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Moment-Curvature-Time-Relations for Reinforced Concrete Beams

Relations entre moment, flexion et temps sur les poutres en beton arme

Beziehung zwischen Moment, Biegung und Zeit an Stahlbetonbalken

R. F. WARNER J. H. LAMBERT
Associate Professor of Civil Engineering, Graduate Student, School of Civil Engi-

The University of New South Wales neering, The University of New South
Wales

1. Introduction

Analytic studies have shown that the time-varying behaviour of a
reinforced concrete section subjected to sustained bending moment is nonlinear
in nature, even when the applied moment is small and the concrete itself is

acting as a linear material [6, 8]. Any general method of structural analysis
for concrete structures under varying sustained loading must take into account
this creep-induced non-linear behaviour, as well as the non-linearities inherent
in the instantaneous response to short-term loading [3].

As pointed out by Ferry Borges [3], the development of accurate tech-
niques of non-linear analysis is of importance, not simply for use in the design
of special structures, but also, and perhaps more important, to provide a
means of calibrating and evaluating simplified calculation procedures.

In the case of short-term, non-linear response to "instantaneous" loadings,
consideration must be given to overall unloading of the structure during an
unloading cycle and also to unloading of localized regions during a loading
cycle. In order to treat such effects properly, an incremental analysis is required
in which a sequence of loading stages is considered.

For the more general case of long-term response to time-varying load
history, the non-linear incremental analysis becomes, in effect, a Simulation
of structural behaviour, whereby the state of the structural system, as
represented by stresses and strains in selected sections and by deformations and
deflections at selected points, is evaluated for a sequence of load levels and
time instants. Simulation of structural behaviour clearly becomes a practical
possibility only with the use of a digital Computer.
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Before the Computer Simulation of the general time-varying behaviour of
a reinforced concrete frame structure can be undertaken, methods must be

developed for generating moment-curvature-time relations for flexural members
and moment-thrust-curvature-time relations for columns.

In the present paper a method is outlined for Computing the curvature
history of a reinforced concrete section which is subjected to any prescribed
moment history. The method is an extension of a previously reported procedure

for Computing the biaxial moment-thrust-curvature relations of a column
section under short-term loading [9]. The analysis has been generalized to
take into account the effects of creep and shrinkage in the concrete. In order
to simplify the presentation, the method is here described for the special case
of a rectangular section in pure uniaxial bending. However, extension to a
cross section of irregulär shape under time-varying thrust and skew bending
follows directly from the treatment of short-term loading in Ref. [9].

2. General Description of Method

The time-varying moment applied to the cross section is approximated by
a finite sequence of moment values M (1), M (2),. M (n),.. M (N), being
taken to act during a sequence of time intervals At(l),At(2),..At(n),..At(N).
The time intervals At(n) are small enough to ensure that the moment
increments

AM (n) M(n)-M(n-l) (1)

are also small in magnitude. See Fig. 1. If the moment history contains a large
instantaneous change in moment, for example as at time zero when the initial
loading is applied, it is necessary to use a sequence of moment increments, in
order to preserve the incremental nature of the analysis.

1 Moment At(n)

AM(n)

u^i
M(n-1) M(n)

Time

t(n-1) t(n)

Fig. 1. Discretization of moment history.
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Fig. 2. Partitioning of concrete section.
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No restriction is placed on the values M (n). Should a moment be stipulated
which is greater than the carrying capacity of the section at any particular
time, then failure is recorded and the computation is terminated.

To simplify equilibrium calculations, the section is replaced by a finite
number of elemental areas of concrete and steel. The Ns steel elements are
actual reinforcing bars in the section or, when more convenient, groups of bars.
The procedure of partitioning the concrete section has been described
previously [9], and is illustrated in Fig. 2. For the special case of uniaxial bending
it is appropriate to take the number of element columns, Nb, as one. However,
the two-way partitioning in Fig. 2 allows an immediate extension of the
analysis to treat non-rectangular sections and skew bending.

The total strain in a typical concrete element in the i-th row and j-th
column is assumed to be composed of an instantaneous, a creep and a shrinkage
component. The time-varying stress history of each element is also discretized
by assuming that changes in stress level occur only at the time instants t (n)
which define the end of the time intervals. The stress a{j (n) acting during
time interval A t (n) is thus taken to be constant.

Computations are carried out in cycles; each cycle corresponds to the
passage of a time interval. Time interval At(n) begins at time t(n — 1) after
the moment increment A M (n) has been applied. The state of stress and
strain in each concrete and steel element at t (n — 1) is known from the previous
computation cycle. All concrete elements are allowed to creep and shrink
freely during At(n). Resulting increments in creep and shrinkage strains in
all concrete elements are calculated using an appropriate constitutive relation.

As a result of the assumed free straining of the concrete elements, strain
incompatibilities develop throughout the section between adjacent concrete
elements and also between steel elements and the surrounding concrete.
Furthermore, at the end of the time increment, i. e. just before the instant
t(n), the moment increment AM(n+l) is applied to the section. The
computation cycle is therefore completed by adjusting instantaneous strains and
associated stresses in the elemental areas so that, at time t(n),

a) compatibility of deformations over the entire section is re-established, and

b) all equilibrium requirements are fulfilled.

The stresses and strains thus obtained provide the initial conditions required
for the next cycle of computations.

This calculation procedure is fairly Standard, having been used in creep
studies of both metal and concrete structures. The particular method used
here resembles the "creep method" proposed by Bresler [1]. However, a
rather general formulation has been attempted, which is potentially applicable
to sections of arbitrary shape subjected to arbitrarily varying moment histories
ranging from zero up to the section carrying capacity.
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3, Stress and Strain in Piain Concrete

A non-dimensionalized stress,

and a normalized strain,

S - (2)

Ü7=4 (3)

are introduced to represent stresses and strains in the concrete elements. The
reference stress ou is the strength of the concrete in the member at a specified
time, for example at 28 days after casting, and ec is the instantaneous strain
associated with au. Compressive stresses and strains are taken as positive.

The total concrete strain, composed of instantaneous, creep and shrinkage
components, is

€ €i + €c + €8 (4a)

or in normalized form,
E El + Ec + Es. (4)

The following equations are here used to represent the relation between
instantaneous strain and stress for monotonicylly increasing strain [9].

El<0: 8 0. (5a)

O^E^l.O: 8 y1Ei + (3-2y1)Ei2 + (y1-2)Eis. (5b)

^>y2: 8 0. (öd)

l.0^E^y2: S i-___Z_. (5c)

The parameters yx and y2 define the shape of the loading and unloading por-
tions of the curve, respectively. See Fig. 3 a. The initial slope, yl9 is fixed by
the initial elastic modulus of concrete En'c

This parameter is also used to define the stress-strain relation for non-
monotonic changes in instantaneous strain. The term max (E1) is introduced
to denote the maximum instantaneous strain which has occurred in the particular

concrete element during all previous loading stages and time instants.
If the current value El is larger than max (El) then Eqs. (5) apply; otherwise,
the stress is determined as follows,

0 < Ei max (E*): 8 max (S) - 7l [max (El) -El]. (7)
>0
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max (S)

Fig 3 Relation between stress and instantaneous
strain

1 0

o

1 0

üS
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E1 mox(E')

Eq. (7) gives non-zero values of stress for max(^) <y2- The term max($) is
the maximum recorded stress and is related to max(^) by Eqs. (5). See

Fig. 3b.
The stress 8 corresponding to a current strain E% and a given pre-history

of strain is defined jointly by Eqs. (5) and (7), which can be expressed as

8 FC{E\max(Ei)}. (8a)

This computation is carried out by means of an elementary sub-program. The
presence of max (El) in Eq. (8a) emphasizes the incremental, step-wise nature
of the analysis. For the calculation of stress in the (i,j)th concrete element
for the n-th. computation cycle, Eq. (8a) can be written more precisely as

8t3 (n) FC{E\, (n), max [E\, (m)]},
1 ^m<n

(8)

where the indicator m, m<n, refers to previous cycles.
From Eq. (7) it can be seen that the instantaneous strain is composed of a

linear-elastic, recoverable component Ee, and a non-linear, non recoverable
plastic component Ep,

E% Ee + Ev. (9)

Considering briefly the stress-strain relation for the reinforcing steel, we
note that total steel strain consists of an elastic and a plastic component. The
stress in the ß-th steel element for the n-th computation cycle can be expressed
in a form similar to Eq. (8),
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Sk (n) F S{Ek (n), max [Ek (n)]}. (10)
1 ^m <n

The yield stress ay and the yield strain ey provide convenient reference values
for the definition of non-dimensional stress Sk and normalized strain Ek.

Creep strains in the concrete are accounted for by means of a constitutive
relation which takes into account non-linear effects at high stress, as well as
the characteristic properties of partial ageing and partial recovery. Details of
the particular model of concrete creep here used are given in Ref. [10].

The creep strain at time t, ec{t), is assumed to be made up of three components:

ed(t) is linear, ageing and non-recoverable; ev (t) is linear, non-ageing and
recoverable; and €n(t) is non-linear. The rate-of-change of creep strain is thus

km) kd{t)+hv{t)+kn{t). (ii)
An expression for ed(t) follows from the Dischinger creep theory (2),

k*(t) e'(t)<£*(t), (12)

in which ee (t) is the linear-elastic component of the instantaneous strain and

<f>d(t) is a creep function, yet to be defined (see Eq. (17)), but which is similar
in all major aspects to the Dischinger creep function. It will be noted that
ed(t) is directly related to stress level through ee(t).

The linear viscoelastic creep rate can be expressed as (4)

*«(*) [«WS-^(WtJ-, "

(13)

in which </>^ and Tv are constant material parameters. Depending on the
relative magnitudes of the two bracketed quantities in Eq. (13), ev (t) may be

positive (creep) or negative (creep recovery).
Both ed (t) and €v (t) are linear with respect to stress. The additional

nonlinear component is assumed to be non-zero only when the instantaneous
stress ct (t) exceeds some threshold value oc. A creep test conducted at a
constant stress o~ which is less than ac yields a record of experimental values for
the total linear component,

ö- S °c : €c (t) ed (t) + ev (t). (14)

The creep functions <f> (t) and cf>d (t) are defined in terms of the experimentally
obtained values of ec (t) in Eq. (14) as follows,

4>(t) =^, (15)

^ =^(oo)=i^, (16)



<f>d(t)= "ee w,

^ ^(oo)=f!Mz €V(00)

The parameter cf>% is defined as

,,_^(oo)

so that the following relations apply,

</>* *d <£* > «d^i.o,
<£* av </>*

> a,^1.0,
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(17)

(18)

(19)

(20)

(21)

ccd + xv=1.0. (22)

For the creep test at constant stress, the assumed viscoelastic component is

6«(0 ee#(l-e-'/r'). (23)

If numerical values can be given to <£| and Tv, then the creep function <f>d (t)
can be evaluated from the experimentally determined <j> (t),

4>*(t) <f>(t)-te(l-e-«T*). (24)

We have yet to consider non-linear creep at stresses in excess of ac. It is
convenient to relate en (t) back to the total linear component by introducing
a stress-dependent multiplying factor, 0{a),

kn(t) [kd(t) + kv(t)]G(o). (25)

Setting H (er) 1 + G (a), we obtain for the total creep rate

kc(t) [i*(t) + i"(t)]H(<T). (26)

The multiplier G (ct) is taken to be a power function of stress. A convenient
and appropriate non-dimensional expression for H (er) is then

(27a)

(27b)

The material parameters ocd, ocm, ocn and Tv, together with the creep function

<f>(t), have to be evaluated from test data, Suggested values of the
parameters are [9],

ccd £& 0.3, ocv ^ 0.7,
30 <; Tv ^ 60 (For time t measured in days),

10^am^20,
3rgan^ 4.

ct^ctc: H(a) 1.0,

gc<g^gu: H(a) 1.0+ am

"
CT - CTC

'
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A typical creep function </>(£), obtained from test data (7), is shown in Fig. 4.
For convenience the function

9*
(28)

has been plotted.

1-0

0-8

0-6

04

0-2

r f(t)= im

_—Viscoelastic component
\ for ad =0-7, Ty =30

/
Time days

40 80 120 150 200 240

Fig. 4. Creep function used in calculations.

280 340

The above creep equations can be expressed in difference form using normalized

strains. For the time interval A t (n) the increment in creep strain in the
(i-j)th. concrete element, which is subjected to stress 8^(n — \), is

A E% (n) [A Ed (n)+A Ev. (n)] H [8is (n - 1)],

where A E% (n) E% (n - 1) A <j>d (n),

A<f>d{n) cf>[t(n)]-c/>[t(n-l)],

A El (n) [E^ (n - 1) # - Ev. (n-l)] ^>,
^(»-l)^e: H[Sij(n-l)] l.0,

S^S^in-1)^1.0: H[Sij(n-l)] 1.0 + *mp>[ni_^ ^

(29)

(30)

(31)

(32)

(33a)

(33b)

Shrinkage strains, assumed to occur independently of stress level, can be
expressed as

€'(t) e%g(t), (34)

in which e% is the end value and g (t) is an experimentally obtained pure-time
function which increases monotonically from zero to unity. Eq. (34) is rewritten
as
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AE^(n) E%Ag(n), (35)

Ag(n) =g[t(n)]-g p(n-l)]. (36)

4. Computation Cycle

To simplify the computation cycle, it is convenient to choose the sequence
of time intervals A t (n) in such a manner that all increments A <j> (n) in the
creep function are of the same magnitude. Thus for a total of N time steps,

Acf>(n)=Acf>=^, (37)

<f>(n) =nAc/>. (38)

The appropriate time instants t(n) are obtained from an experimentally
obtained creep curve, such as Fig. 4.

The associated values A <f>d (n) vary in magnitude, but can be obtained from
Eq. (24). Corresponding increments in the shrinkage function g(t), i.e. Ag(n)
in Eq. (36), are obtained from experimental curves. Eqs. (29) and (35) can
thus be used to determine the strain increments A E^ (n) and E\$ (n) in each
concrete element during time interval At(n).

At the end of the time interval A t (n) the total creep and shrinkage strains
in each element are obtained as

E$i(n) E$i(n-l)+AEZJ(n), (39)

JB7f, (n) JEfy (n - 1) + A E}, (n). (40)

It is assumed that total concrete strains at time t (n) are linearly distributed
over the section, and also that the strain in each steel element is equal to that
in the surrounding concrete. In the case of uniaxial bending, the strain
distribution in the section is completely defined by the upper and lower extreme
fibre strains E0 (n) and Ex (n). If these values are known or assumed, the strain
in the (i,j)th concrete element is given as

Etj (n) E0 (n) - [E0 (n) - Ex (n)] a,, (41)

in which a^ defines the depth of the element below the top fibre.

_ xi _ i + 0.5
(42)

The instantaneous strain component, obtained by subtracting the creep and
shrinkage components, is

E% (n) Ei} (n) - E% (n) - E\, (n) (43)

and the associated stress, Sti (n), is given by Eq. (8).
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The total strain in the k-th steel element is also obtained from the extreme
fibre strains,

Ek (n) -{E0 (n) - [E0 (n) - Ex (n)] ock} (44)
V

and this allows the stress Sk(n) in this element to be obtained by means of
Eq. (10). The depth of the k-th steel element is given by ak,

xk
a«k ^ (45)

and 7] is the ratio of reference strains.
e

*?=-¥-• (46)
€C

With all stresses known, the total force in the section can be obtained by
summing the elemental forces acting in all elemental areas. Defining the
nondimensional force term,

- PP —r- (47)
aub a

one obtains for the resultant force in the section,

P ^I1ZSij(n)+^m^ZSk(n)-^ZS%(n). (48)
^s i iVs k ^s k

Here, \x is the ratio of steel and concrete areas,

A
^

m is the ratio of reference stresses,

"-rt (49)

m -2 (50)

and Nn is the total number of concrete elements,Tc

Nc NbNa. (51)

The third summation term in Eq. (48) has been introduced to account for the
concrete area which has been replaced by the steel elements. The term 8% (n)
is the concrete stress at the level of the &-th steel element.

The resultant moment acting in the section is found by taking moments
of the elemental forces about the horizontal y axis shown in Fig. 2. With

M
M -

CT

this gives

M=—=-3, (52)

^=^-22^W^ + ^^2^(^)afc-/x^2^WaÄ. (53)
iVc i 1 iys k lys k
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At any time instant t(n), the correct values of E0(n) and E±(n) are such
that the following equilibrium requirements are fulfilled:

a) The force P is zero;
b) The moment M is equal to the prescribed moment, M (n+1),

M(n+1) M(n)+AM(n+l). (54)

For practical calculation purposes, strain values are accepted if they fulfil the
equilibrium requirements to within specified tolerances tp and tM, viz

\P\Stp, (55)

\M-M(n+l)\StM. (56)

A nested search technique has been developed, which consists of an outer
procedure to find E0(n) and an inner procedure to find i^(w). The inner
procedure, called SEEKE 1, establishes a value of E1(n) which, together with
any value of E0(n) prescribed by the other procedure, satisfies Eq. (55).
Basically, SEEKE 1 consists of two phases. In the first phase, bounds on Ex

are found, EY and Ef, for which the corresponding value of P are positive
and negative, respectively. These bounds define a search region within which
the required value lies. In the second phase, a halving process is used, whereby
the mid point of the search region,

E? l[E? + Ej;]

is tested. If this value satisfies Eq. (55) the search is terminated; otherwise,
the search region is halved and the process continues. Figs. 5 and 6 show
schematically the two phases of SEEKE 1.

The outer search procedure, SEEKE 0, establishes a value of E0 (n) which
fulfills Eq. (56). However, for every trial value of E0, SEEKE 0 calls on
SEEKE 1 to carry out a subsidiary search for an Ex value so that Eq. (55) is
always fulfilled. The structure of SEEKE 0 is quite similar to that of SEEKE 1.

Upper and lower bounds are first established, E^ and E^, such that the
computed M is greater than and less than M(n+1), respectively. The halving
procedure then brings convergence to a set of values which together satisfy
Eqs. (55) and (56).

Although the nested search procedure is certainly non optimal, it is
extremely simple in structure and has proved to be surprisingly efficient and
reliable, not only for the case uniaxial bending but also, in an extended form,
for calculations involving biaxial bending and compression.

With the strain distribution determined, it is a simple matter to obtain
curvature. A reference curvature is introduced,

TT — €°
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No
1 ¦* [ is
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No

t
Calculate P

is P "0

En fixed

Et =E,(n-1)

Calculate P
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Calculate P
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Calculate P

No

Yes

E," E, + AE

Et=E,-i -i

Yes

Ei E,

Search Complete

Fig. 5. Seeke 1. Bounds on Ex. Fig. 6. Seeke 1. Halving procedure.

and the non-dimensional curvature K is calculated simply as

KK Kref
E0(n)-E1(n).

The computation cycle described above is applicable provided the moment
increments A M (n) are reasonably small. It remains to take care of instantaneous

loadings and unloadings, including the first loading at time zero when
the initial conditions are established for the first computational cycle.

When a significant jump in moment occurs, the extreme compressive fibre
strain E0 is incremented repeatedly by a small value A E. Thus, for the initial
loading, a sequence of strains AE, 2AE,... is considered. An appropriate
value of Ex is in each case determined, by means of SEEKE 1, such that
Eq. (55) is fulfilled, and the corresponding moment M is calculated by means
of Eq. (53). The strain E0 is thus incremented until M becomes larger than the
prescribed value. When this occurs, upper and lower bounds on E0 have been
established and the halving process in SEEKE 0 can be used to fulfill Eq. (56).

In the case of a sudden unloading, a similar calculation procedure is adopted,
whereby E0 is decremented incrementally.

5. Numerical Results

In order to test the adequacy of the computation procedure prior to its use
in the analysis of time varying structural behaviour, calculations were made
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for a variety of different cross sections, material parameter values and loading
histories. The calculations provided a means for checking the reliability of
the search procedures and also gave Information on the sensitivity of numerical
results to variations in the values of the parameters which are used to define
the deformation characteristics (including creep and shrinkage) of the concrete.

Results of several typical calculations are presented in Figs. 8 to 15. Except
where otherwise noted, calculations were made for the section details given
in Fig. 7 and for the parameter values given in Table 1. The curve used for
the creep function $ (t) is that shown in Fig. 4. The calculations were made
with an IBM 360/50 installation. Execution time for a complete variable
moment history, followed by an incremental loading to failure, was usually
in the order of 30 seconds.

A characteristic of the computed results is the slightly non-smooth nature
of almost all resulting curves. This can be seen in Fig. 11 for stress Variation

p =-02

b

1 Il

0-S 0
a

1

v

b

fM a

p' =-02

0-8a '

1

a

p =-02 • •- —
1

<

Doubly ReinforcedSingly Reinforced

Fig. 7. Cross sections for numerical calculations,

Table 1. Values for Numerical Computations

Stress-strain Relation: yi 2.0

y2 3.0

Creep Law:

Section Details:

Calculation Details:

od 1.0, 0.7, 0.5
am 20

an 4

Tv 30, 60

ac — 0.4 au
<£* 3.0

E% 0, 0.25

I* - 0.02, 0.04

p 0.02
p1 0, 0.02

Na 20
Nb 1

iVs 4

tP 0.01

tM 0.01
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over the cross-section, in Fig. 10 for Variation of stress with time, and in Fig. 9

for time Variation of curvature. The non-smoothness stems of course from the
finite computation procedure. Smoothing of the results can nevertheless be

achieved, at the expense of additional computation time, by using a finer
partitioning grid for the section, smaller time intervals, and, most important
of all, finer tolerances tp and tM.

0-2

c// XB p =002
p1 =0
M 0-08/ /<?

ad =0-7
0-1

El =00

TTj*jlA
L-»

10 20 30

Fig. 8. Curvature histories for three
loading cases.

In Fig. 8 curvature histories are shown for three different moment histories
applied to a singly reinforced section. Curve A shows the moment-curvature
relation for short-term, monotonically increasing loading. Curve B shows moment
versus curvature for the case where the moment is raised instantaneously to
the value M 0.08 (about 40 percent of the ultimate moment) and held there
indefinitely, with a final loading to failure at time infinity. In the third case,
represented by curve C, the moment is raised instantaneously to M 0.08
and held there for 7 days, when it is reduced to M 0.04 and held there
indefinitely, with a final loading to failure at time infinity. The curves are termi-
nated arbitrarily at a curvature value of K 3.0. It is seen that the effet of
prior history of loading on moment capacity, and also on the latter portion
of the moment-curvature relation, is almost imperceptible.

Fig. 9 shows the increase in curvature with time for a singly reinforced and

a doubly reinforced section, each subjected to a moment of M 0.08 (about
40 percent of ultimate moment). As is to be expected, the compression
reinforcement plays a decisive role in restricting the development of curvature.
Fig. 9 also shows that concrete shrinkage plays a significant part in the time-
increase in curvature in both the singly reinforced and the doubly reinforced
section.

It is significant that the curvature in the doubly reinforced section for non-
zero shrinkage reaches a maximum value and then remains constant over the
final few time intervals. The reason for this can be seen in Fig. 10, where the
attenuation of maximum concrete compressive stress in the section is plotted.
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Fig. 9. Curvature histories.
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Due to the restraint provided by the compression reinforcement, coupled with
both creep and shrinkage of the concrete, the concrete compressive stresses
have completely disappeared and the applied moment is being resisted entirely
by a compressive steel force and a tensile steel force. In fact, tensile stresses
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would develop in the upper fibres of this section. The development of tensile
stress fields in the "compression" zone of doubly reinforced beams has been

reported previously [6]. Fig. 10 also shows that the concrete compressive stress
cannot disappear completely without the presence of concrete shrinkage.

Although shrinkage strains result in an overall reduction in concrete
compressive stress in the doubly reinforced section, they result in slightly higher
stresses, relative to the no-shrinkage case, in the singly reinforced section.
This is explained by the redistribution of stresses in the section with time, as
shown in Fig. 11 for the singly reinforced section and in Fig. 12 for the doubly
reinforced section. The neutral axes of stress and strain coincide for times
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Fig. 11. Stresses and strains in concrete. Singly reinforced section.
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Fig. 12. Stresses and strains in concrete. Doubly reinforced section.



MOMENT-CURVATURE-TIME RELATIONS FOR REINFORCED CONCRETE BEAMS 197

t>t0 only when shrinkage strains are zero. For non-zero shrinkage the stress
axis rises above the strain axis, and the effective reduction in the area of the
compressive stress block requires in the singly reinforced section some increase
in stress over that calculated for zero shrinkage.

Shrinkage strains in the doubly reinforced section also force the neutral
axis of stress to rise above that of strain. See Fig. 12. However, the reduction
of total concrete compressive stress, due to unloading onto the compression
steel, is the over-riding effect here.

A question of prime importance in any analysis of time-varying structural
behaviour is the sensitivity of the results to the type of creep law assumed
and, further, to the numerical values used for the parameters of the creep law.

It is clear tht cf>* and E% are measures of total creep and shrinkage and
that they must have an important influence on final deformations in the
section. It is also clear that the shape of the creep and shrinkage curves, i.e.
/ (t) and g (t), will determine, to a large extent, the rate of increase of curvature
in the case of constant sustained loading.

The importance of secondary parameters such as ocd, ocm, an and Tv is not
so obvious. If concrete stress does not change greatly with time, for example
as in a singly reinforced section under constant sustained moment, it is
reasonable to expect that creep calculations will not depend greatly on ocd and
Tv, since these parameters define the ageing and recovery properties of the
concrete. Situations most sensitive to variations in these parameters are likely
to be those in which large changes occur in the stress level with time.

Fig. 13 shows the attenuation of concrete compressive stress in a doubly
reinforced section calculated for values of ocd ranging from 0.5 to 1.0. The
value a^=1.0 corresponds, in the linear ränge, to Dischinger creep. For the
lower value of a^ 0.5, the time constant Tv must be increased, in order to
allow some non-recoverable creep to occur during the first few days of loading,
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i.e. to ensure that €c(t)>ev(t). For these calculations Tv was increased from
30 to 60. Creep behaviour shown in Fig. 13 is essentially linear, since the
extreme concrete stress exceeds the threshold level of Sc 0A only during the
first time interval, i. e. during portion of the first day of loading. Results of
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the calculations shown in Fig. 13 are encouraging, in that changes in ad have
not resulted in very significant changes in the stress history. Corresponding
curvature histories are shown in Fig. 14.

The very strong tendency for concrete to unload onto surrounding steel
reinforcement lessens the importance of non-linear creep in the case of pure
flexure. In Fig. 15a sustained overload moment of M 0.1S (nearly 90 percent
of ultimate moment) produced an initial concrete stress of 0.53. This has
attenuated to the threshold level of 0.4 in five time intervals, so that, even at
high overload, non-linear creep has occurred only during the first week of
loading. Non-linear creep increases the rate of transfer of stress from concrete
to steel and, to this extent, tends to be seif destroying. Non-linear creep may
nevertheless become of prime importance in sections of slender columns. Here,
increase in curvature with time results in large increases in deflection and in
the geometric non-linearities. This can, in turn, bring about creep buckling.

6. Concluding Remarks

The procedure described in this paper can be used to calculate the curvature

history of a reinforced concrete section for any prescribed moment history.
This allows the time-varying behaviour of a statically determinate member
to be analysed for any variable load history [5]. The procedure also provides
a basis for the analysis of time-varying behaviour of indeterminate members,
and is at present being used for this purpose.

The procedure can be extended without difficulty to apply to members
of irregulär section subjected to skew bending.

Although one specific constitutive relation for concrete has been used

throughout the present study, changes both in the instantaneous stress-strain
relation and in the creep law can be made without affecting in any way the
calculation procedure. It is only necessary that the creep law be expressed in
difference formulation.

Possible variations with time in concrete material properties such as
concrete strength and stiffness have not been considered. Although such variations

can be accounted for without difficulty, they do not usually have a
significant effect on structural behaviour. Indeed, some of the effects included
in the present analysis have proved to be of minor importance. This was, of
course, not unexpected: a prime motivation in the development of such a
complex procedure is to provide a Standard of comparison for simplified
methods of analysis [11].
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7. List of Symbols

a

b

E^(n)
Ef}(n)
Eeii(n)
Ejjin)
E%(n)
Ev.(n)
E%(n)

Ek(n)

E0(n)
E^n)
f(t)
g(t)
0(a)
H(a)
K
Kref

K

m

max (El)

max (8)

M

M(n)
Na

Nb

Nc

P
V'

P

depth of section
total area of steel in section
width of section
initial elastic modulus of concrete

€lJ, ; normalized concrete strain in (i,j)th element at time t(n)

creep component of E{j (n)
ageing component of E^ (n)
linear elastic component of Ejj (n)
E%j (n) + Efj (n); instantaneous component of E{j (n)
plastic component of Ejj (n)
viscoelastic component of E^ (n)
shrinkage component of Ei:j (n)

; normalized strain in k-th steel element at time t(n)
normalized concrete strain in extreme compression fibre
normalized concrete strain in extreme tension fibre

pure time function defining the shape of the creep function
pure time function defining the shape of the shrinkage function
non-linear, power function of stress
1 + G(a); non-linear multiplying factor
curvature

—: reference curvature
a
K

Kref non dimensionalized curvature

maximum value of instantaneous strain occurring in previous
loading history
maximum value of S occurring in previous loading history

—T—zl non-dimensionalized moment
ou b a2'
moment prescribed for time increment At(n)
number of rows of concrete elemental areas
number of columns of elemental concrete areas
NaNb; total number of elemental concrete areas in rectangular
section
Proportion of tension steel

Proportion of compression steel
P

—7—; resultant longitudinal force actino* in section, non-

dimensionalized
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8 —; non-dimensionalized concrete stress

Sc —; threshold stress level at which creep becomes non-linear
<?u

$ij (n) non dimensional stress in (i, j)th concrete element during time
interval A t (n)

£>k(n) ~ non-dimensional stress in k-th steel element during time inter¬
val A t (n)

S%(n) equivalent stress (non-dimensional) in concrete at k-th steel
element

tp tolerance on computed longitudinal force in section
tM tolerance on computed moment in section
t (n) time instant
Tv time parameter of viscoelastic component of creep
xi x component of (i, j)th concrete element

xk x component of k-th steel element

_ Xi
a

OL,

*-k
Xk

a

parameters in creep law

Vi' 72 ~ parameters defining shape of instantaneous stress-strain relation
for concrete

€ (t) e1 (t) + ec (t) + es (t); total strain in concrete at time t
efc instantaneous strain corresponding to cru

ey steel yield strain
€c (/) €d (j) + €v y) + €n (t). creep strain
€d (t) ageing component of ec (t)
ee (t) linear elastic component of e1 (t)
€l (t) ee (t) + ep (t); instantaneous component of e (t)
en (t) non-linear component of ec (t)
€p (t) plastic component of e1 (t)
es (t) shrinkage component of e (t)
z» (t) viscoelastic component of ec (t)

*y
7] -7

€c

jji j—-; total steel proportion

Gij(n) stress in (i,j)th. concrete element during time interval A t(n)
au strength of concrete in member

ay steel yield stress
cf> (t) creep function
<f>* =<!>&+ <f>%; end value of <j> (t)
<j)d (t) creep function (Dischinger component of <f> (t))
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cf)d end value of $d (t)
<f>% concrete creep parameter
AE increment in normalized strain
AM increment in moment
At(n) time interval
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Summary

A method is described for determining the non-linear, time-varying response
of a reinforced concrete beam section to any prescribed moment history. The
cross section is partitioned into a finite number of elemental areas of steel
and concrete, and a non-linear constitutive relation is used to represent the
behaviour of each concrete element.

An incremental, step-wise numerical computation procedure allows
curvature and stresses and strains to be evaluated for moment histories which
may include loading and unloading cycles as well as periods of sustained
loading at the service load level and at any overload level up to the carrying
capacity of the section.
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Resume

On decrit une methode pour la determination de la reaction non-lineaire
et dependant du temps de la section d'une poutre en beton arme a des change-
ments prescrits du moment. La section est divisee en un nombre fini
d'elements en acier et en beton. On se sert d'une relation non-lineaire constitutive
pour representer le comportement de chaque element en beton.

Une procedure graduelle supplementaire par ordinateur permet ä evaluer
flexion, tension et deformation pour le changement du moment, comprenant
des cycles de charge et de decharge ainsi que des periodes de charges continues
au niveau de service et a n'importe quel niveau de surcharge jusqu'ä la capa-
cite de charge de la section.

Zusammenfassung

Es wird eine Methode zur Bestimmung der nichtlinearen, zeitabhängigen
Reaktion eines Stahlbetonquerschnitts auf ein vorgeschriebenes veränderliches
Moment beschrieben. Der Querschnitt ist in eine finite Anzahl von Elementflächen

aus Stahl und Beton unterteilt, und eine nichtlineare konstitutive
Beziehung dient zur Darstellung des Verhaltens jedes Betonelements.

Ein inkrementales, stufenweises Computerverfahren gestattet Biegung,
Spannung und Deformation für ein veränderliches Moment auszuwerten,
welches Belastungs und Entlastungszyklen sowie Perioden dauernder Betriebslast
einschliesst, und bei irgendwelchem Überlastniveau bis zur Belastbarkeit des

Querschnitts.
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