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Generalization of the Finite Strip Method for Solid Continua

Generalisation de la methode des bandes finies pour les Continus solides

Verallgemeinerung der Finite-Streifen-Methode für Festkörperkontinua

JACOB GLÜCK MENACHEM GELLERT
Department of Structures, Faculty of Civil Engineering

Technion-Israel Institute of Technology

Introduction

The object of this paper is to present a more general formulation of the
finite strip method for solid continua, and discusses the cases where the use
of the present approach is more advantageous compared with the finite element
method.

In principle the finite element method in its present stage of development
may be applied for analysis of any kind of plane or space structure. The problem

which may arise is more of an economic kind as Computer time, data
preparation, Interpretation of results etc. It is obvious that the finite element
approach i.e. a discretization in three dimensions for the general case, is
unavoidable for structures with geometric or physical irregularities in all three
directions.

In a broad of structures especially in civil engineering the irregularities
are not in all three directions for space structures nor in two directions for
plane structures. For these cases the use of the finite element seems not to be
the natural method of Solution; it would be more rational to apply a method
where the discretization is made only for the direction where irregularities
appear. For the case of a three-dimensional body having irregularities in one
direction, the basic element will be in the general case a curved plate with
finite width and for two-directional irregularities a bar with deformable cross
section, generally bounded with curved line segments.

This procedure leads essentially to the reduction of a three-dimensional
problem to a two- or one-dimensional one. This idea was successfully applied



96 J. GLÜCK - M. GELLERT

for two dimensional problems [1], [2] where by use of Fourier series expansion
the problem was reduced to a one-dimensional one.

The formulation of the problem will be done for a three-dimensional body
using the variational approach based on the principle of minimum total
potential energy, but may be extended also to other energetic principles like
generalized functionals by Lagrange multipliers or based on complementary
energy or Reissner's principle [3]. For practical problems the most important
case is that where the three-dimensional problem is reduced to a one-dimen-
sional one, leading to the Solution of a system of linear differential equations
with variable coefficients. For such system well known procedures are known.
The development here will be made for this case only. Small displacements
and linear elasticity are assumed. The present approach will be exemplified
for a plate in bending by neglection of the shear force energy.

Formulation of the Problem

The total potential energy of an elastic body may be expressed as

TT ^(lEi^€ij€M-Fiui)dV-^TiuidS, (1)
V Sa

where Eijkl elastic constants, etj strain tensor component, Fi prescribed
body force component, u1 displacement, V volume, Tl prescribed
surface traction and Sa portion of S over which the surface tractions are
prescribed.

The strain-displacement relation for small displacements has the form

«<* i(^+ "?<)¦ (2)

When a solid is divided into a finite number of discrete strips Vn, the total
potential energy may be written as

m _
» 2 [J (4 ^*% *h - F* u*) dVn -J T- vt dSJ. (3)

n=l Vn San

The strips will be supposed to be along the xx axis, and with a finite surface
into the x%, x3 plane. The unknown displacements may be expressed in this
case as discrete values in the corners of the finite surface, and are functions
along the xx axis only.

u (x1, x2, x3) A(x1, x2, x3) q {xx), (4)

where A matrix containing the interpolation functions, and q vector of
displacements function at the corners of the finite surface.
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The strain vector may be expressed now in the form

8 B (x1, X2, X3) q + C (X1, X2, X3) qf, (5)

where q —-. (6)
dxx

In the case of theory of plates and shells where shear strain energy is
neglected Eq. (5) includes also second derivatives of q with respect to xx.

The bounding surfaces of a strip are defined by planes of the form xx const.
and surfaces x2 f(x3). For x± const. the matrix A will be written in the
form Ab(x2,x3), the load vector Tb(x2,x3) and the unknown displacement in
the form qb. For the surfaces x2 — f(x3) by assuming that x2 and x3 may be
curvilinear, i.e.

xz g{S),

x3 h(S) (8)

the matrix A will be written in the form As (xt, S) and the load vector Ts {x±, S).
With the above mentioned notations Eq. (3) may be written as

ra

n=l

-J7 TJ As 9s d*! ds - JJ IJ Ab qb dx2 dx3. (9)

Denoting with C00 (x-,) JJ BT E B dx2 dx3, (10)

C01 (Xl) Cf0 (xx) =ffB*ECdxidxa, (11)

C11(x1)^iJCTECdxadx9, (12)

<?y(x1)=JJF^^fc2^3+JIT^^, (13)

Pt =UfTAbdx2dx3. (14)

Eq. (9) may be expressed in the form

m

"= Zltt^C^ + ^C^' + ^C^ + ^^q'l-Q^]^-?^^. (15)
W=l

Not all unknown g are independent. Denoting with d the vector of independent
unknowns the following relations may be written

m
2 q =Jd, (16)

n l
rn

2 qb Jdb, (17)
n l

where J is a transformation matrix.
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w
Denoting ^(x1) /r 2 CyJ, » 0,1; 7 0,1, (18)

w=l
ra

(19)

(20)

(21)

(22)

LT 2 QTJ
w=l

XT 2 i^J,
»=i

d' d(d)

d" d2(d)
dx\

Eq. (15) may be expressed as function of the unknown vector d as follows:

tt j[^(dT K00d + dT K01d' + d/T K10d + d,T K11d,)-LT d]dx1-XT db. (23)

Equating to zero of the Variation of Eq. (23) and some integration by parts
yields

Srr^jSd^liK^-K^d+iK^-K^-K^d^-K^d^L^x,
+ 8d£{Kubdb + Kllbdl-X) 0, (24)

where K' =d^>, (25)lJ dxx

K-ijb — Kij(Xl const)' (26)

For existence of Eq. (24) for any Variation SdT the following equations
must be satisfied:

- Ku d" + (K01 - K10 - K^) d' + (K00 - JCi„) d L, (27)

Kllbdb + K10bdb X. (28)

The Euler Eq. (27) represents a system of linear differential equations with
variable coefficients with unknown vector function d. Eq. (28) represents the
natural boundary conditions which are mechanical conditions, the left side

representing the interior forces at xx const and the right side the exterior
in the region where exterior forces are prescribed.

Denoting S2 (x±) -Kll9 (29)

S1(x1) KQ1-K10-K11, (30)

S0(x1)=K00-K[0 (31)

the final form of Eq. (27) is obtained

S2d" + S1d' + S0d L. (32)

As example the plate bending problem with neglection of the shear strain
energy (see Fig. 1) will be considered. By initial integration along x3 the
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J

X..W
Fig. 1.

problem transforms to a two-dimensional one. The vector of unknowns for
a single strip will be:

q(x1)={wi,9i,wj,9J}T, (33)

where wi and 9i are the vertical displacement and rotation functions respectively

along the ridge i, and Wj and 9j are similar but for ridge j.
The displacements w and 9 may be expressed as function of the ridge

displacements as follows:

w wi~^9J + ^(3wj-3wi + 29il + 9Jl)+-^{2wi~2wj-9il-9jl),

JSiv. Zw, nn n\ 3xll2wi 2wi n _\dw
_ 2x2/3t«3- 3w,

The matrix A in this case is a function of x2 only

A "{ 1 Q"~2 9*^2 „ ^^2 ^2 0,X/2

Z3 z Z2}¦

(34)

(35)

(36)

The generalized strain vector £ may be expressed as function of the curvatures

e

d2w

dx\
d2w

dx\

¦2-
d2w

dx1dx2

(37)

Denoting with w', 9', qr the first derivative and with w\ 9", q" the second
derivative of w, 9 and q respectively with respect to x1, the components of the
vector € may be expressed in the form
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82w

JxJ -w'!+^d':i-^(3w';-3w'! + 2 6'{l + e"l)l l2

p (2w'--2w'j-eZl-6'!l),
d2w

dx\
l^w,- _2wl_61_ 6j

(38)

(39)\ l2 l2 l + l) l \

o
g2w

9(ir 4:x213w'i 3< \ 6x212w'i 2w't \

Eq. (37) may now be expressed in the form

e Bq+Cq+Dq\ (41)

where B, C, and D are matrices, the components of which are functions of
x2 only.

0 0 0 0

B

C

D

6 12a;9

P P

0

0

0

4 6x,
+

0

2 6 12a?a

l ¦*¦ P P
"*"

P

0

2 ßx2
l ^ P

0

0

0

\.ZiX2 \.AX2 ö X2 Ö X2

i+-

i2 p
ö X2 /U Xc%

~P ¥~

0

0

0

0

1JL X2 1 £ X2

l2

2/yu syd

0

0

Z3

q ^2 9 ™3

~p~ + ~p~
0

0

0

0

4 #2 6 #f
~T + ~P~

2 • *^2

"TT2
o

o

(42)

(43)

(44)

The total potentional energy of the plate may be expressed as follows:

ra _ _
tt 2 n(ieT'Ee-pw)dx1dx2-$(Qsw+Ms9)dx1-$(Qbwb-Mbwb)dx2, (45)

where p the normal load on the plate, Qs and Ms shear force and bending
moment respectively acting on the boundaries x2 const. where forces are
prescribed, Qb and Mb shear forces and bending moments respectively
acting on the boundaries xx const. where forces are prescribed, and E the
elasticity matrix.

Substituting in Eq. (45) the expressions for e, w, 9, wb and wb as given
above yields

^=2 mi{Bq+Cqf + Dq,')TE(Bq^Cq, + Dqft)-pAqdx1dx2

j^QsAs-MsdAdx. /
A{Qbqb-Mbq^)dx2

(46)



^00 $BTEBdx2,
^01 C^0 jBTECdx2,
^02 Ci;0=$BTEDdx2,
Cu jCTECdx2,
C12 Cf1 ^CTEDdx2,
C22

<?r(*l)

$DTEDdx2,
$PAdx2 + QsAsMs^

C X2
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Denoting C00 \BTEBdx2, (47)

(48)

(49)

(50)

(51)

(52)

(53)

PT $QbAdx2, (54)

MT jMbAdx2. (55)

For non-anisotropic plates, matrices C01, C10, C12, C21 vanish. In this case
Eq. (46) may be written in the form:

m

* Ztti(qT C00 q + qT C02 q" + ,'* Cn q'
n=l
+ q"T C20q + q"T C22q") - Q* q]dx,-P* qb + M^q'b. (56)

The expressions for the matrices C00, C02, Cn, C20 and C22 for the case of
isotropic plates are given in the appendix.

The generalized displacement vector q and its derivatives may now be
expressed by adding the independent displacement vector d using Eq. (16)
and (17). With the notations based on Eqs. (18), (19) and (20), Eq. (56) may
be expressed as follows:

tt $[±(dT K00d + dT K02d" + d'T Knd'
+ d"TK2Qd + d"TK22d" -LT d}dxx-XTdb+YTdb. (57)

The condition of vanishing of the Variation of the total potential energy,
after some integrations by parts, yields

S tt J § dT [K22 d"" + (K02 - Klt + K20) d" + K00d- L] dXl (58)

From the requirement of arbitrary possible variations the following
conditions result:

— equations of equilibrium expressed in the form of a system of nonhomo-
geneous linear differential equations with constant coefficients:

K22 d"" + (K02 - Kn + K20) d" + K00d L. (59)

*— natural boundary conditions at xx const

- K22 d'b" + (- K02- Ku) db X, (60)

-K22d';-K20db= Y. (61)

Eq. (60) is the boundary condition for prescribed shear force at cross sections
xx const., and Eq. (61), for prescribed bending moment at the same sections.



102 J. GLÜCK - M. GELEERT

Solving the system of differential Eqs. (59) under boundary conditions (60),
(61), the interior forces may be obtained for each strip as shown for the general
approach.

The system of differential equations with variable coefficients may be solved
for example using finite differences. This method of Solution will lead to a

system of linear algebraic equations. Essentially the accuracy of the Solution
and amount of numerical calculations will be approximately the same as in
the case application of Standard finite element approach, but the finite difference

Solution is less satisfactory owing to the fact, that boundary conditions
are not automatically satisfied as in finite element approach. If the first
derivative of the unknowns is represented by finite differences and substituted
in Eq. (23), direct minimalization of the functional with respect to the discrete
unknowns leads to the Euler's method. This method is similar to the finite
element method and the coefficient matrix is of the same order of magnitude.
Automatic fulfillment of mechanical boundary conditions is achieved.

Another way for Solution of the system of differential equations may be
obtained by means of infinite power series. A new non-dimensional variable
will be chosen:

£=r^-> l£|=Sl, (62)
^lmax

where xlmax is an arbitrary length. Expanding the right side of Eq. (32) into
an infinite power series

L N$, (63)

where N
'#1.0 #i,i ••• #l,oo

^2,0 ^2,1 • • • ^2,oo

NN N_x* m,0 ^ rn,l • " • x* ra, oo.

(64)

§ ={U,p,?,...?°yF. (65)

m being the number of unknown displacement functions. The Solution of
Eq. (32) may be selected also in the form of an infinite power series

d=G0%, (66)

where G0isanmo;oo coefficient matrix to be determined.
Differentiating Eq. (66) results

d' G^, (67)

d" G2£, (68)

where the element (i, j) of the matrices Gx and G2 respectively have the form

Gx =—— jG0 (69)

ö^ ^i-0" + 1)?öo(,+a- (70)
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Substituting Eqs. (63), (66), (67) and (68) into Eq. (32) the following equation

will be obtained:

S2G2§ + S1G1% + S0G0g N§. (71)

Generally the elements of matrices S1, S2 and S0 may be functions which can
be expanded into power series. The following relation may be written

00

SkGk= 2 m,»> (A 0,l,2). (72)
n 0

The elements of the matrices Tkn are constants. For convenience the
columns of these matrices will be shifted to right with n steps, and zeros will
be placed in the corresponding n columns. The new matrices will be denoted
Tk n and the following notation will be introduced

00

Tk= £ TKn. (73)

Multiplying on both sides by £, Eq. (72) may now be written

SkGk§=Tk%. (74)

Denoting M T2 + 2\ + T0. (75)

Eq. (71) yields M£ N§. (76)

This equation must exist separately for each power of f which means that the
respective columns in the matrices M and N must be equal.

M,. iV,. (77)

Eq. (77) is a recursive equation which relates the coefficients G0. n(n^3) with
the coefficients of lower index. For example for j= 1

Mx Nt (78)

is a system of m equations which relates the coefficients G0i3, G0.2 and G0.

assuming that the last two are known. Solving this system the coefficients G0.4

may now be calculated from the system

M2 N2. (79)

The procedure is continued until the coefficients Gi>n are small enough to be
neglected, remembering that 0 ^ ||| ^ 1.

Since the constants G0.1 and G0.2 are not known the recursive equation
must be solved for all homogeneous cases (iV=0) assuming one of the
constants equal to 1 while all other coefficients equal zero. Let us denote with
Hix the matrix G0 which is obtained by assuming G0. l= 1 and all other
constants with index smaller than 3 equals zero, and with Hi2 the matrix G0
obtained by assuming G0 =1 and all other constants with index smaller
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than 3 equals zero. Similarly the coefficients obtained in the same way for the
first derivative of d with respect to xx will be denoted by JR1'1 respective Ri2

'äÖ=öV (80)

^lmax

with GQ ly Gq G0 6r0. =0 and l^i<k and k<i^m.
A, 1 A. 2 2 i, 1

Rki)=^—GQ (83)

with Gft l Gft Crft (?n =0 and 1 < i <fc and k<i<m.

A particular Solution will be obtained assuming all the constants G0.1 and
GQ. vanish and solving the nonhomogeneous Eqs. (77). Denoting the
corresponding matrix G0 by H° and the coefficients of the first derivative of d
by JR° the unknown vector d and its first derivative may be written in the
form

m

m
d'= % (G0tiR" + G0taR**)§+B?§.

For Solution of the unknowm coefficients G0.1 and G0.2, 2 m equations will be

necessary. These equations are obtained for the boundary conditions at two
sections xx const. The boundary conditions may be geometric or mechanical
and may be different for each ridge. The equations are obtained by substituting
the values of xx const (£ const) in the corresponding row of d in Eq. (84)
or in Eq. (28), using both Eqs. (84) and (85). It is obvious that in order to
avoid rigid body motions a minimum number of geometric boundary consi-
tions will be necessary. Knowing the coefficients G0.1 and G0.2 the vector d
is known. The displacement vector q may then be calculated from Eq. (16)
and the displacement from Eq. (4) and the strains from Eq. (5). Finally the
stresses will be calculated from a Ee.

An important class of problems leads to a system of differential equations
with constant coefficients.

A particular and very frequent case is the one where boundary conditions
enable the use of orthogonal functions as Fourier series.

The Solution by differential equations may also be very advantageous in
the case of specific problems where no boundary conditions have to be satisfied
in x± direction as in the case of axisymmetric problems.

In conclusion, the present approach may be applied successfully and
economically for a broad class of practical problems encountered especially
in civil engineering.
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Appendix
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Summary

The present paper is a more general formulation of the finite strip method
for solid continua, and discusses the advantages compared with finite element
method. The formulation is done for a three-dimensional body using the
variational approach based on the principle of minimum total potential
energy. As an application the particular case where the three-dimensional
problem is reduced to an one-dimensional one is presented in more detail,
leading to a system of linear differential equations with variable coefficients
for which an infinite series Solution is proposed. Small displacements and
linear elasticity are assumed. The one-dimensional case is exemphfied for a

plate in bending by neglecting shear force energy.

Resume

Ce travail presente un enonce plus general de la methode des bandes finies

pour les Continus solides, et discute les avantages compares ä la methode des

elements finis. Cet enonce est etudie pour un corps ä trois dimensions en
utilisant le calcul des variations base sur le principe du minimum de l'energie
potentielle totale. Comme application on presente en detail le cas particulier
oü le probleme ä trois dimensions est reduit a un probleme unidimensionnel,
conduisant ä un Systeme d'equations differentielles lineaires avec coefficients
variables pour lequel une Solution aux series infinies est proposee. On admet
de petits deplacements et une elasticite lineaire. On montre comme exemple
le cas unidimensionnel d'une plaque soumise ä la flexion en negligeant l'energie
des efforts tranchants.

Zusammenfassung

Der vorliegende Artikel ist eine allgemeinere Formulierung der Finite -

Streifen-Methode für Festkörperkontinua und bespricht deren Vorteile,
verglichen mit der Finite-Elemente-Methode. Die Formulierung erfolgt anhand
eines dreidimensionalen Körpers unter Anwendung der Variationsnäherung,
die auf dem Prinzip der minimalen potentiellen Energie beruht. Als Anwendung

wird ein spezieller Fall näher behandelt, bei dem das dreidimensionale
Problem auf ein eindimensionales reduziert wird; es führt auf ein System
linearer Differentialgleichungen mit variablen Koeffizienten, für welches eine

Lösung mit infiniten Reihen vorgeschlagen wird. Kleine Deformationen und
lineare Elastizität werden vorausgesetzt. Der eindimensionale Fall wir anhand
einer Biegeplatte erläutert, wobei die Querkraftenergie vernachlässigt wird.
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