074 0.0354 0.0412
aß 0.0096 0.0556 0.1242

and Wright [5] using finite elements with a 10 x 16 mesh (10 radially and 16

circumferentially) for the bridge. In the present method the slab and beam
forces are obtained separately and the stresses at the bottom of the beams
are computed directly. In order to obtain the moment coefficients for
comparison, the moment required to produce the computed stress at the bottom
of the beam for a composite beam with 6 ft. wide slab is evaluated first. Table 2

shows that the values obtained by the discrete energy method compare very
favourably with the finite element Solutions and are everywhere on the higher
side as expected. A 16 X 8 mesh (16 radially and 8 circumferentially) has been
used in the present analysis for the füll bridge.
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Example 2: The second example is a perspex model of a curved slab-beam

system experimentally investigated by Agrawal [9]. The details of the model

are shown in Fig. 7. The straight edges of the model have simply supported
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Fig. 7. Curved slab beam system. Example 2.

conditions while the curved edges are free. Experimental values of deflections
and strains are available for two set-ups: a) slab with longitudinal beams and
no radial beams, and b) slab with both longitudinal and radial beams. In the
present analysis a 10x10 mesh is used for discretizing the entire model.

Tangential strains at mid-span at top of slab on the outer radius and at the
bottom of the second and the outermost beams are compared with
experimental values in Table 3. The values are for 10 kg load applied at the load
positions shown in Fig. 7. When the load is at the inner radius, the
experimentally recorded values of strain at the outer radius are very small and
cannot therefore be taken for a reliable comparison. Where the strain values
are significant, the theoretical and experimental values agree very well, the
percentage difference being less than 5 per cent in most cases. The theoretical
values are again on the higher side.

Example 3: The third example is another perspex model of a two span
curved girder bridge with two longitudinal girders and a system of radial
beams shown in Fig. 8. This model has been experimentally investigated by
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Table 3. Comparison of Experimental and Theoretical Strains for Example 2 (see Fig. 7

Load

Tangential strain at midspan, in micro-strain

without radial beams with radial beams
Position at

Experiment
Difference

Experiment
Difference

Theory as a
percentage

Theory as a
percentage

B2 bottom 930 938 0.89 870 907 4.25
A #4 top -10 -117 — -11 -143 —

jB4 bottom 94 211 — 140 250 —
B2 bottom 1062 1089 2.54 760 800 5.26

B 2?4 top -335 -345 2.98 -330 -371 12.42
Bi bottom 594 608 2.35 732 787 7.51

B2 bottom 795 807 1.51 732 742 1.36
C B^ top -470 -479 1.91 -468 -495 5.77

BA bottom 906 943 4.08 1062 1095 3.11

B2 bottom 527 563 6.83 634 684 7.88
D #4 top -590 -622 5.43 -592 -617 4.22

Z?4 bottom 1325 1386 4.60 1380 1421 2.97

B2 bottom 284 321 13.03 513 511 -0.39
E -B4 top -765 -823 7.58 -810 -822 1.48

B± bottom 2160 2258 4.54 2060 2040 -0.97
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2805Z* 05*
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Fig. 8. Two span curved girder bridge. Example 3.
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Fig. 9. Stresses at lower flange of outer girder. Example 3.

Culver and Christiano [4] and experimental values of deflections and stresses

are available. The comparison of average tangential stresses at the bottom of
the outer girder due to a 15 lb. load at inner and outer girders at various
positions along the span is shown in Fig. 9. Values of elastic constants and
sectional properties used in the present analysis are obtained as far as possible
from reference [4]. The comparison shows that the two sets of values agree
well for load on the inner girder. For load on the outer girder, the stresses

are underestimated by the present analysis for the two-span bridge. A 8x 16

mesh (8 radially and 16 circumferentially) has been used for the entire bridge.
A general Computer program has been developed on the CDC 3600

Computer system for analysis of structures by the present method. A block elimina-
tion scheme is used for the Solution of the overall matrix equation assembled
in half-band form.

4. Conclusions

A discrete energy formulation has been developed herein for the analysis
of polar orthotropic sector plates with eccentric stiffeners placed radially and
circumferentially. As seen from the results of the numerical examples, the
method is suitable for curved slab-beam Systems with arbitrary boundary
conditions and loading including single and multi-span curved girder bridges.
For slabs with closely and uniformly spaced radial beams of identical sections,
the orthotropic plate formulation presented here may be used with a conse-

quent reduction in the amount of numerical computations and the number
of unknowns in the matrix equation. For radial beams with arbitrary spacing
or sections, matrix formulations similar to that for the longitudinal beams

can be used.

Computations required in the present method are less than in the finite
element method since integrations in the element stiffness matrix formulation,
which generally have to be evaluated numerically for curved finite elements,
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are avoided. However, the method lacks the versatility of the finite element
formulation with triangulär elements, as it cannot be readily applied to slabs
with irregulär boundaries. In such cases, stepped boundaries have to be used
to fit into the regulär pattern. The formulation can also be modified for
arbitrary mesh spacing so that a graded mesh can be used where required.
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Summary

A discrete energy formulation is presented for polar orthotropic curved
slabs with eccentric radial and curved longitudinal beams. A modified finite
difference scheine is used to discretize the slab separately into two sets of
elements: Elements in extension and bending and elements in shear and
twisting. The eccentric longitudinal beams are treated similarly. For closely
spaced radial beams, an orthotropic plate formulation is used for the slab
and radial beams taken together with due consideration of the beam eccentricity.

Results for three numerical examples are presented.



38 D. N. BURAGOHAIN - S. B. AGRAWAL

Resume

On presente une formulation d'energie discrete pour des plaques courbes

polaires et orthotropes avec poutres radiales et peripheriques disposees excen-
triquement. On se sert d'une methode modifiee de differences finies en vue de

separer la structure des plaques en deux genres d'elements: elements sous
tension et flexion, et elements sous cisaillement et torsion. Les poutres
longitudinales excentriques sont traitees de maniere similaire. Pour des poutres
radiales disposees etroitement entre elles on se sert d'une formulation ortho-
trope pour l'ensemble des plaques et poutres radiales, en tenant compte de

l'excentricite des poutres. Les resultats sont discutes par trois exemples
numeriques.

Zusammenfassung

Es wird eine diskrete Energieformulierung für polare orthotrope gekrümmte
Platten mit exzentrisch radialen und peripheren Balken vorgelegt. Man bedient
sich einer modifizierten finiten Differenzenmethode, um die Plattenstruktur in
zwei Arten von Elementen zu trennen: Elemente unter Dehnung und Biegung,
und Elemente unter Schub und Drehung. Die exzentrischen Längsträger werden

ähnlich behandelt. Für eng aneinander liegende radiale Balken wird eine

orthotrope Plattenformulierung für die Platten und die Radialbalken zusammen

benutzt, unter Berücksichtigung der Balken-Exzentrizität. An drei
Zahlenbeispielen werden die Ergebnisse erläutert.
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