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Moment-Curvature-Time-Relations for Reinforced Concrete Beams
Relations entre moment, flexion et temps sur les poutres en béton armé

Beziehung zwischen Moment, Biegung und Zeit an Stahlbetonbalken

R. F. WARNER J. H. LAMBERT
Associate Professor of Civil Engineering, Graduate Student, School of Civil Engi-
The University of New South Wales neering, The University of New South
Wales

1. Introduction

Analytic studies have shown that the time-varying behaviour of a rein-
forced concrete section subjected to sustained bending moment is nonlinear
in nature, even when the applied moment is small and the concrete itself is
acting as a linear material [6, 8]. Any general method of structural analysis
for concrete structures under varying sustained loading must take into account
this creep-induced non-linear behaviour, as well as the non-linearities inherent
in the instantaneous response to short-term loading [3].

As pointed out by FErRrY BoRGES [3], the development of accurate tech-
niques of non-linear analysis is of importance, not simply for use in the design
of special structures, but also, and perhaps more important, to provide a
means of calibrating and evaluating simplified calculation procedures.

In the case of short-term, non-linear response to ‘‘instantaneous’’ loadings,
consideration must be given to overall unloading of the structure during an
unloading cycle and also to unloading of localized regions during a loading
cycle. In order to treat such effects properly, an incremental analysis is required
in which a sequence of loading stages is considered.

For the more general case of long-term response to time-varying load
history, the non-linear incremental analysis becomes, in effect, a simulation
of structural behaviour, whereby the state of the structural system, as repre-
sented by stresses and strains in selected sections and by deformations and
deflections at selected points, is evaluated for a sequence of load levels and
time instants. Simulation of structural behaviour clearly becomes a practical
possibility only with the use of a digital computer.
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Before the computer simulation of the general time-varying behaviour of
a reinforced concrete frame structure can be undertaken, methods must be
developed for generating moment-curvature-time relations for flexural members
and moment-thrust-curvature-time relations for columns.

In the present paper a method is outlined for computing the curvature
history of a reinforced concrete section which is subjected to any prescribed
moment history. The method is an extension of a previously reported proce-
dure for computing the biaxial moment-thrust-curvature relations of a column
section under short-term loading [9]. The analysis has been generalized to
take into account the effects of creep and shrinkage in the concrete. In order
to simplify the presentation, the method is here described for the special case
of a rectangular section in pure uniaxial bending. However, extension to a
cross section of irregular shape under time-varying thrust and skew bending
follows directly from the treatment of short-term loading in Ref. [9].

2. General Description of Method

The time-varying moment applied to the cross section is approximated by
a finite sequence of moment values M (1), M (2),.. M (n),.. M (N), being
taken to act during a sequence of time intervals 4¢(1),4¢(2),..4¢t(n),..4t(N).
The time intervals 4¢(n) are small enough to ensure that the moment incre-
ments

AM(n)=M@m)—M(n—1) (1)

are also small in magnitude. See Fig. 1. If the moment history contains a large
instantaneous change in moment, for example as at time zero when the initial
loading is applied, it is necessary to use a sequence of moment increments, in
order to preserve the incremental nature of the analysis.
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Fig. 1. Discretization of moment history. Fig. 2. Partitioning of concrete section.
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No restriction is placed on the values M (n). Should a moment be stipulated
which is greater than the carrying capacity of the section at any particular
time, then failure is recorded and the computation is terminated.

To simplify equilibrium calculations, the section is replaced by a finite
number of elemental areas of concrete and steel. The N, steel elements are
actual reinforcing bars in the section or, when more convenient, groups of bars.
The procedure of partitioning the concrete section has been described pre-
viously [9], and is illustrated in Fig. 2. For the special case of uniaxial bending
it is appropriate to take the number of element columns, &,, as one. However,
the two-way partitioning in Fig. 2 allows an immediate extension of the
analysis to treat non-rectangular sections and skew bending.

The total strain in a typical concrete element in the ¢-th row and j-th
column is assumed to be composed of an instantaneous, a creep and a shrinkage
component. The time-varying stress history of each element is also discretized
by assuming that changes in stress level occur only at the time instants ¢ (n)
which define the end of the time intervals. The stress o, (n) acting during
time interval 4¢(n) is thus taken to be constant.

Computations are carried out in cycles; each cycle corresponds to the
passage of a time interval. Time interval 4¢(n) begins at time ¢(n—1) after
the moment increment 4 M (n) has been applied. The state of stress and
strain in each concrete and steel element at ¢ (n — 1) is known from the previous
computation cycle. All concrete elements are allowed to creep and shrink
freely during 4¢(n). Resulting increments in creep and shrinkage strains in
all concrete elements are calculated using an appropriate constitutive relation.

As a result of the assumed free straining of the concrete elements, strain
incompatibilities develop throughout the section between adjacent concrete
elements and also between steel elements and the surrounding concrete.
Furthermore, at the end of the time increment, i.e. just before the instant
t(n), the moment increment 4 M (rn+1) is applied to the section. The com-
putation cycle is therefore completed by adjusting instantaneous strains and
associated stresses in the elemental areas so that, at time ¢ (n),

a) compatibility of deformations over the entire section is re-established, and

b) all equilibrium requirements are fulfilled.

The stresses and strains thus obtained provide the initial conditions required
for the next cycle of computations.

This calculation procedure is fairly standard, having been used in creep
studies of both metal and concrete structures. The particular method used
here resembles the ‘“‘creep method’’ proposed by BRESLER [1]. However, a
rather general formulation has been attempted, which is potentially applicable
to sections of arbitrary shape subjected to arbitrarily varying moment histories
ranging from zero up to the section carrying capacity.
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3. Stress and Strain in Plain Concrete

A non-dimensionalized stress,

8= (2)
Uu
and a normalized strain,
BE== (3)
e‘C

are introduced to represent stresses and strains in the concrete elements. The
reference stress o, is the strength of the concrete in the member at a specified
time, for example at 28 days after casting, and ¢, is the instantaneous strain
associated with o,. Compressive stresses and strains are taken as positive.
The total concrete strain, composed of instantaneous, creep and shrinkage
components, is
€ =¢€ +e+¢€° (4a)
or in normalized form,
E=EKE+E+E>s. (4)

The following equations are here used to represent the relation between
instantaneous strain and stress for monotonicylly increasing strain [9)].

Ei<0: S =0. (5a)
0<Ei<1.0: S =y, Bi+(3=2y,) B2+ (y, — 2) Ei3. (5b)
) 1-2Ei+ B2
1.0 Bt Ly, S=1- . 5
=TT 1—2y,+73 .
Ei>y,: S=0. (5d)

The parameters y, and y, define the shape of the loading and unloading por-
tions of the curve, respectively. See Fig. 3a. The initial slope, y;, is fixed by
the initial elastic modulus of concrete X,

!
_ Ecec

71 (6)

Ty

This parameter is also used to define the stress-strain relation for non-
monotonic changes in instantaneous strain. The term max (£?) is introduced
to denote the maximum instantaneous strain which has occurred in the parti-
cular concrete element during all previous loading stages and time instants.
If the current value £ is larger than max (£7) then Eqs. (5) apply; otherwise,
the stress is determined as follows,

0< E*<max (E%): S = max (8) — y, [max (E?) — E?]. (7)
=0
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Fig. 3. Relation between stress and instantaneous ]
strain. E'
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Eq. (7) gives non-zero values of stress for max (£%) <y,. The term max (S) is
the maximum recorded stress and is related to max (E?) by Eqgs. (5). See
Fig. 3b.

The stress § corresponding to a current strain E* and a given pre-history
of strain is defined jointly by Eqgs. (5) and (7), which can be expressed as

S = FC{E?, max (E%)}. (8a)

This computation is carried out by means of an elementary sub-program. The
presence of max (£%) in Eq. (8a) emphasizes the incremental, step-wise nature
of the analysis. For the calculation of stress in the (¢,7)th concrete element
for the n-th computation cycle, Eq. (8a) can be written more precisely as

S;;(n) = FO{E% (n), max [Hi; (m)]}, (8)

1<m<n

where the indicator m, m <n, refers to previous cycles.

From Eq. (7) it can be seen that the instantaneous strain is composed of a
linear-elastic, recoverable component E¢, and a non-linear, non recoverable
plastic component £?,

Ei=E°+ Er. (9)

Considering briefly the stress-strain relation for the reinforcing steel, we
note that total steel strain consists of an elastic and a plastic component. The
stress in the k-th steel element for the n-th computation cycle can be expressed
in a form similar to Eq. (8),
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Sy (n) = F S{E}, (n), max [E} (n)]}. (10)
I1<m<n

The yield stress o, and the yield strain ¢, provide convenient reference values
for the definition of non-dimensional stress S; and normalized strain % .
Creep strains in the concrete are accounted for by means of a constitutive
relation which takes into account non-linear effects at high stress, as well as
the characteristic properties of partial ageing and partial recovery. Details of
the particular model of concrete creep here used are given in Ref. [10].
The creep strain at time ¢, €°(t), is assumed to be made up of three compo-
nents:
¢?(t) is linear, ageing and non-recoverable; v () is linear, non-ageing and
recoverable; and € (t) is non-linear. The rate-of-change of creep strain is thus

€°(t) = €% (t)+ € (1) + €™ (2). (11)
An expression for €?(¢) follows from the Dischinger creep theory (2),
€A (t) = e () $2(1), (12)

in which e¢(t) is the linear-elastic component of the instantaneous strain and

qu (¢) is a creep function, yet to be defined (see Eq. (17)), but which is similar
in all major aspects to the Dischinger creep function. It will be noted that
e? (t) is directly related to stress level through e° (t).

The linear viscoelastic creep rate can be expressed as (4)

() = [ (1) 4% — " (1) ]T, - (13)

in which ¢% and T, are constant material parameters. Depending on the
relative magnitudes of the two bracketed quantities in Eq. (13), €”(t) may be
positive (creep) or negative (creep recovery).

Both €?(t) and €”(t) are linear with respect to stress. The additional non-
linear component is assumed to be non-zero only when the instantaneous
stress o (t) exceeds some threshold value o,. A creep test conducted at a con-
stant stress ¢ which is less than o, yields a record of experimental values for
the total linear component,

=0, € (t) = €2 (t) + € (1). (14)

The creep functions ¢ (£) and ¢2(t) are defined in terms of the experimentally
obtained values of €°(f) in Eq. (14) as follows,
t

(15)

bx  =¢(0) =——, (16)
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4 (t) = M, (17)

i = ¢?(0) = : : (18)

The parameter ¢4 is defined as

br =0 (19)
so that the following relations apply,

b = agbs 2y = 1.0, (20)

¢ =y by, 2, =10, (21)

og+o, = 1.0. (22)

For the creep test at constant stress, the assumed viscoelastic component is
€7 (t) = ey (1 —et1Ts). (23)

If numerical values can be given to ¢% and 7}, then the creep function 7 (t)
can be evaluated from the experimentally determined ¢ (),

b (t) = ¢ (1) —p% (1 —e ™). (24)

We have yet to consider non-linear creep at stresses in excess of o,. It is
convenient to relate €”(t) back to the total linear component by introducing
a stress-dependent multiplying factor, G (o),

€™ (t) = [e?(t) + € ()] G (o). (25)
Setting H (¢) =1+ G (o), we obtain for the total creep rate
€ (t) = [e(t)+€¥ ()] H (o). - (26)

The multiplier G (o) is taken to be a power function of stress. A convenient
and appropriate non-dimensional expression for H (o) is then

<o, H (o) = 1.0, (27a)

— G0

Op
o, <0 =0y, H(o-)=1.0+ocm|:c c] . (27Db)
Oy —0¢
The material parameters oy, «,,, «, and T,, together with the creep func-
tion ¢ (t), have to be evaluated from test data, Suggested values of the para-
meters are [9],

g ~ 0.3, o, A~ 0.7,
30=T, =60 (For time ¢t measured in days),
10, =20,

3Z5a, < 4.

3
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A typical creep function ¢ (¢), obtained from test data (7), is shown in Fig. 4.
For convenience the function

fy=2W<10 (28)

has been plotted.

‘]0 —
08
06
04l Viscoelastic component
onr a,=07, T, =30

T

0-2 7~
7
Time days
1 { 1 ! ] 1 1 |
40 80 120 150 200 240 280 340

Fig. 4. Creep function used in calculations.

The above creep equations can be expressed in difference form using normal-
ized strains. For the time interval 4¢(n) the increment in creep strain in the
(2 —j)th concrete element, which is subjected to stress §;; (n—1), is

4B (n) = [4 B (n) +4 By ()] H[S,y (n— 1)), (29)

where A B (n) = B (n—1) A4 (n), (30)
A43(n) = Bl ()] [t (n—1)], (31)

4 By (n) = [Byy(n—1) $5 — By (n—1)] 14, (32)

Sy (n—1)< 8, : H[S;(n—1)] =1.0, ' (33a)
8,<8;(n—1)<1.0:  H[S;m—1)]=1.0+a, [Sif(’ll:g)c—sc]“". (33D)

Shrinkage strains, assumed to occur independently of stress level, can be
expressed as

eS(t) = e g (1), (34)

in which €4 is the end value and g (t) is an experimentally obtained pure-time
function which increases monotonically from zero to unity. Eq. (34) is rewritten
as
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4 E3;(n) = B dg (), (35)
dgn) =glt(n)]—-gltn-1)]. (36)

4. Computation Cycle

To simplify the computation cycle, it is convenient to choose the sequence
of time intervals 4¢(n) in such a manner that all increments 4 ¢ (z) in the
creep function are of the same magnitude. Thus for a total of IV time steps,

A¢(n)=ﬁ¢=ﬁ, (37)
¢(n) =ndé. (38)

The appropriate time instants t(n) are obtained from an experimentally
obtained creep curve, such as Fig. 4.

The associated values 4 ¢¢ (n) vary in magnitude, but can be obtained from
Eq. (24). Corresponding increments in the shrinkage function g (¢), i.e. 4 ¢ (n)
in Eq. (36), are obtained from experimental curves. Eqs. (29) and (35) can
thus be used to determine the strain increments 4 E¢; (n) and E$;(n) in each
concrete element during time interval 4¢(n).

At the end of the time interval 4¢(n) the total creep and shrinkage strains
in each element are obtained as

Eg;(n) = Ef;(n—1)+4 Ef; (n), (39)
E3;(n) = Efj (n—1)+4 E$; (n). (40)

It is assumed that total concrete strains at time ¢ (n) are linearly distributed
over the section, and also that the strain in each steel element is equal to that
in the surrounding concrete. In the case of uniaxial bending, the strain dis-
tribution in the section is completely defined by the upper and lower extreme
fibre strains E,(n) and K, (n). If these values are known or assumed, the strain
in the (7,5)th concrete element is given as

Eij(n) = By(n)—[Ey(n)— By (n)] o, (41)

in which «,; defines the depth of the element below the top fibre.
x; 1+0.5

2t =
a N O

a

oy, =

(42)

The instantaneous strain component, obtained by subtracting the creep and
shrinkage components, is

Eﬁ; (n) = E;;(n)— E%; (n)— EE; (n) (43)

and the associated stress, S;; (n), is given by Eq. (8).
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Thé total strain in the k-th steel element is also obtained from the extreme
fibre strains,

EMM=%{%@W4Eam~EAMha (44)

and this allows the stress S, (n) in this element to be obtained by means of
Eq. (10). The depth of the k-th steel element is given by «,,,

%k = 4 (45)
and 7 is the ratio of reference strains
=" (46)

With all stresses known, the total force in the section can be obtained by
summing the elemental forces acting in all elemental areas. Defining the non-
dimensional force term,

= P
P = (47)
o,ba
one obtains for the resultant force in the section,
N ;yZSw +:U“m—ZSIc n) :U“N ZSC (48)
8
Here, p is the ratio of steel and concrete areas,
A,
m is the ratio of reference stresses,
=%
m = o (50)
and N, is the total number of concrete elements,
N, =N,N,. (51)

The third summation term in Eq. (48) has been introduced to account for the
concrete area which has been replaced by the steel elements. The term S (n)
is the concrete stress at the level of the k-th steel element.

The resultant moment acting in the section is found by taking moments
of the elemental forces about the horizontal y axis shown in Fig. 2. With

M

M=—"
o,ba?’
this gives

— 1
M =2 2.8;(n) oy +Hm—‘ZSk(n)°‘k po 20 5% (1) o (53)
Ne 77 N
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At any time instant ¢ (n), the correct values of E,(n) and K, (n) are such
that the following equilibrium requirements are fulfilled:

a) The force P is zero;
b) The moment M is equal to the prescribed moment, M (n+ 1),

Mmn+1)=Mmn)+4AM(n+1). (54)

For practical calculation purposes, strain values are accepted if they fulfil the
equilibrium requirements to within specified tolerances ¢, and t,,, viz

| P|<t,, (55)
| M — M (n+1)|<ty. (56)

A nested search technique has been developed, which consists of an outer
procedure to find E,(n) and an inner procedure to find E,(n). The inner
procedure, called SEEKE 1, establishes a value of E, (n) which, together with
any value of E,(n) prescribed by the other procedure, satisfies Eq. (55).
Basically, SEEKE 1 consists of two phases. In the first phase, bounds on E,

are found, E¥V and Ef, for which the corresponding value of P are positive
and negative, respectively. These bounds define a search region within which
the required value lies. In the second phase, a halving process is used, whereby
the mid point of the search region,

EY =3 [EY + EY]

is tested. If this value satisfies Kq. (55) the search is terminated; otherwise,
the search region is halved and the process continues. Figs. 5 and 6 show
schematically the two phases of SEEKE 1.

The outer search procedure, SEEKE 0, establishes a value of E,(n) which
fulfills Eq. (56). However, for every trial value of E,, SEEKEO0 calls on
SEEKE 1 to carry out a subsidiary search for an E, value so that Eq. (55) is
always fulfilled. The structure of SEEKE 0 is quite similar to that of SEEKE 1.
Upper and lower bounds are first established, £ and E§, such that the
computed M is greater than and less than M (n+ 1), respectively. The halving
procedure then brings convergence to a set of values which together satisfy
Eqgs. (65) and (56).

Although the nested search procedure is certainly non optimal, it is
extremely simple in structure and has proved to be surprisingly efficient and
reliable, not only for the case uniaxial bending but also, in an extended form,
for calculations involving biaxial bending and compression.

With the strain distribution determined, it is a simple matter to obtain
curvature. A reference curvature is introduced,
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Eo fixed
eY E} found

I E,=%[E}+E}) |——<——

| |

I; Colculate P l

E,=E, + AE E,=E, - AE Yes @
| !

Calculate P Calculate P

Yes No Y

E) =E, EY =, + AE
E:' = E,-AE E% = E, —<——[ Search Complete J
Fig. 5. Seeke 1. Bounds on E,. Fig. 6. Seeke 1. Halving procedure.

and the non-dimensional curvature K is calculated simply as

K
K

ref

K = = Ey(n)—E,(n).

The computation cycle described above is applicable provided the moment
increments 4 M (n) are reasonably small. It remains to take care of instanta-
neous loadings and unloadings, including the first loading at time zero when
the initial conditions are established for the first computational cycle.

When a significant jump in moment occurs, the extreme compressive fibre
strain # is incremented repeatedly by a small value 4 E. Thus, for the initial
loading, a sequence of strains 4 E, 24 E, ... is considered. An appropriate
value of E, is in each case determined, by means of SEEKE 1, such that
Eq. (55) is fulfilled, and the corresponding moment M is calculated by means
of Eq. (53). The strain E, is thus incremented until M becomes larger than the
prescribed value. When this occurs, upper and lower bounds on E, have been
established and the halving process in SEEKE 0 can be used to fulfill Eq. (56).

In the case of a sudden unloading, a similar calculation procedure is adopted,
whereby E, is decremented incrementally.

5. Numerical Results

In order to test the adequacy of the computation procedure prior to its use
in the analysis of time varying structural behaviour, calculations were made
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for a variety of different cross sections, material parameter values and loading
histories. The calculations provided a means for checking the reliability of
the search procedures and also gave information on the sensitivity of numerical
results to variations in the values of the parameters which are used to define
the deformation characteristics (including creep and shrinkage) of the concrete.

Results of several typical calculations are presented in Figs. 8 to 15. Except
where otherwise noted, calculations were made for the section details given
in Fig. 7 and for the parameter values given in Table 1. The curve used for
the creep function ¢ (¢) is that shown in Fig. 4. The calculations were made
with an IBM360/50 installation. Execution time for a complete variable
moment history, followed by an incremental loading to failure, was usually
in the order of 30 seconds.

A characteristic of the computed results is the slightly non-smooth nature
of almost all resulting curves. This can be seen in Fig. 11 for stress variation

b e b —]

rO‘IO

p' =02 ® .—-—--T—T'
0-8a
N
p =02 ° o —] l

Lo1g
Singly Reinforced Doubly Reinforced

p =02 e o 0 o

Q
(7o)
o
I (——

Fig. 7. Cross sections for numerical calculations.

Table 1. Values for Numerical Computations

Stress-strain Relation: y1 = 2.0

yo = 3.0
Creep Law: g = 1.0, 0.7, 0.5

oUm = 20

oxn — 4

T, = 30, 60

oge = 0.4 0y

by = 3.0

E, = 0,0.25
Section Details: p = 0.02, 0.04

p = 0.02

pt = 0, 0.02
Calculation Details: N, = 20

Ny = 1

Ns = 4

tp = 0.01

tm = 0.01
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over the cross-section, in Fig. 10 for variation of stress with time, and in Fig. 9
for time variation of curvature. The non-smoothness stems of course from the
finite computation procedure. Smoothing of the results can nevertheless be
achieved, at the expense of additional computation time, by using a finer
partitioning grid for the section, smaller time intervals, and, most important
of all, finer tolerances ¢, and 1.

M
02 r
2 YV a -
& 7 /B p =002
4 ./ pl =0
L / 6’ L
£ M =008
/ ay =07
01 / E3 =00
! Ao
,:/Q / /\"’
s Fig. 8. Curvature histories for three
0 1 L L | | ' loading cases.
10 20 30

In Fig. 8 curvature histories are shown for three different moment histories
applied to a singly reinforced section. Curve A shows the moment-curvature
relation for short-term, monotonically increasing loading. Curve Bshows moment
versus curvature for the case where the moment is raised instantaneously to
the value M =0.08 (about 40 percent of the ultimate moment) and held there
indefinitely, with a final loading to failure at time infinity. In the third case,
represented by curve O, the moment is raised instantaneously to M =0.08
and held there for 7 days, when it is reduced to M =0.04 and held there inde-
finitely, with a final loading to failure at time infinity. The curves are termi-
nated arbitrarily at a curvature value of K=3.0. It is seen that the effet of
prior history of loading on moment capacity, and also on the latter portion
of the moment-curvature relation, is almost imperceptible.

Fig. 9 shows the increase in curvature with time for a singly reinforced and

a doubly reinforced section, each subjected to a moment of M =0.08 (about
40 percent of ultimate moment). As is to be expected, the compression rein-
forcement plays a decisive role in restricting the development of curvature.
Fig. 9 also shows that concrete shrinkage plays a significant part in the time-
increase in curvature in both the singly reinforced and the doubly reinforced
section.

It is significant that the curvature in the doubly reinforced section for non-
zero shrinkage reaches a maximum value and then remains constant over the
final few time intervals. The reason for this can be seen in Fig. 10, where the
attenuation of maximum concrete compressive stress in the section is plotted.
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Fig. 9. Curvature histories.
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Due to the restraint provided by the compression reinforcement, coupled with
both creep and shrinkage of the concrete, the concrete compressive stresses
have completely disappeared and the applied moment is being resisted entirely
by a compressive steel force and a tensile steel force. In fact, tensile stresses
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would develop in the upper fibres of this section. The development of tensile
stress fields in the “compression’’ zone of doubly reinforced beams has been
reported previously [6]. Fig. 10 also shows that the concrete compressive stress
cannot disappear completely without the presence of concrete shrinkage.
Although shrinkage strains result in an overall reduction in concrete com-
pressive stress in the doubly reinforced section, they result in slightly higher
stresses, relative to the no-shrinkage case, in the singly reinforced section.
This is explained by the redistribution of stresses in the section with time, as
shown in Fig. 11 for the singly reinforced section and in Fig. 12 for the doubly
reinforced section. The neutral axes of stress and strain coincide for times

! ! P | 1 1

1
0-4 08 E 1-0 20 30 40 S

| 1 ! 1

- -
02 04 E 01 02 03 S

Fig. 12. Stresses and strains in concrete. Doubly reinforced section.
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t>t, only when shrinkage strains are zero. For non-zero shrinkage the stress
axis rises above the strain axis, and the effective reduction in the area of the
compressive stress block requires in the singly reinforced section some increase
in stress over that calculated for zero shrinkage.

Shrinkage strains in the doubly reinforced section also force the neutral
axis of stress to rise above that of strain. See Fig. 12. However, the reduction
of total concrete compressive stress, due to unloading onto the compression
steel, is the over-riding effect here.

A question of prime importance in any analysis of time-varying structural
behaviour is the sensitivity of the results to the type of creep law assumed
and, further, to the numerical values used for the parameters of the creep law.

It is clear tht ¢, and K% are measures of total creep and shrinkage and
that they must have an important influence on final deformations in the
section. It is also clear that the shape of the creep and shrinkage curves, i.e.
f(t) and g (¢), will determine, to a large extent, the rate of increase of curvature
in the case of constant sustained loading.

The importance of secondary parameters such as oy, «,,, «, and 7, is not
so obvious. If concrete stress does not change greatly with time, for example
as in a singly reinforced section under constant sustained moment, it is
reasonable to expect that creep calculations will not depend greatly on «; and
T,, since these parameters define the ageing and recovery properties of the
concrete. Situations most sensitive to variations in these parameters are likely
to be those in which large changes occur in the stress level with time.

Fig. 13 shows the attenuation of concrete compressive stress in a doubly
reinforced section calculated for values of «; ranging from 0.5 to 1.0. The
value «;=1.0 corresponds, in the linear range, to Dischinger creep. For the
lower value of «;=0.5, the time constant 7, must be increased, in order to
allow some non-recoverable creep to occur during the first few days of loading,

Max.Concrete
Stress, S

o NS
a,=10 /&s,\ N
d N
PSS IR T N TN S WUV SN N T N\. PR .
0 1 8 12 116 2;3 Fig. 13. Effect of parameter «xg-stresses.

Time Step
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i.e. to ensure that ¢°(f)> € (¢). For these calculations 7] was increased from
30 to 60. Creep behaviour shown in Fig. 13 is essentially linear, since the
extreme concrete stress exceeds the threshold level of S,=0.4 only during the
first time interval, i.e. during portion of the first day of loading. Results of
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the calculations shown in Fig. 13 are encouraging, in that changes in «; have
not resulted in very significant changes in the stress history. Corresponding
curvature histories are shown in Fig. 14.

The very strong tendency for concrete to unload onto surrounding steel
reinforcement lessens the importance of non-linear creep in the case of pure
flexure. In Fig. 15a sustained overload moment of M =0.18 (nearly 90 percent
of ultimate moment) produced an initial concrete stress of 0.53. This has
attenuated to the threshold level of 0.4 in five time intervals, so that, even at
high overload, non-linear creep has occurred only during the first week of
loading. Non-linear creep increases the rate of transfer of stress from concrete
to steel and, to this extent, tends to be self destroying. Non-linear creep may
nevertheless become of prime importance in sections of slender columns. Here,
increase in curvature with time results in large increases in deflection and in
the geometric non-linearities. This can, in turn, bring about creep buckling.

6. Concluding Remarks

The procedure described in this paper can be used to calculate the curva-
ture history of a reinforced concrete section for any prescribed moment history.
This allows the time-varying behaviour of a statically determinate member
to be analysed for any variable load history [5]. The procedure also provides
a basis for the analysis of time-varying behaviour of indeterminate members,
and is at present being used for this purpose.

The procedure can be extended without difficulty to apply to members
of irregular section subjected to skew bending.

Although one specific constitutive relation for concrete has been used
throughout the present study, changes both in the instantaneous stress-strain
relation and in the creep law can be made without affecting in any way the
calculation procedure. It is only necessary that the creep law be expressed in
difference formulation.

Possible variations with time in concrete material properties such as con-
crete strength and stiffness have not been considered. Although such varia-
tions can be accounted for without difficulty, they do not usually have a
significant effect on structural behaviour. Indeed, some of the effects included
in the present analysis have proved to be of minor importance. This was, of
course, not unexpected: a prime motivation in the development of such a
complex procedure is to provide a standard of comparison for simplified
methods of analysis [11].
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7. List of Symbols

depth of section

total area of steel in section
width of section

initial elastic modulus of concrete

4 (,n) ; normalized concrete strain in (¢,7)th element at time ¢ (n)

€c
creep component of K (n)
ageing component of Kf; (n)
linear elastic component of EY; (n)
E¢; (n)+ EY; (n); instantaneous component of K;; (n)
plastic component of E; (n)
viscoelastic component of Ef; (n)
shrinkage component of E,; (n)
ex (1)
€y
normalized concrete strain in extreme compression fibre
normalized concrete strain in extreme tension fibre
pure time function defining the shape of the creep function
pure time function defining the shape of the shrinkage function
non-linear, power function of stress
1 + G (0); non-linear multiplying factor
curvature

’

€c
—5 5 reference curvature

; normalized strain in k-th steel element at time ¢ (n)

%> hon dimensionalized curvature
ref

%y

Cu

maximum value of instantaneous strain occurring in previous
loading history

maximum value of § occurring in previous loading history

— o non-dimensionalized moment
u

moment prescribed for time increment 4¢(n)

number of rows of concrete elemental areas

number of columns of elemental concrete areas

N, N, ; total number of elemental concrete areas in rectangular
section

proportion of tension steel

proportion of compression steel

a3’ resultant longitudinal force acting in section, non-
u

dimensionalized
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S = ;c—';; non-dimensionalized concrete stress
S, = ;Gf; threshold stress level at which creep becomes non-linear
S;;(n) = mnon dimensional stress in (¢,7)th concrete element during time
interval 4 ¢ (n)
Sy (n) = non-dimensional stress in k-th steel element during time inter-
val 4t (n)
¢(n) = equivalent stress (non-dimensional) in concrete at k-th steel
element
Ly = tolerance on computed longitudinal force in section
tar = tolerance on computed moment in section
t(n) = time instant
T = time parameter of viscoelastic component of creep
x; = 2« component of (¢,7)th concrete element
Xy, = 1« component of k-th steel element
" _ o
_ ‘ Tk
oy, = -
i am} = parameters in creep law
oy s Oy
Y1 Ve = parameters defining shape of instantaneous stress-strain relation
for concrete
€(t) = €' (t)+€°(t) +€5(f); total strain in concrete at time ¢
€, = instantaneous strain corresponding to o,
€, = steel yield strain
€ (t) = €(t)+€"(t)+e™(t); creep strain
el (1) = ageing component of € (¢)
€ (t) = linear elastic component of € (f)
€t (t) = €°(t)+€?(t); instantaneous component of e (¢)
€™ (1) = non-linear component of €¢(¢)
€P (t) = plastic component of € (¢)
€5 (t) = shrinkage component of € (¢)
€v (t) = viscoelastic component of «°(¢)
= 2
€c
As ;
= 5o total steel proportion
04 (n) = stress in (7, 7)th concrete element during time interval 4¢(n)
a, = strength of concrete in member
oy, = steel yield stress
& (t) = creep function
by = ¢g +¢%; end value of ¢ (¢)

P2 (2) = creep function (Dischinger component of ¢ (£))
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end value of ¢4 (¢)

concrete creep parameter
increment in normalized strain
increment in moment

At(n) = time interval

10.

11.
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Summary

A method is described for determining the non-linear, time-varying response
of a reinforced concrete beam section to any prescribed moment history. The
cross section is partitioned into a finite number of elemental areas of steel
and concrete, and a non-linear constitutive relation is used to represent the
behaviour of each concrete element.

An incremental, step-wise numerical computation procedure allows cur-
vature and stresses and strains to be evaluated for moment histories which
may include loading and unloading cycles as well as periods of sustained
loading at the service load level and at any overload level up to the carrying

cap

acity of the section.
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Résumé

On décrit une méthode pour la détermination de la réaction non-linéaire
et dépendant du temps de la section d’une poutre en béton armé a des change-
ments prescrits du moment. La section est divisée en un nombre fini d’élé-
ments en acier et en béton. On se sert d’une relation non-linéaire constitutive
pour représenter le comportement de chaque élément en béton.

Une procédure graduelle supplémentaire par ordinateur permet & évaluer
flexion, tension et déformation pour le changement du moment, comprenant
des cycles de charge et de décharge ainsi que des périodes de charges continues
au niveau de service et & n’importe quel niveau de surcharge jusqu’a la capa-
cité de charge de la section.

Zusammenfassung

Es wird eine Methode zur Bestimmung der nichtlinearen, zeitabhingigen
Reaktion eines Stahlbetonquerschnitts auf ein vorgeschriebenes veréinderliches
Moment beschrieben. Der Querschnitt ist in eine finite Anzahl von Element-
flichen aus Stahl und Beton unterteilt, und eine nichtlineare konstitutive
Beziehung dient zur Darstellung des Verhaltens jedes Betonelements.

Ein inkrementales, stufenweises Computerverfahren gestattet Biegung,
Spannung und Deformation fiir ein verdnderliches Moment auszuwerten, wel-
ches Belastungs und Entlastungszyklen sowie Perioden dauernder Betriebslast
einschliesst, und bei irgendwelchem Uberlastniveau bis zur Belastbarkeit des
Querschnitts.
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