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On the Shear Capacity of Girder Webs

De la capacite de cisaillement des ämes de poutres

Über die Schubkapazität von Trägerstegen

ARNE SELBERG
Professor, The University of Trondheim, Norway

The post critical shear capacity of webs has been known for a long time
[1, 2, 3]. However, a simple calculation was first started by Basler [4,5] when
he introduced the shear capacity as the sum of the shear taken by shear stress
in the web and the shear taken by a tension diagonal. There has been raised
some critic against Basler's equations, for instance by Fujii [9]. Considerable
work has been done on improvements of Basler's equations, notably by
Rockey and Skaloud [6, 7, 8].

In the following will be demonstrated some errors made by Basler. Further
on a more general deduction will be given, which includes the corrected Basler
equations and the Rockey-Skaloud equations.

In Fig. 1 is given a girder with tension field due to shear load into the post
critical ränge. Basler's idea that the shear capacity is the sum:

VU=VT + Vd (1)

is generally accepted. VT is the shear force taken by the shear stresses in the

Fig. 1. Equilibrium due to shear force V. -«—
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web and Vd is the shear force taken by the tension diagonal or tension field,
see Fig. 1.

For the VT Basler postulates:

VT rcbt, (2)

where rc is the critical shear buckling stress:

tce J2J1 r^rir) ks (2a)
772Jg ity(i-"2)U/

er-for an elastic material. ks 5,34 + 4

Basler assume that the development of a tension field has no effect on the
value of tc. Accordingly the ultimate capacity corresponds to the angle <f>

giving max Vu or Vd:
dVu

_ dVd

~d^-~df-°- (S)

As will be seen from Fig. 1 c we have

Vd addtsin<f>, (4)

where d 6 cos <f> — a sin </> (4 a)

and -7-p 0 -jj-(ad dt sin <f)) ad t -j-r (b cos (f> sin <f> — a sin2 <f>). (5)
d(f> d<p d<p

Basler neglects obviously that od will be a function of <j), as seen from Eq. (8).
However, this error will be small, as easily controlled.

The error may in rare cases mean up to 5% of Vd and is consequently of
no importance.

Eq. (5) gives:

tg<£ }/l+a2-a; a j- (6)

and Vd Gdtb—== -odtb^l+**-x) =-adtbtg<f>. (7)
2(yi+x2-<x) 2 *

Basler deduced the equation:

Vd vdtb 2/l + a2

This result is due to the incomplete picture of forces in Fig. 1 b used by Basler
in his deductions [9].

As readily seen, Eq. (7) give results well below the Basler equation.
Between ad and r we have the following equation due to the deviation

yield hypothesis:
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^ /^-^e2[3-(|sin2^2

As given by Basler, the following equation:

Vd ^ Oy - i% Te

-rcsin2<£. (8)

(8a)

may be used without any important loss of accuracy. However, we shall here

use the complete Eq. (8).
Introducing this we get for Vu:

Vu cjdtb\tg<f> + rctb (9)

or ^ .^6{Itg^/l-(^)2(3-|sin2^)-|(^)sin2^+^. (9a)

The angle </> is given by Eq. (6) and rc is known from (2a) for an elastic material.
For stresses above the proportionality limit we may introduce.

¦ma- (10)

where Ty -oy; r _ KTy is the proportionality limit.

For most structural steel k^0.8, but due to welding stresses, out of planes
of the web etc. ac 0.5 is a better value for technical use. In the diagrams,
Figs. 2 and 7, the value ac 0.8 is used.

Fig. 2 gives the values of -— ^~ for webs with varying b/t ß values and

ajb tx values 1.0 and 2.0.
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Fig. 2. Diagram of VujVy for a ajb values 1.0 and 2.0 and web slenderness ß bjt, giving
original and corrected Basler results.
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As will be seen from Fig. 2 the corrected Basler equation (9) gives
considerably less shear capacity than the original Basler equation. Especially
will it be so for thin webs ß<200. Eq. (9) is also given by Fujii [9].

The original Basler equations give results which are in good agreement
with experiments, especially for a values between 1 and 1.5. With the error
in Vd corrected a Vu corresponding to the experiments will only be possible
with an increased shear force VT, and it is little reason to believe that rc will
not be affected by a tension field or tension diagonal across the web, which
in turn gives a raise to VT.

In Fig. 3 is given a diagram for the shear buckling r's as effected by a
uniform tension in one direction [10,11]. As will be seen from Fig. 3 the
"critical" shear stress may be considerably greater than given by (2a).

40
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Fig. 3. Effect of uniform tension on shear Fig. 4. Tension field or diagonal in shear
buckling stress tce - loaded web.

In Fig. 4 is drawn for a comparison a sketch of the tension field or diagonal.
It is readily seen that the effect must be very much the same as in Fig. 3.

We may for instance assume the following expression for the shear buckling
stress rc.

rc rc4+/(°'<z;/3;a),

where rc4 is the critical shear stress in a rectangular plate without any tension
field. ad is given by Eq. (8).

However, just to demonstrate the arbitrariness of the Basler assumption
concerning tc, we shall handle it in a different manner.

The tension field, see Fig. 4, will act as an elastic support on the web, like
a hammock. As a simplification we consider this effect as equal to a support
which follows the middle of the tension field, see Fig. 5. We have then two
trapezoidal plates AEE'D and BEE'C instead of the original plate ABCD.
The effect of this support might increase rcE up to 4 times the previous value,
as will be seen by substituting the two trapezoids by two rectangles.

However, it will emphasize the arbitrariness better to calculate the critical
shear load of triangulär plates AEF and CE'F' [12]. The stiffeners, BE and
DE' will have some effect, but a calculation of critical shear stress rc as for
a triangle is a simplification on the conservative side. With d and </> known,
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Eqs. (4a) and (6), we get:

l \ (b cotg cf> + a);

and

where k's is given by:

K

%(bcotgcf>-a)
>E lt\2

12(l-v2) \l)

5.M(1.0 + i*)+±^; £ cotg<£.

(11)

(12)

(13)

Eq. (13) is an approximation of the results given in [12]. Within the elastic
ränge tc tcE, in the post proportionality ränge tc is given by Eq. (10).

¥>U>->

¦^\f>12

o oc- b

^

d/2

\*'
E_§

o tfb

Fig. 5. Effect of tension field substituted
by a support CC

Fig. 6. Tension field with different stiffness
of flanges.

With rc given, ad is found from Eq. (8) and Vu from Eq. (9). In Fig. 7 is
given the results for a calculation with a values 1.0 and 2.0. The curves to be

compared with the results in Fig. 2 are marked with c/a 0.

In a series of publications [6, 7, 8] Rockey and Skaloud have made investigations

on the shear capacity of webs. They introduced a tension field which
is symmetrical about the diagonal, and the width of which is given by the
stiffness of the upper and lower flanges. The angle <f> is given by tgc/> b/a.

This model is an unnecessary limitation on the tension diagonal. We shall
here investigate the conditions shown in Fig. 6. c1 and c2 are defined by the
stiffness of the flanges, see Eq. (23).

The tension diagonal d is devided in 3 strings. We have:

d d1 + d2-\-d3,

d1 c1sin<£; d2 6cos</> — asin</>; d3 c2sin(/> (14)

and for the shear capacity Vd.

Vd cr^£ jcW 1 — —M sin2 <f) + b cos </> sin <j> — a sin2 </> + c2 II — —M sin2</>>

or Va adtb{co*<l>Bm<l>-<Xefän*4,y, ac |(l -C-±±* + ^£l) (15)
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Fig. 7. Fm/F^ diagram a 1 and 2; ]3 6/«; c/a 0; 0.5 and 1.0, due to Eq. (19).

with further modification:

(16)

The deduction of Eqs. (14)-(16) imply tg</>^6/a. However, it can be proved
that the equations are valid for tg^^b/a.

The special Situation investigated by Rockey and Skaloud [6, 7, 8] and
others is given by cT c2 and tg<f> bja. If we introduce this in Eqs. (15) or (16),
we get the Rockey Solution:

K 2adZcsin2?(-£) + rjb. (17)

The relation between ad and rc is given by Eq. (8).

If we, like Basler, neglect the influence of <f> on the stresses ad and rc we
get from Eq. (16):

f f 0; a„d ^-TO?-,.; ^_-(l-ä±a + i«l) (18,

and the following simple formula is deduced:

Vu odtb\tg<l> + Tctb, (19)

which is identical to formula (9); the value <f> beeing different. rc is given by
Eqs. (12) and (10); ad by Eq. (8).

In Fig. 8 is shown the results of calculations with Eqs. (16) and (19). The
values given by Eq. (19) are given in the centre of the diagrams, and then
Eq. (16) is solved for different </> values, <f> + A<f>. As will be seen Eq. (19) is
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Fig. 8. Comparison of results from Eqs. (16) and (19). a 1.0 and 2.0; c/a 0.

fairly good in most cases, the maximum value of Vu are always greater than
given by Eq. (19).

In Fig. 7 is given the results VJVy for a 1.0 and 2.0 and c/a 0; 0.5; 1.0;
with c± c2 we have c 2c1; with c± ^ c2 we have:

c 2a- /2"/(a-c1)2 + (a-c2)2

with absolute stiff flanges we get c1 c2 a, c 2a, tgc/>=l and

Vd $<rdtb,

(20)

(21)

which result was obtained by Wagner [2], and the ultimate capacity for a

very thin web, ß> 400, with stiff flanges is:

V =F„ -a tb or ^ I3l ^L 0.865. (22)

The bending moment in the flanges may be controlled by the following equations,

see Fig. 9.

"1 \ 2 a) tad sin2 q

and the yield hinge in the flange is placed at

c\
X~Cl 2a

(23)

(23a)

Normally the flanges and in consequence the yield moment in the flange MFy
is known, and cx is found by a trial and error method as <rd will be a function
of cx.
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In general the cx and c2 values will be small compared to a. However, in
some structures as for instance composite beams one of them may be of
considerable importance, see Fig. 10.

iwmmi
a0sin2<pt

MF MF

MfI x

mmmmffma.
E'

c c, +c2

C

B^r C|

Fig. 9. Bending of flange. Fig. 10. Bending of flanges in a composite beam.

In this Situation the triangles AEF and CE'F are different in size, and a

mean value:

lcE /TcE1 TcE-2 (24)

is better used for calculating VT.

The triangles are defined by the following expressions, see Fig. 6:

_d 1

ei"2sin^ Ci;

_d 1

e2"2siii7 C*;

l1 a + e1,

L a + e9

(25)

d is given by Eq. (14).
The method demonstrated above is compared to a number of tests with

astonishing good results, which in itself is really interesting compared to the
arbitrariness in the assumptions leading to the method.

In the following shall only be referred the results from two tests H1 and
H2 in [13].

The relation VexvjV are for this beams:

Corr. This
Basler Basler Ftjjii [13] method Rockey

HiVexpIV 1.05 1.24 1.09 1.00 1.09 2.85

H2Vexp/V 1.04 1.26 1.02 0.95 1.03 2.16

Vexp is the shear capacity observed by the experiment. V is the calculated
capacity when the moment effect is considered as well. In the control is the
effect of the moment except for the Rockey method handled as suggested by
Basler [15]. The beams are characterized by the following data:

#x: ol 2.0; ß 249; H2: a 3.0; ß 242.
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In Fig. 11 is given the load deflection diagram for this beams. As will
readily be seen the ultimate loads are connected with great deformations. In
reality a structure will be destroyed before deformations of this magnitude
can take place.

P iL
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140
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80

«=3t60

40
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0
14 16 18 20 22 mm
4 6 8 10 12 14 16

Fig. 11. Load deflection of test beams Hx and H2 |13|.

For design work the load capacities at the beginning of the really great
deformations, f. inst, points A in Fig. 11, are the important ones. A design
procedure founded on the theory of plates with large deformations as f. inst,
given by [14] or [16] seems to fulfil the purpose. A load limit where the first
yielding take place in the middle plane of the plate will satisfy any design
purpose, and the large deflection elastic plate theory will still be sufficiently
valid. It may be well to keep in mind that the web failure always is a result
of yield in tension, the web "stability" is not the main problem, stability
failures are due to failure in f. inst, the flanges which is quite a different
problem.

Notation

a
b

Cl,2
C £&

d

61,2
t

a
ß
K

°d

Length of web panel, distance between vertical stiffeners.
Distance between flanges.
Length of tension field action on upper resp. lower flange.
c1 + c2. Eq. (20).
Width of tension field.
Where center line of tension field cross the flanges.
Web thickness.
a\b.
b\t.
TpJTy.

^Stress in tension field.
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•c Critical shear stress.

rcE Critical shear stress, elastic material.
(f> Angle between tension field and flanges.
V Shear force. Index u, y, d, r refer to ultimate, yield, tension diagonal

and shear tension.
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Summary

Some errors are discussed and corrected in the Basler method, especially
the effect of the tension field. The corrected value gives a considerable reduction

in shear capacity compared to the Basler equations. The main point is
however the arbitrariness of the assumption, made by Basler, Rockey and
others, that the critical shear stresses of the web are not affected by the
tension field.

To demonstrate this point, a method is presented where the effect of the
tension field is substituted by a simple lateral support. The method gives
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results which for slender webs (j8 > 200) are in very good agreement with
experiments. All methods give reasonable results for stout webs (ß< 100).

However, the ultimate loads are connected with deformations of such a
magnitude that actual structures, f. inst, bridges, will be destroyed before this
load limit. A design method based on large deflection theory of elastic plates
and taking the first yielding in the middle plane of the plate as the ultimate
load limit will serve the purpose and be more realistic to conditions in actual
structures.

Resume

On corrige des fautes dans la methode de Basler, en particulier l'effet du
champ de tension. Les valeurs corrigees donnent une reduction considerable
de la capacite de cisaillement. Le point capital est pourtant l'objection contre
la supposition faite par Basler, Rockey et d'autres comme quoi la tension
critique de cisaillement dans l'äme ne serait influencee par le champ de tension.

Pour illustrer ce point on presente une methode oü l'effet du champ de
tension est remplace par un simple support lateral. Pour des ämes elancees

(j8>200) les resultats correspondent tres bien aux valeurs d'essai. Tous les

procedes donnent des resultats raisonnables pour des ämes epaisses (ß< 100).
Pourtant la charge ultime est associee a des deformations de sorte que des

structures existantes, p. ex. des ponts seront detruits avant la charge limite.
Une methode de calcul fondee sur la theorie des plaques elastiques, en tenant
compte des grands deplacements est donc plus convenable et plus realiste pour
des structures existantes. La charge critique est alors atteinte ä l'ecoulement
de la fibre moyenne de la section de la plaque.

Zusammenfassung

Es werden Fehler der Methode von Basler korrigiert, speziell der Einfluss
des Zugfeldes. Die Korrekturwerte ergeben eine beachtliche Reduktion der
Schubkapazität. Wesentlich ist aber der Einwand gegen die willkürliche
Annahme von Basler, Rockey und anderen, wonach die kritische
Schubspannung im Steg nicht vom Zugfeld beeinflusst wird.

Zur Illustration dient ein Verfahren, bei dem der Einfluss des Zugfeldes
durch eine einfache Festhaltung ersetzt wird. Die Ergebnisse stimmen für
schlanke Stege (ß > 200) sehr gut mit den Versuchswerten überein. Sämtliche
Verfahren ergeben vernünftige Resultate für dicke Stege (ß < 100).

Zur kritischen Last gehören so grosse Verformungen, dass bestehende
Konstruktionen (z. B. Brücken) vor Erreichen derselben zerstört werden. Ein
auf der elastischen Plattentheorie beruhendes Berechnungsverfahren unter
Berücksichtigung der grossen Verschiebungen ist deshalb zweckmässig und
für bestehende Tragwerke realistischer. Die kritische Last wird dann beim
Fliessen der mittleren Faser des Plattenquerschnitts erreicht.
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