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On the Shear Capacity of Girder Webs
De la capacité de cisaillement des dmes de poutres

Uber die Schubkapazitit von Trdgerstegen

ARNE SELBERG
Professor, The University of Trondheim, Norway

The post critical shear capacity of webs has been known for a long time
[1,2,3]. However, a simple calculation was first started by BASLER [4, 5] when
he introduced the shear capacity as the sum of the shear taken by shear stress
in the web and the shear taken by a tension diagonal. There has been raised
some critic against Basler’s equations, for instance by Fuuir [9]. Considerable
work has been done on improvements of Basler’s equations, notably by
RockEY and SKALOUD (6,7, 8].

In the following will be demonstrated some errors made by BASLER. Further
on a more general deduction will be given, which includes the corrected Basler
equations and the Rockey-Skaloud equations.

In Fig. 1 is given a girder with tension field due to shear load into the post
critical range. BASLER’s idea that the shear capacity is the sum:

Vi=V4Vq (1)

is generally accepted. V. is the shear force taken by the shear stresses in the
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146 A. SELBERG

web and V; is the shear force taken by the tension diagonal or tension field,

see Fig. 1.
For the V. BASLER postulates:
V.=7,bt, (2)
where 7, is the critical shear buckling stress:
n2 B t\?
Tc=TCE=—————-——12(1_V2) (5) kS (23’)
1\2
for an elastic material. k,=5,34+4 (—) .
o

BASLER assume that the development of a tension field has no effect on the
value of 7,. Accordingly the ultimate capacity corresponds to the angle ¢
giving max V, or V;:

% - 0;_% 0. 3)
As will be seen from Fig. 1¢ we have
Vy=o04dtsing, (4)
where d = bcos:ﬁ—asqu (4a)
dVy
and WZO qu (ogdtsing) = o4t qu (becossingd —asin?g). (5)

BASLER neglects obviously that o; will be a function of ¢, as seen from Eq. (8).
However, this error will be small, as easily controlled.

The error may in rare cases mean up to 59, of V; and is consequently of
no importance.

Eq. (5) gives:

(6)

Sl

tgcfn=1/1+oc2—cx; o =

1 1 U 1
.- = —o,tb(Y1+a—a)=—-0,tbtgd. 7
2(1/1_'_“2_—0‘) 2Gd ( x d) zod qu ( )

BAsLER deduced the equation:

V, = ogth—

21/1+oc2'

This result is due to the incomplete picture of forces in Fig. 1b used by BASLER
in his deductions [9].
As readily seen, Eq. (7) give results well below the Basler equation.
Between o; and = we have the following equation due to the deviation
yield hypothesis:
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—
0d=VU§—T§ [3—<gsin2¢)] —g%sin2(f>. (8)

As given by BASLER, the following equation:

og~ o, — V37, (8a)

may be used without any important loss of gccuracy. However, we shall here
use the complete Eq. (8).
Introducing this we get for V,:

V,=o4tbitgd+7,tb (9)

or V, = aytb{%tqu [Vl — (%)2(3—%sin2¢2) —g(%) sin 2gb] + ;—c} (9a)

y Yy Yy

The angle ¢ is given by Eq. (6) and 7, is known from (2a) for an elastic material.
For stresses above the proportionality limit we may introduce.

1 2
Tc:»ry—(——l) . (10)

K TeE

where 7, = k7, is the proportionality limit.

1
= —V—,:)—)_O'y; Tp
For most structural steel k~0.8, but due to welding stresses, out of planes

of the web etec. «=0.5 is a better value for technical use. In the diagrams,

Figs. 2 and 7, the value «=0.8 is used.

Fig. 2 gives the values of e ~ 7" for webs with varying b/t =f values and

Vy ~ Ty
a/b=o values 1.0 and 2.0.
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Fig. 2. Diagram of V,/Vy for o« =a/b values 1.0 and 2.0 and web slenderness 8=b/t, giving
original and corrected Basler results.
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As will be seen from Fig. 2 the corrected Basler equation (9) gives con-
siderably less shear capacity than the original Basler equation. Especially
will it be so for thin webs 8 <200. Eq. (9) is also given by Fuiir [9].

The original Basler equations give results which are in good agreement
with experiments, especially for « values between 1 and 1.5. With the error
in V; corrected a V, corresponding to the experiments will only be possible
with an increased shear force VT‘ and it is little reason to believe that r, will
not be affected by a tension field or tension diagonal across the web, which
in turn gives a raise to V..

In Fig. 3 is given a diagram for the shear buckling =, as effected by a
uniform tension in one direction [10,11]. As will be seen from Fig. 3 the
“coritical’” shear stress may be considerably greater than given by (2a).
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LY T == = ——AF—%{ % "cos°P
T 1042 5\\\ i“w—’l 0y cos?p // é == >/ b
Po=rt %/ — =
o l b g = ==
05 L0 1,5 20 25 3,0 3,540 /
e E/
2 g 2 £
. ™ t ,
T T— () ¢ =k +b
CE jz(1-v2) > ° ez
Fig. 3. Effect of uniform tension on shear Fig. 4. Tension field or diagonal in shear
buckling stress 7.z . loaded web.

In Fig. 4 is drawn for a comparison a sketch of the tension field or diagonal.
It is readily seen that the effect must be very much the same as in Fig. 3.

We may for instance assume the following expression for the shear buckling
stress 7,.

Te = Tc4+f(0'd;ﬁ;0‘);

where 7,, is the critical shear stress in a rectangular plate without any tension
field. o4 is given by Eq. (8).

However, just to demonstrate the arbitrariness of the Basler assumption
concerning 7,, we shall handle it in a different manner.

The tension field, see Fig. 4, will act as an elastic support on the web, like
a hammock. As a simplification we consider this effect as equal to a support
which follows the middle of the tension field, see Fig. 5. We have then two
trapezoidal plates AEE’D and BEE’C instead of the original plate ABCD.
The effect of this support might increase 7, up to 4 times the previous value,
as will be seen by substituting the two trapezoids by two rectangles.

However, it will emphasize the arbitrariness better to calculate the critical
shear load of triangular plates AEF and CE’F’ [12]. The stiffeners, BE and
DE’ will have some effect, but a calculation of critical shear stress =, as for
a triangle is a simplification on the conservative side. With d and ¢ known,
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Eqgs. (4a) and (6), we get:

l=1%(bcotgd+a); e =13 (bcotgd—a) (11)
m K t\2 _,
and Tog = 121 (7 k., (12)
where k; is given by:
K A 5.34(1L0+€) +—38 oot 13
. A D, . L0+ & = cotg ¢. (13)

Eq. (13) is an approximation of the results given in [12]. Within the elastic
range 7,=T7,y, in the post proportionality range 7, is given by Eq. (10).

LA Dfe &+ v
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- - 2 E
b P ~ / dmp
E|l - — —
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P ails C___ Fl
F ' e B a=ob o
Fig. 5. Effect of tension field substituted Fig. 6. Tension field with different stiffness
by a support CC’. of flanges.

With r, given, o, is found from Eq. (8) and V, from Eq. (9). In Fig. 7 is
given the results for a calculation with « values 1.0 and 2.0. The curves to be
compared with the results in Fig. 2 are marked with c/a =0.

In a series of publications [6, 7, 8] RockeY and SKALOUD have made investi-
gations on the shear capacity of webs. They introduced a tension field which
is symmetrical about the diagonal, and the width of which is given by the
stiffness of the upper and lower flanges. The angle ¢ is given by tg¢=b/a.

This model is an unnecessary limitation on the tension diagonal. We shall
here investigate the conditions shown in Fig. 6. ¢; and ¢, are defined by the
stiffness of the flanges, see Eq. (23).

The tension diagonal d is devided in 3 strings. We have:

d =d,+dy+d,,
d, =c,sin¢; d, =bcosd—asing; d; =cysing (14)

and for the shear capacity V.

v, = adt{cl(l—;;) sin?d +b cos ¢ sin ¢ — a sin®d +c, (1—-29-1&) sin2¢}

2 2
or Vy = o4tb{cos¢sin¢ —a,sin?¢}; aczg(l—clzcz+cé—;:2) (15)
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Fig. 7. V4|Vy diagram « = 1 and 2; B =b/t; c/a = 0; 0.5 and 1.0, due to Eq. (19).

with further modification:

_ (1 - tgd)tgd
The deduction of Eqs. (14)—(16) imply tg ¢ <b/a. However, it can be proved
that the equations are valid for tgé S b/a.

The special situation investigated by Rockey and Skaroup [6,7,8] and
others is given by ¢, =c, and tg ¢ =b/a. If we introduce this in Eqs. (15) or (16),
we get the Rockey solution:

Vu=20dtcsin2¢>(l—%)+~rctb. (17)
The relation between o4 and 7, is given by Eq. (8).

If we, like BASLER, neglect the influence of ¢ on the stresses o; and 7, we

get from Eq. (16):

av, dVy . o _ _a ci+cy  C24c2
—JE{)—_W_O’ a:nd tg(ﬁ— }/1+occ—occ, OCC—E( '—“T W) (18)
and the following simple formula is deduced:

V,=o04tbitgd+7,tb, (19)

which is identical to formula (9); the value ¢ beeing different. 7, is given by
Eqgs. (12) and (10); o4 by Eq. (8).

In Fig. 8 is shown the results of calculations with Eqgs. (16) and (19). The
values given by Eq. (19) are given in the centre of the diagrams, and then
Eq. (16) is solved for different ¢ values, ¢ +4¢. As will be seen Eq. (19) is
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Fig. 8. Comparison of results from Eqgs. (16) and (19). o« = 1.0 and 2.0; ¢/a=0.

fairly good in most cases, the maximum value of V, are always greater than
given by Eq. (19).

In Fig. 7 is given the results V,/V, for «=1.0 and 2.0 and c/a=0; 0.5; 1.0;
with ¢, =c¢, we have ¢=2¢;; with ¢, S ¢, we have:

¢c=2a—V2V(a—c,)?+(a—c,)? (20)

with absolute stiff flanges we get ¢; =c,=a, c=2a, tgé=1 and
Vg =1%04tb, (21)

which result was obtained by WAGNER [2], and the ultimate capacity for a
very thin web, 8> 400, with stiff flanges is:

1 vV, %UZ/ ]/§
Vu_Vd_§a‘ytb or T/;_T;_—Q«_O.S%. (22)

The bending moment in the flanges may be controlled by the following equa-

tions, see Fig. 9.
2 4 My,
c%( _-EL) - FE (23)
togsin?¢

and the yield hinge in the flange is placed at

ct

%‘=Cl—2a.

(234a)
Normally the flanges and in consequence the yield moment in the flange My,
is known, and ¢, is found by a trial and error method as o, will be a function
of c;.
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In general the ¢, and ¢, values will be small compared to a. However, in

some structures as for instance composite beams one of them may be of
considerable importance, see Fig. 10.

— UGN ALY,
= ﬂ m««‘
i

c=¢ +c,

s
fe
A\

Tg sin?p-t 3
[ &ArrmMF [ ) F / C !
i ——— - — r B = T ;i
MF X C2 o
Fig. 9. Bending of flange. Fig. 10. Bending of flanges in a composite beam.

In this situation the triangles AEF and CE’F are different in size, and a
mean value:

Teg = 1/ﬂrclf;’ 1 TeEs ‘ ( 24)

is better used for calculating V.
The triangles are defined by the following expressions, see Fig. 6:

d 1
L4 1
27 2gin¢g ¥’

(25)

d is given by Eq. (14).

The method demonstrated above is compared to a number of tests with
astonishing good results, which in itself is really interesting compared to the
arbitrariness in the assumptions leading to the method.

In the following shall only be referred the results from two tests H, and
H, in [13].

The relation V,

zp|V are for this beams:

Corr. This
BasLer Baster Fusir [13]  method Rockrey

H,V,, )]V = 1.05 124 1.09 100 1.09 2.85
H,V,., |V = 1.04 126  1.02 095 1.03 216

I

Vezp 18 the shear capacity observed by the experiment. V is the calculated
capacity when the moment effect is considered as well. In the control is the
effect of the moment except for the Rockey method handled as suggested by

BasLer [15]. The beams are characterized by the following data:

H;: o=2.0; B =249; H,: «=3.0; B =242
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In Fig. 11 is given the load deflection diagram for this beams. As will
readily be seen the ultimate loads are connected with great deformations. In
reality a structure will be destroyed before deformations of this magnitude
can take place.

PA
kN

160 i | | | |
140 Prax H Prnas He
120 2 7 h A o —~
100 / /
/ /
80 v
60 / —_ /\_-IS
20 1 [
0 1

O 2 4 6 8 10 12 14 16 18 20 22 mm
.5 O 2 4 6 8 10 12 14 16 18

Fig. 11. Load deflection of test beams H, and H, |13|.

For design work the load capacities at the beginning of the really great
deformations, f. inst. points 4 in Fig. 11, are the important ones. A design
procedure founded on the theory of plates with large deformations as f. inst.
given by [14] or [16] seems to fulfil the purpose. A load limit where the first
yielding take place in the middle plane of the plate will satisfy any design
purpose, and the large deflection elastic plate theory will still be sufficiently
valid. It may be well to keep in mind that the web failure always is a result
of yield in tension, the web ‘“‘stability’’ is not the main problem, stability
failures are due to failure in f. inst. the flanges which is quite a different
problem.

Notation

a = Length of web panel, distance between vertical stiffeners.
b = Distance between flanges.
¢;,» = Length of tension field action on upper resp. lower flange.
¢ =~ ¢;+c¢y. Eq. (20).
= Width of tension field.
e; s = Where center line of tension field cross the flanges.
t = Web thickness.
o = alb.
B = b/t
K = Tp/Ty .

oy = Stress in tension field.
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= Critical shear stress.

Critical shear stress, elastic material.

Angle between tension field and flanges.

Shear force. Index u, y, d, = refer to ultimate, yield, tension diagonal
and shear tension.

I
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Summary

Some errors are discussed and corrected in the Basler method, especially

the

effect of the tension field. The corrected value gives a considerable reduc-

tion in shear capacity compared to the Basler equations. The main point is
however the arbitrariness of the assumption, made by Basler, Rockey and
others, that the critical shear stresses of the web are not affected by the ten-
sion field.

To demonstrate this point, a method is presented where the effect of the
tension field is substituted by a simple lateral support. The method gives
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results which for slender webs (8>200) are in very good agreement with
experiments. All methods give reasonable results for stout webs (8 <100).

However, the ultimate loads are connected with deformations of such a
magnitude that actual structures, f.inst. bridges, will be destroyed before this
load limit. A design method based on large deflection theory of elastic plates
and taking the first yielding in the middle plane of the plate as the ultimate
load limit will serve the purpose and be more realistic to conditions in actual
structures.

Résumé

On corrige des fautes dans la méthode de Basler, en particulier 1’effet du
champ de tension. Les valeurs corrigées donnent une réduction considérable
de la capacité de cisaillement. Le point capital est pourtant 1’objection contre
la supposition faite par Basler, Rockey et d’autres comme quoi la tension
critique de cisaillement dans I’dme ne serait influencée par le champ de tension.

Pour illustrer ce point on présente une méthode ou l’effet du champ de
tension est remplacé par un simple support latéral. Pour des dmes élancées
(B> 200) les résultats correspondent trés bien aux valeurs d’essai. Tous les
procédés donnent des résultats raisonnables pour des ames épaisses (8 < 100).

Pourtant la charge ultime est associée & des déformations de sorte que des
structures existantes, p.ex. des ponts seront détruits avant la charge limite.
Une méthode de calcul fondée sur la théorie des plaques élastiques, en tenant
compte des grands déplacements est donec plus convenable et plus réaliste pour
des structures existantes. La charge critique est alors atteinte & 1’écoulement
de la fibre moyenne de la section de la plaque.

Zusammenfassung

Es werden Fehler der Methode von Basler korrigiert, speziell der Einfluss
des Zugfeldes. Die Korrekturwerte ergeben eine beachtliche Reduktion der
Schubkapazitit. Wesentlich ist aber der Einwand gegen die willkiirliche
Annahme von Basler, Rockey und anderen, wonach die kritische Schub-
spannung im Steg nicht vom Zugfeld beeinflusst wird.

Zur INustration dient ein Verfahren, bei dem der Einfluss des Zugfeldes
durch eine einfache Festhaltung ersetzt wird. Die Ergebnisse stimmen fiir
schlanke Stege (8> 200) sehr gut mit den Versuchswerten iiberein. Simtliche
Verfahren ergeben verniinftige Resultate fiir dicke Stege (8 < 100).

Zur kritischen Last gehoren so grosse Verformungen, dass bestehende
Konstruktionen (z. B. Briicken) vor Erreichen derselben zerstort werden. Ein
auf der elastischen Plattentheorie beruhendes Berechnungsverfahren unter
Beriicksichtigung der grossen Verschiebungen ist deshalb zweckmissig und
fiir bestehende Tragwerke realistischer. Die kritische Last wird dann beim
Fliessen der mittleren Faser des Plattenquerschnitts erreicht.
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